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Abstract

We consider the two dimensional critical and super-critical
dissipative quasi-geostrophic equations. We prove the local ex-
istence of a unique regular solution for arbitrary initial data in
Bg,—lza which is corresponding to the scaling invariant space of
the equation. We also investigate the behavior of the solution
near t = 0 in the Besov space.
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1 Introduction

Let us consider the dissipative quasi—geostrophic equation in R?%:

-6—0-+(——A)°‘9+u°V0:0 in R? x (0, 00),
ot -
u=(—R:0,R0) in R?x(0,00), (DQGa)

0‘t=0 = 90 in R2,

where the scalar 6 and the vector u denote the potential temperature
and the fluid velocity, respectively, and o is non-negative constant.
R, = %(—A)“l/ 2 (¢ = 1,2) represents the Riesz transform. We are
concerned with the initial value problem for this equation. It is known
that (DQG,) is an important model in geophysical fluid dynamics.
Indeed, it is derived from general quasi-geostrophic equations in the
special case of constant potential vorticity and buoyancy frequency.
Since there are a number of applications to the theory of oceanography
and meteology, a lot of mathematical researches are devoted to the

equation.



The case @ = 1/2 is called critical since its structure is quite similar
to that of the 3-dimensinal Navier-Stokes equations. The case o > 1/2
is called sub-critical and o < 1/2 is called super-critical, respectively.
In the sub-critical cases, Constantin and Wu [4] proved global existence
of the unique regular solution. However, in the critical and super-
critical cases, global well-posedness for large initial data is still open.
In the critical case, Constantin, Cordoba and Wu [3] constructed a
global regular solution for the initial data in H* with small L norm.
In the critical and super-critical cases, Chae and Lee [2] proved the
global well-posedness for the initial data in the Besov space B2 T2
with small homogeneous norm. Later on, Ju [8] improved their results
on the space of initial data. Indeed, he proved the global existence
of a unique regular solution for the initial data in H?~2* with small
homogeneous norm. For large initial data, Cordoba-Cordoba [5] proved
the local existence of a regular solution for the initial data in H® with
s > 2—a. Ju [8], [9] improved the admissible exponent up to s >
2 — 2a. Here the exponent s, = 2 — 2¢ is important, because this is
the borderline exponent with respect to the scaling. We observe that
if 6(z,t) is the solution of (DQG,), then x(z,t) = A2*~10(Az, A%¢) is
also a solution of (DQG,). Then the homogeneous spaces H?2 and
B3 % are called scahng invariant, since ||0x(-, 0)|| g2-20 = [0, 0) ]| sr2-24
and 16x(-, )”Bz 2 = [|0(-, )HBz 2« hold for all A > 0. The scaling
invariant spaces play an 1mportant role for the theory of nonlinear
partial differential equations. If the equation has a class of scaling
invariance, then it coincides with the most suitable space to construct
the solution which is expected unique and regular. (See e.g. Danchin
[6], Koch-Tataru [10].)

In this paper we establish the local well-posedness for (DQG,) with
the initial data in 32 72% in the critical and super-critical cases. In
fact, we can extend the class of initial data 32 12 to the larger class
3211 N 32 12*. Compered with Chae-Lee [2], we can construct a local
solution for arbitrary large initial data. On the other hand, we improve
the local well-posedness result with respect to the space of initial data.
Indeed, B2 12* contains the space such as H* (s > 2 — 2a). See remark
on Theorem 2.2 below. .

We now sketch the idea of the proof. In contrast with other equa-
tions, it seems to be difficult to prove the local existence of regular
solutions by the classical approach such as Fujita-Kato method [7]. As
pointed out in [2], we have difficulty to find an approproate space X
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which yields the following bilinear estimate of the Duhamel term
HB(U 0)llx < CliolI%,

where B(u, ) = f e~(t=8)(=2)%(44.V9)(s)ds in the appropriate function
space X. For a < 1/2, we see the linear part (—A)*8 is too weak to
control the nonlinear term u- V6. In fact, the smoothing property of the
semigroup e~*=2)% is not enough to overcome the loss of derivatives
in the nonlinear term. To avoid this difficulty, in [2] and [8] they ap-
plied the cancelation property of the equation to construct the small
global solution. However, their method seems to be not suitable to deal
with the large initial data. So, in this paper we introduce the modified
version of Fujita-Kato method. To be precise, we derive the family
of integral inequalities on the Littlewood-Paley decomposition of the
solution, which makes it possible to apply the cancelation property of
the equation. In the usual Fujita-Kato method, such cancelation prop-
erty seems to be not available. On the other hand, in order to treat the
nonlinear equation by the perturbation argument, we establish smooth-
ing estimates for the linear dissipative equations in the Besov spaces.
Combining with these observations, we construct the local solution for
large initial data in Bg,}?"‘. As a byproduct of our method, we obtain
the precise behavior of the solution near ¢ = 0 in higher order Besov
spaces. '

The paper is organized as follows. In Section 2, we define some func-
tion spaces and precise statements of theorems. Section 3 is devoted
to establish some useful estimates such as the commutator estimate.
‘Finally in Section 4 we prove main theorems.
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2 Definitions and the statements of the
theorems

In this section we define some function spaces and then state main
theorems. Let us first recall the definition of the Besov space. Let
{#;}32_o be the Littlewood-Paley decomposition of unity i.e. é €
Cs°(R™\{0}), supp ¢ C {£ € R%;3/4 < |¢| < 8/3}and 332 $(277¢)
= 1 except £ = 0. We define the convolution operator A; as A; = ¢;*
where F(¢,)(€) = ¢(277€). We denote by S’ the topological dual space
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of that of tempered distributions S. Moreover, we denote by Z’ defined
as the topological dual space of Z defined by

Z={feS; [zf(z)dz =0 foralla e N'}.

Definition 2.1 For s € R, 1 <p < oo and 1 < g < 00, we write the
B; -(quasi) norm by

' oo 1/q
1£ll5y, = (Z 2]‘8anij;§) -

J=—00

For s>0,1<p< o0 and1<q < oo we also write the B, ,-norm
by
1£ll55, = I Fls + 1 £ll s .

We deﬁne function spaces as follows:
B, ={f € Z5l|flls;, <o},
By, ={f e8| fllsy, < oo}

Remark i) While the inhomogeneous space B; , is a subspace of &,
~ the homogeneous counterpart Bg’q is that of 2’ ~ &'/P. Here we
denote P as the set of all polynomials. Since we cannot distinguish
zero from other polynomial in §’/P, they seems not to be appropriate
as funstion spaces where equations are treated. Fortunately, if the
exponents satisfy the following condition:

either s<n/p or s=n/pandq=1,

then B;,q can be regarded as a subspace of &’. Indeed, if s, p and ¢
satisfy the above condition, we have

B;,q ~ {f eS’; ”f”B;,q <ooand f= Z A;f in 8’}.
j=—00

For the details one can see, e.g. Kozono-Yamazaki [11].
ii) Roughly speaking, the exponent s represents the differentiability
of functions and p represents the integrability. ¢ is less important since

their differences are at most logarithmic. These spaces are considered

as generalizations of L? space and Sobolev space. For example, we have
the following embeddings:
B), C I? C B}

p,00?

5 C WP C By
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We will also mention some facts on the Besov space in the remark of
Theorem 2.2 below.

Now we state the main theorem of this paper.

Theorem 2.2 Let 0 < a < 1/2. Suppose that the initial data 6y € B%l
N Bj72*. Then there ezist a positive constant Ty and a unique solution
of (DQGa») in C([0,T1); B3;) N L*(0,Ty; B3 ,).

Remark i) The assumption that the initial data belongs to the scaling
invariant space 32 72* plays an crucial role in the theorem. In the
critical case a =1 / 2, one can take the class of initial data as B%’l. On
the other hand, in the super-critical case a < 1 / 2, we must assume
that the initial data belongs to B;; in addition to Bzzza One of the
reason is that B37%* is only the subspace of S'/P, so B7** is no longer
-appropriate to treat equation (DQG,).

ii) Ju (8], [9] proved local existence of a unique solution for the
initial data in H*® (s > 2 — 2a). Theorem 2.2 improves his result on
the class of initial data. In fact, the following inclusion relation holds:

H° 322520‘ — BllmBQ 12 for s> 2-2a.

iii) Chae-Lee [2] proved the global existence of a unique solution for
~ the initial data in B}7** with small homogeneous norm. Theorem 2.2
is regarded as the 1ocal version of their result. In fact, by the argument
of our proof, one can also cover their global existence theorem:

Corollary 2.3 There ezists a positive constant € such that for the ini-
tial data 8o € B3, N B37>* satisfying ||6o]| pre < €, there ewists a

unique global solution in C([0, co); B%,l) N L*(0, oo; 322,1).

In contrast with [2] [8], we make use of Fujita-Kato type method to
construct the solution. This approach also tell us the behavior of the
solution in higher order Besov spaces:

Theorem 2.4 Suppose that 0y belongs to B27* N B}, and 8 is the
solution of (DQG4) in L=(0,Ti; Bi,) N Ll(O,Tl,BQ’ ). Then for all
B € [0,2a), there exist constant Ty € (0,T1) such that

-g- .
sup t2=||0(t)] s2-204+8 < 00.
o528 P10 e
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Moreover, the solution satisfies

lim ¢35 |6(£) | 32005 = 0.

Notations

Throughout this paper we denote a positive constant by C' (or C”
etc) the value of which may differ from one occasion to another. On
the other hand, we denote C;(¢ = 1,2,---) as the certain constants.
Moreover we write the space LP(0,T; dt) as LF.

3 Preliminaries

In this section we prepare some estimates in the Besov space. First,
we recall Bernstein’s inequality.

Lemma 3.1 (i) For any k € R, 1 < p < oo, there ezist constants
C = C(k,p) such that

C 2% fllze < ID*fllze < C2¥||f]|2e,

holds for all f € 8’ with suppf C {22 < |¢| < 27} and j € Z.
(i) We have the equivalence of norms

kel o~ .
1D fllg, . ~ Il g
Next we prepare various product estimates in the Besov space.
Proposition 3.2 Fors, t < n/p with s+t > 0, we have
ol gate-nvo < Clulsg, Iollsg

Finally we state the commutator estimate associated with the op-
erator A;, which plays an important role in the estimate of nonlinear
term.

Proposition 3.3 Suppose that 1 < p < o0, n/p < s < 1+ n/p,
t <n/p and s+t > n/p. Then there exists a constant C = C(s,t)
such that '

2 +=7/8) [, Al < Ol 1wl
for allu € B;,l and w € B;,’l with 3z c; = 1. Here we denote

[u, Ajlw = uAjw — Aj(uw).



4 Proof of Theorems

4.1 Linear Estimates

Let consider the following linear dissipative equation:

%tq +(=A)n=0 in R?x(0,00),

(La)
M=o =m0 in R

The following is the useful characterization on the Besov norm of
the solution and its application to the smoothing estimate.

Proposition 4.1 Suppose that the initial data mo belongs to Bg,l for
some s € R and let n(t) = e~*~%ny be the solution of (La) for o > 0.
Then there ezist positive constants ¢ and ¢’ (c < ¢') depending only on
a > 0 such that

3 297 gy (0) |12 < [leT A ol gy, S D 2967y (0)] 2
~ ' jEZ

. (4.1)
for all t > 0, where n;(0) = A;no.
Moreover we have
OiltlETtl/pHe_t(_A)aUOHBg‘l < C||e~t(_A)a770“L;B;,17 (4.2)
and
|I3Ze~t(_A) 770“1,39/73;1 < CHUOHBZ‘;J' (43)

Proof Firstly we prove (4.1). Applying the operator A; to (La), we
have

8in; + (—A)*n; =0,
where we denote 7; = A;n. |

Taking inner product with 7;, we have
1d
53;“%’”%2 +[[(=A)*n;l|z2 = 0.

By Lemma 3.1, there exist positive constants ¢ and ¢’ (¢ < ¢’) such
that 1d

5 dt“ﬂj“fzz + c2*¥|n;|l7. <0,
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and
1d

2dt
- Dividing by ||n;]|z2 and solving the differential inequalities, we have

In; 122 + 2% ||n;[|22 > 0.

e i (O)llz2 < Iy Ol < 627y (0) .

Multiplying 2/ and summing over j € Z, we have (4.1).
Secondly we will prove (4.2). By (4.1), we see that it suffices to
show :

sup /7Y 2967, (0)]| 12 < O Y 277y (0)

7
o<t<T jez jez T

(4.4)

___22aj et :

Since e is monotone decreasing for ¢ > 0, we have

> 29, (0)]| s < Y 29TV ;0|2 for O <7<t

J€Z jEZ

Taking L?(0, ¢; d7) norm on the both side, we have

B3 2l O) < || 2% s Ol

JjE€Z J€Z

LP(0,t;dT)

By change of variables, we observe that

| > 2762 g 0) 22

JjeZ

LP(0,t;dT)

C, l/p ;o a'cl
()57 In Ol
: J

LP(0,t;dr) ’

which yields (4.4). -
Finally we will prove (4.3). Applying (4.1), we have

(4.5)

Y ) (748)i =22 ct ||y
103l 205, < C| zz i O R
Let U;(t) = 299e2"%||n;(0)|| 2, then U; satisfies

OU; +c2*U; =0 for t>0 and j€EZ.
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Multiplying U Jz /771 and integrating on (0,7'), we have

T
U (T)2/7 + / c229 U, (s)2/ 7 dt = U;(0)2/7.

0

In particular _
“2’YJUjHL2a/7 < CU(O)

Takmg sum over j € Z and applying Minkowski’s 1nequa11ty for the
left hand side, we have

et
jez
By the definition of Uj, the above inequality shows

| 32 ey )]

JE€Z

Ly SCD_U50).
T jez

2a/7 - C”nOHB;,I

Combining this estimate with (4.5), we obtain (4.3).

4.2 Proof of Theorem 2.2

Step 1: Firstly we will show a priori estimates in L%B%E“. Precisely
we will prove that there exist a positive constant ('} and a bounded
function/(T") with limz_,o I(T) = 0 such that |

1611 527+ < I(T) + Cull01175 s25e- (4.6)
Applying the operator A; to (DQG,), we obtain
0u8; + (—A)*0; = —Aj(u- V0),
where we denote §; = A;0. Adding u - VA;0 on both sides, we have
0i0; + (—A)%0; +u- VA0 = [u, A;]V9.

Taking inner products with 6;, it follows from the divergence free con-
dition that

Zdtllﬁ 122 + c22991[9;]122 < |l[u, A;1VO][L2 |05 ]Iz



Dividing both side by |6,/ 2, we have
d 20 < Mu, A
&'”@'”LZ + 29105 || 22 < [Mu, A1V 2.
Applying Proposition 3.3 with s = 2 — o and ¢ = 1 — @, we obtain

216,25 +c2"]|6;]|z2 < ||[u, Aj] V6|15
< COc;274- 2a)J||U”B§;°”V9“B;—1°‘
S ch2*(2‘2°‘)j||0|]%§_la.

2dt

Solving the differential inequality, we have

, . ¢ 207 o(t—g
165l < e85 O) -+ Ces272 [ et-0)p(5) .

(@)
Multiplying 2~ and summing over j € Z, we obtain
16; (t)”B;_IQ < Z 2(2—a)je—22ajct“9j (0)| 2
jez
O e [ oe) s, (49

JEZ

In order to show (4.6), we take L2 norm on the both sides of (4.8).
By Proposition 4.1 , the first term is estimated as follows

| 3= 2=, 0y

JEZ

12 < CIWO”B%I;"‘“-

Let .
7) = | 32 2 o, o) |,

JEZ

Then we have I(T) < C||6]| By and limy_,0 I(T) = 0 by the abso-
lutely continuity of the 1nteg‘ral
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Concerning L3 estimate for the second term of (4.8), we have |

e [ s

Jj€Z Lz
<Y o2 / | ~22a,~6(t-s>,|9(s)||§g_lads” 2
JEZ ’ Lz

< Zc 9aj (/ 8—22aj+1ctdt) HH”IP B2—a

JEZ

< Cli6ll7, Bige

Therefore we have obtain a priori estimate (4.6).
Secondly we will show the following estimate:

1815355, < T'CT) + ol oo (49)
In (4.7), multiplying 2% and taking sum over j € Z, we obtain

185(8) 152, <3 29e70,(0) |

jJEZ
t .
FON e [ e () .
jez 0
By Proposition 4.1, we have L. estimate for the first term as follows:
| 3= 25e = 0,0)1
j€Z
Let I'(T) = || ;e 2276"6,(0) |

limT_.)() I’(T) =
On the other hand, applying Young’s inequality, we have

”2%22@/ —92ad¢(t— S)HG(S)HBZ_ ds“ <C”6”L232“°‘

JjEZ

S Cll?ollfgg;za-

. Then we have
Ly

Thus we obtain the a priori estimate (4.9).
Similary to the previous argument, we can also obtain

160152357 < 6ol sgz2e + C 612 go-o.
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Step 2: To construct the solution, we define the following approxima-
tion sequences:

8,6° + (—=A)*0° =0 in RZxR,,
1 l—o=6 in R

and
8,0t + (=AY 4y VI =0 in R? xRy,
u" = (—Reb™, R16") in R? xRy, (4.10)
"m0 =6 in R?
for n > 0.
We will prove the uniform estimate on ™. Let X% = ||6™| 13527

and Y7 = ||67]] L35z, By the argument in Step 1, we can show that
there exists a bounded function I(T) with limy_,o I(T") = 0 such that

Xr < IT),
X < I(T) + G, XEXEY forn > 0.
Taking Ty > 0 sufficiently small satisfying /(Tp) < 1/(4C}), we have
Xz <2I(T) for n>0. (4.11)

On the other hand we can also prove that there exists a bounded
function I'(T") with limy_,o I'(T) = 0 such that

Y? <I(T),
Y < I'(T) + CoXpX5r

Combining with the above estimate and (4.11), we have
Ypt < I'(T) + Cu(I(T))*  forn > 0. (4.12)

Using the uniform estimate, we will prove the convergence of the se-
"quence in LB} ;.

Let 607! = ¢+ — §” and du™™! = u™*! — u”. Then we have
following equations of the differences:

807+ & (—A)50™H 4o - VO™ + ur - VO™ = 0,

Su™ = (—Ry06", Ry66™)  in R? x Ry,
§6™+,o =0 inR?, |



for n > 0.
Similarly to a priori estimates, we have

1d ,
2dr H‘W}Hl [|742% HM?H 12, < —(A; (u"-V59”+1)+Aj(5un,v0n)7 59;;4-1)7
where 607 = A;0"* — A;¢". Thanks to the divergence free condition,

we have
(u™ - Vé@;‘“, 66;‘“) = 0.

By Hélder’s inequality, we have

d oj n n n n n
35!|597“||L2+22 71667 |2 < [I[u”, A;] V0™ | 12 + | A; (Bu” - V™) | .

This implies

166772 (¢)]l 2

t )
<c / &P ([, A1VE0™ 1o + | Ay (Fu™ - V8™)||2)ds.
: 0
(4.13)

Let s =2 and t = 0 in Proposition 3.3. Then we have
I[w”, A31VE6™ |2 < 277 |[u” | g (1 V86™ | 5g
< ¢ 27716 52 166" 55 -
Multiplying 27 on (4.13) and summing over j € Z, we have
1667+ (1)] 55
<O [0 g, 5 8™ 987 )

t .
SC‘/Oe—ZZ M(t-S)(”gn”BEll“59”+1”B%,1+HJQnHB%‘lHen“Bg,JdS’

where we use Proposition 3.2 in the last line. Hence we have

“‘senHHL%oB;’l < C(Hen“z;lTBg,lH‘mn“”LoToB;’l + ||59”||L<;B;,1H9n|IL;Bg,I

< GYR(I0™ g sy, + 116615, )
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By (4.12), there exists 7y > 0 such that Y7 < 1/(3Cjs) for n > 0.
Then we have

1601553,
1 0

S 2n+1“9 “L%EB%J
o

< Sarrlifollsy,-

N | =

”59”+1”L£’,%B%Yl <

This shows the existence of the limit function § € L 321,1 satisfying
0" — 0 in LEB;, as n — co. On the other hand, uniform estimates

show that 6 also belongs to L& B27** N Lk, B2, by the uniqueness of
the limit 6(t) in 2’ for t € (0,7;). Here we can easily observe that the
limit function @ satisfies (DQG,). -
Finally we prove the continuity (in time) of the solution in Bj;.
The proof is the same as the argument in Chae-Lee [2]. Indeed 6™

satisfies
0,0™ ! = —yr . VOt — (—A)"‘&"H,

where the right hand side belongs to L*(0, T; Bz}’l) Since

0~ (¢) — 9 (2) = — / VO + (~A)(s)) ds,
we have
1671 (¢) = 8%+ (1)1 3,
< / t' (Il - 7™ (5) 1 5, + 1(—~2)"6"(5)l| 5, ) ds
<c / t' (16" (5) 23, 187 ()., + 116°7(5) g3 ) s

tl
<c / (18"l ay 167 (5) g, + 16 ()3, + 1™ ()55, ) s
t ’ ’ ’ ’
—<-“9n”L°°(t',t;B§,1)||0n+1||L1(t',t;B§’1) + ”9n+1I|L1(t’,t;B%.1) + ||9n+1“L1(t’,t;B§‘1)‘

By the absolutely continuity of the integral, the right hand side con-
verges to 0 as ¢’ goes to t. Since §"*! converges to § in Bj;; uniformly

in time, we obtain the continuity of § in B211

O



4.3 Proof of Theorem 2.4
We will establish the following uniform estimates of the solution for
(4.10). Indeed we will prove that there exists a positive constant T,

such that

: ROINT _
%1_% ilgg 0s<1:£th |6 (t)||3532a+ﬁ =0, (4.14)

for T < T, and 0 < 8 < 2a. Since we proved the existence and the

uniqueness of the solution in L**(0, T’; B3 ;) N L*(0, T; B%,) in Theorem

2.2, the uniform estimate (4.14) guarantees the desired decay estimate.
- We divide the proof into two cases: 0 < f<aand a <8< a.

Step 1: Firstly we prove (4.14) for 0 < § < a. For n = 0 it follows
from Proposition 4.1 that there exists a bounded function J = J(T')
with limr_,o J(T') = 0 such that

sup % [|6°(¢)| ga-sess < J(T), (4.15)
0<t<T 21

where J(T') < C||fo]| g2-22
For n > 0, 67 satisfies

d .
=167 I + c2%9 |63 |12 < |I[w”, 8]V 1o (4.16)

Applying Proposition 3.3 for s =2 —2a+ f and t = 1 — 2 + (3, then
we have

I[u”, 8,)V6™H |13 < O 274020007 goaarn |67 | ga2ets.

Hence we obtain
1672 (@)llz2 < €727 )165(0) |22

t .
+ Cc,;2(24at20)i /0 e*zz‘”c(t*@nen(s)uggzwﬂ||9“+1(s)llsg;;4a+2ﬁds.

Multiplying 2(~2¢*#)J and summing over j € Z, we have
Hen+1(t)HB§’—lza+ﬁ < Z2(2—2a+ﬁ)je—22a;ctHej(o)HLz
jeL

t
2a- : _ 2a¢jc 8 n .
+Cj€ZZCj2( /3)1/0 e=2elt=9) |1 (S>“B§Hz"+ﬁ”0 +1(s)||3332a+ﬁds.
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This is equivalent to

0741 (1) g 3es < 18 Y 20T IEEE5(0) 1o

JjEZ
t .
+ Ct'z% Z Cj2(2a—ﬂ)j-/0 22 c(t=s) 16™(s) ”Bg;“"‘”ﬂ“0n+1(3)“3234°‘+2ﬁds
JEZ

=J+1I. (4.17)
For the first term, we have .

sup 3 y_ 202~ 0, (0)]|z2 < CI(T)

- 0<t<T jez

by Proposition 4.1.
On the other hand, we observe that

9(2a—Plig=22cli=s) o C(¢ — g)~(22~A)/2  forall j € Z.
So the second term of (4.17) is estimated as follows:
II < Ctz / (t — 5)~22=P) 22| g (s) | B§;4a+zall0"+1(s)|| Bg'—lzaﬂids

<0 sup thon(t )HBz-zaw)( sup 175 (16" (8) a0 )
2.1 0<t<T 21

o<t<T
o« 1 / (t — 5)~(2a=B)/2a =B/

<o sup th)on(t >nBz-za+a)( sup ¢55[|074 (1) gzaees )
0<t<T 21 0<t<T 21

for 0 <t < T, where we use the assumption 0 < B < « in the last line.
Thus we have

sup t2e HG"“(t)H pR e
o<t<T

< CsJ (T)+c-,( sup t35(|6"(¢)] 32-2a+ﬁ)( sup ¢% 971 (t)| 32_2a+p).
0<t<T 2,1 0<t<T 21

Taking‘T2 > 0 sufficiently small, we can estimate J(T") < 1/(4CsC7)
in the above inequality for T < Ty. Then we conclude that

sup tza||9 (t)HBz 2048 < ZJ(T)

0<t<T

for all T < T, and n > 0, which yields (4.14).
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Step 2: We next prove (4.14) for a < 8 < 2a. For n = 0, Proposition
4.1 shows that there exists a bounded monotone decreasing function
J(T) with limr_,o J'(T) = 0 such that

sup t3]/6°(¢)|| grees < J(T).. (4.18)

0<t<T

For n > 0, we apply Proposition 3.3 for s = 2 — 3a/2 + 3/4 and
s=1-3a/2+ (3/4 to (4.16), then we have

d i
107 12 + 263+ 1

< chZ‘(2—3a+ﬁ/2)j 16 1[33“13"‘/2'*"’/4 [Cias |l3§*13°‘/2+5/4 .

Transforming to the integral inequality and summing over j € Z, we
have _

195 (|67 (2) | 2-nare StE Y 27200 E e g,(0)) | o
h jez |
T
+Ct§% chz(a_—ﬂ/Z)j/ 6-22°‘jc(t—s)
JEZ 0
n 2 3 n+1 o3
x ||1e (8)”33,13 2467410 (5)”322)13 /2+6/4d8
=1+11.

The first term is estimated as (4.18). So we estimate the second term.
Since

Q(e=B/Dig=2=elt—s) < Ot — s)=@+D/%  forall j € Z,
we have
1< s /Ot(t _ S)—-(2a+ﬁ)/4aH9n(s)“3513&/2%/4”9n+1(8)“33_13a/2+ﬂ/4ds
<C ( sup tites 16™(®)|| Bz—sa/z+a/4) ( sup t%+'8%||6”+1(t)|l Bz—sa/z+ﬁ/4)
0<t<T 21 0<t<T 2,1

for 0 <t < T. Since 0 < 1/4+ 3/(8c) < a, it follows from Step 1 that

sup t%""s%”Gn(t)HBz—sa/zwﬂ < 2J(T) for T < Tg.
o<t<T 21

Hence the second term is bounded by 4C(J(T'))? for T < Ty.
Combining the above estimates, we obtain the desired estimate
(4.14) for o < B < 20u.

g
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