0000000000
1501 0 2006 0 181-194 181

Multiplication table and topology of real hypersurfaces.
Susumu TANABE

ABSTRACT. This is a review article on the multiplication table
associated to the complete intersection singularities of projection.
We show how the logarithmic vector fields appear as coefficients to
the Gauss-Manin system (Theorem 2.7). We examine further how
the multiplication table on the Jacobian quotient module calculates
the logarithmic vector fields tangent to the discriminant and the
bifurcation set (Proposition 38.3). As applications, we establish
signature formulae for Euler characteristics of real hypersurfaces
(Theorem 4.2) by means of these fields.

1 Introduction

This is a review article on the multiplication table associated to the isolated complete inter-
section singularities (i.c.i.s.) of projection and notions tightly related with them. The notion
of i.c.i.s. of projection has been picked up among general i.c.i.s. by Viktor Goryunov [3], {4] as
good models to which many arguments on the hypersurface singularities can be applied (see for
example Theorem 2.1, Lemma 2.5). All isolated hypersurface singularities can be considered as
special cases of the i.c.i.s. of projection. Many of important quasihomogeneous i.c.i.s. are also
i.c.is. of projection.

The main aim of this article is to transmit the message that the multiplication tables defined on
different quotient rings calculate important data both on analytic and topological characterisation
of the i.c.i.s. of projection. We show that the multiplication table on the Jacobian quotient
module in 0’)%)( g calculates the logarithmic vector fields (i.e. the coefficients to the Gauss-Manin

system defined for the period integrals) tangent to the discriminant and the bifurcation set
(Proposition 3.3) of the i.c.i.s. of projection.. This idea is present already in the works by Kyoji
Saito [13] and James William Bruce [2] for the case of hypersurface singularities (i.e. k = 1).

On the other hand, as applications, we establish signature formulae for Euler characteristics
of real hypersurfaces (Theorem 4.2) by means of logarithmic vector fields. These are paraphrase
of results established by Zbigniew Szafraniec [14].
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2 Complete intersection of projection

Let us consider a k—tuple of holomorphic germs
(2'1) . f(m1u) =(f1(zvu)""vfk(zau)) € (Ox)k

in the neighbourhood of the origin for X = (C"*},0). This is a 1- parameter deformation of the
germ

(2.2) FO(2) = (fi(=,0), -+, fi(z,0)) € (O)*

for X = (C,0).

After [3] we introduce the notion of R.iequivalence of projection. Let p : C**! — C be a
nondegenerate linear projection i.e. dp # 0.
Definition 1 We call the diagram

Y — Cn+1 —P C,

the projection of the variety Y <« C™*1 on the line. Two varieties Yy, Y2 belong to the same R,
equivalence class of projection if there exists a biholomorphic mapping from C™*! to CM! that
preseves the projection and induces a translation p — p + const on the line.

In this way, we are led to the definition of an equivalence class up to the following ideals,

(2.3 7= 0x (2L . 2L 4 7 (meve) - O
and
(2.4) T} =Ty + caf

that is nothing but the tangent space to the germ of Ry equivalence class of projection. We
introduce the spaces

(2.5) Qs = (Ox)*/Ty,

(2.6) QF = (0x)*/T}.

We remark that though T}" is not necessarily an ideal the quotien Q} can make sense. Assume

that Qg is a finite dimensional C vector space. In this case, we call the number 7 := dzch+
the Ry — codimension of projection y := dimcQy the multlphcxty of the critical point (z,u) = 0
of the height function u on X := {(z,u) € X; fi(z,u) = = fi(z,u) = 0}. We denote
by (€i(z,u),---,&(z,u)) the basis of the C-vector space Q'}' If T < 00, it is easy to see that
flz,u) =0 (resp. f(z,0) = 0) has isolated singularity at 0 € X (resp. 0 € X). Let us consider a
R~ versal deformation of f%(z)

(2'7) F(z,u,t) = ftO)(z) +€Q($,u) + tlgl(wi u) + +t.,.e'.,-(x,u),

with &o(z,u) = f(z,u) — f(x,0). We consider the deformation of X, as follows
(2.8) X, = {(z,u) € C"*; F(z,u,t) =0},

that is also a (7 + 1)-dimensional deformation of the germ X, := {z € X; fy(2,0) = --- =
fx(x,0) = 0}. The following fact is crucial for further arguments.
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Theorem 2.1 ([3], Theorem 2.1) For the k-tuple of holomorphic germs (2.1) with 0 < p < 400,
we have the equality p =71+ 1.

Futher, in view of the Theorem 2.1 we make use of the notation, S = (C"+1,0) = (C#,0),s
= (u,t) €S s9=u,8=t,1<i<T

Let I, C Ox be the ideal generated by & x k minors of the marix (%ﬁ, e ﬂ}:—:ﬁ).
Proposition 2.2 (/3] ) We have the equality

Ox
fl(w,u),---,fk(w,u)) +ICO'

= dim = dim
I cQy Ox
Let us denote by Cr(F) the set of critical locus of the projection  : Usecr Xt — S. That is

to say

(2.9) Cr(F) = {(z,u,1); (z,u) € Xy, rank( <k}

OF(@,s)  OF(@s),
3131 ! ’ o n

We denote by D C S the image of projection W(Cr(l:'")) which is usually called discriminant set
of the deformation X; of projection. It is known that for the R -versal deformation, D is defined
by a principal ideal in Og generated by a single defining function A(s) [9]. Under this situation
we define Os— module of vector fields tangent to the discriminant D which is a sub-module of
Derg the vector fields on S with coefficients from Og.

Definition 2 We define the logarithmic vector fields associated to D as follows,
Derg(log D) = {¥ € Ders;#(A) € Og - A}

We call that a meromorphic p—form w with a simple pole along D belongs to the Ogmodule of
the logarithmic differential forms Q% (log D) associated to D iff the following two conditions are
satisfied

DA - we QF,

2)dA -w € Q5

or equivalently
A-dwe ﬂ’;’l.

For the Og-module of the logarithmic differential forms the following fact is known.

Theorem 2.3 (See [11] for the case k = 1, [9], [1] for the case k general) The module Ders(log D)
is a free Og-module of rank . Furthermore there erists a u-tuple of vectors ©y,--+,7, €
Derg(log D) such that

A(s) = det (i, - -, 5,,).
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Proposition 2.4 (see [16] for the case k = 1, [3] for general k) R
For every #; € Derg(log D), 1 < j < p, there exists its lifting U; € Dery, o tangent to the
critical set Cr(F). More precisely, the following decomposition holds,

p=1

n k
" OF, - -,
Ti(Fy(z,8)) = 3 hjpla, 8)gt+ S a$ (@, 8)Fr +biq(z,5,F), 1< g <k
4 r=1
for some by j(z,5) € Og g, bjig(z,5,F) € Og. g ®0y, s M- In this notation,

s, = a8
v; =V — Z hj,p(z,s)-é.—r:.

p=1

Conversely, to every vector field t:)‘j € Dery . ¢ tangent to the critical set Cr(F) we can associate
a vector field U; € Derg(log D) as its push down.

This is a direct consequence of the preparation theorem.

Lemma 2.5 (/3]) The discriminant A(s) defined in Theorem 2.8 can be expressed by a Weier-
strass polynomial,
A(s) = u¥ + di(Hulft 4+ d,(8),

with dy(t) = --- =d,(0) =0.
From this lemma we deduce immediately the existence of an “Euler” vector field even for non-

quasihomogeneous (z,u) that plays essential role in the construction of the higher residue pairing
by K.Saito[12].

Lemma 2.8 (Fork = 1, see [12] (1.7.5)) There is a vector field 51 = (u+09(t)) & +37_, oi(t) €
Ders(log D) such that
51(A(s)) = pA(s).

Proof It is clear that for a vector field #; € Derg(log D) with the component (u + a?(t))g—‘
whose existence is guaranteed by Theorem 3,1 {3] , the expression ) (A(s)) must be divisible by
A(s). In calculating the term of ¥;(A(s)) that may contain the factor u*, we see that

71(A(s)) = put +dy (HuP 1 + - - +d.u(t).

Thus we conclude that di(t) = udi(t), 1 <i < p. Q.E.D.

Now we introduce the filtered Og-module of fibre integrals H®) for a multi-index } =
(/\1, ey /\k) € (Z<o)k.

1§(s) = : d(z, 8)Fy(z, 8)™ - - - Fe(, s)* dz,
t(v)

for ¢(z,8) € O, Let us denote by X(@ := {z € X;F,(z,s) = 0} a smooth hypersurface
defined for s € D. We define the Leray’s tube operation isomorphism (see [17], [7]),
t: Hpx(Nio,X@) — Ho(X\UE,X@),
gl - t(7).
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The concrete construction of the operation t can be described as follows. First we consider the
coboundary isomorphism of the compact homology groups,

61 Hn (M X9) o Hy_jea (NE_, X @\ x W),

A compact cycle ¥ in N5_; X(@ is mapped onto a cycle 5(7) of one higher dimension that is
obtained as a §! bundle over 7. Repeated application of 4 yields an interated coboundary
homomorphism,

Hp k(N1 X @)= Hy 1 (M, X @\ X0)

-8 Hp_ (X0 \ U1 X @) 0 B (X \ UL, X (@),

The Leray’s tube operation is a k—time iterated 6 homomorphism i.e. ¢ = 6™. The Froissart
decomposition theorem ([7], §6-3) shows that the collection of all cycles of H,(X \ U'“_IX (@) are

obtained by the application of iterated § homomorphism operations to the cycles from Hn_,,(X N
X@nx@)..Ax@)) p=0,-- k.

Let us denote by & the C vector space %’ﬂl whose C— dimension is equal to p after the
0

Proposition 2.2. We denote its basis by (¢o(x,u), - -, d-(z,u))
Now let us introduce a notation of the multi-index —1 = (=1, — 1) € (Z«o)*. We consider

a vector of fibre integrals Iy :=* (Iéo—l)( ) IRERNY $% (- 1)( )). Then following theorem for £ = 1 has
been anounced in [13] (4.14) without proof

Theorem 2.7 1.For every U € Derg(log D), we have the following inclusion relation
f)’('H(_l)) e H-D,

That is to say for every v; € Derg(log D), there exists a pu x p matriz with holomorphic entries
Bj(s) € End(C*) ® Og such that

Uj(Ie) = Bj(s)lg, 1 < j < .
2. The vector of fibre integrals 1 satisfies the following Pfaff system of Fuchsian type
dle =Q Iy,
for some Q € End(C*) @0, Q%(log D).

Proof As for the proof of 1, we remark the following equality that yields from Proposition
2.4,

f o(z,u)Fi(z,8) - Fi(z,8) tde = Fld(¢(z u)Z( ~1)P"1h; ,(z, 5)dz ¥ d.z',.)+
t(v) t(v) p=1
kK Lk -
+ [ Fe@uwY o) FF; d:v+/ F 13" F % 0(z,u,t, Fydz
67} g=1r=1 t(v) q=1

= F'ld(¢(z,u)2(— )P by 4 (z, s)dzy ¥ dzn) /( )F'lqba: u Za(r)(z s))dz,
t(v

t(v) p=1 r=1

185



S. TANABE

which evidently belongs to H(-1). The last equality can be explained by the vanishing of the
integral .

r 9
/ Ft 1Y Fr Y B (e, u) (6l )dz = 0,
t(y)
because of the lack of the residue along F,.(z,s) = 0 and

FYFy Fo  F d(x, u) (B2 (2, 8))dz = 0,
t(v)

in view of the lack of at least one of residues either along Fy, = 0 or along F, = 0. These
equalities are derived from the property of the Leray’s tube t(vy) which needs codimension k
residue to give rise to a non-zero integral.

2. Let us rewrite the relations obtained in 1. into the form,

n
dIézl) = Z“"q,rlé,_,l)v

r=1

for some w,,» € (- D) meromorphic 1-forms with poles along D. These w, .- satisfy the following
relations,

m
- I .. - ;
I ) = (@, dITY) = (@5, ) werl§T) 1<G,q <
r=1
If (U;,wq,r) € Og for all #; € Derg(log D) 1 < j < p then wy, € Qk(log D) in view of the
Theorem 2.3. Q.E.D. }
Let us introduce a filtration as follows HN) = @, . .., _xH®. For this rough filtration
we have the following generalisation of the Griffiths’ transversality theorem (6] Theorem 3.1).

Corollary 2.8 For every ¥ € Derg(log D), we have the following inclusion relation
FHN) o 1N,
Proof For 8,,Is € H(~*~1) and #, € Derg(log D) we have
U¢(0s,;10) = [Te, 05|10 + 0, 0e(1o)
= [Ue, 0s,;]1p + Bs;(Be(s)Is) = (T2, 04,110 + (Bs; Be(s)) Io + By(5)(0s;1s)-

As the commutator [, 8s,] is a first order operator, the term above (7, 8,,]Is belongs to H(~%-1).
The term 8,; By(s)Io € H{~* again belongs to H(~¥~1), Thus we see 7(9,,Is) € H(~*~1. In
an inductive way, for any A < —k we prove the statement.

Q.E.D.

3 Multiplication table and the logarithmic vector fields

We consider a miniversal deformation of a mapping f(O)(:c) which can be written down in the
following special form for s = (u, t),

Fi(z,t) —u

s F ,
(3.1) F(z,s) = fOz) + Y tede(z) + uéo(z) = 2'(:z g
= Fi(z,t)
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for

{go(m), e ’ET(m)} S Qfa

where €(z) = %(-1,0,---,0). One may consult [9] (6.7) to see that F(z,s) really gives a.

miniversal deformation of f1(z) by virtue of the definitions (2.3), (2.5). Let us fix a basis
{¢o(z),- -+, ¢, ()} of the space & := Icn+ox(f1(ﬁr)?:,fz(z).""fk(w))' We remark here that the basis
of @ can be represented by functions on x as we can erase the variable u by the relation fi(z) = u
in ®.It turns out that we can regard {@o(z), -, d,(z)}as a free basis of the Og module,

0 X
) = B B R T I

Under this situation, we introduce holomorphic functions 'rf, ;(8) € Os in the following way.

8F(z, s 8F(z,s)
(3.2) ) z)€;(z) = ,X_ET” x) mod(Ox 6(1:1 ),---,' Bz, ))-

The functions 7} ;(s) € Os exist due to the versality of the deformation F(z, ). We denote by

(3.3) . Tj(s) = (Tie,j(s))ogj,zgr’

a p x u matrix which is called the matrix of multiplication table. We denote the discriminant
associated to this deformation by D C §S.

Further on we will make use of the abbreviation mod(d, F(z, s)) instead of making use of the

expression mod(Os. s( 2552, -, 25zaly),

After Proposition 2.4 t}le vector field o constructed in Lemma 2.6 has its lifting % €
Derg s- Let us denote by ) =0 — 01 € Og, ¢ ® Dery.

$(F(z,9)) - dilx) = 01 (FO(z Z)+Zv1 50)ée(z)d:(x) +ZSe' 164(2)) 4 (2)

=0 =0

= Z 71 (se)8e(z)gi(z) mod(de F(z, 5)).

£=0

Lemma 3.1 There ezists a vector valued function M(z, F(z,s)) € (Ogxcr)* such that

1 (s)(F(z,5)) = M(z, F(z,5)) mod(dF(z,s)),
with B - o

M(z, F(z,s)) = M° . F(z,s) + M(z, F(z,s)),
where M® € GL(k,C): a non-degenerate matriz and M'(z, F(z,s)) € (O ® m%)k. Especially
the first row of M° = (1,0, --,0).

Proof First of all we remember a theorem due to [5] §1.1, [13] Proposititon 2.3.2 which states
that the Krull dimension of the ring of holomorphic functions on the critical set Cr(F) is equal to
#—1 and this ring is a Cohen- Macaulay ring. Let us denote by L = ,Ci. We have (k+ L)tuple
of k x k— minors jg41(x,s) -+ jrsr(x,s) of the matrix (gﬁz—lF‘(:z, 8)y 3-2—7‘-1:"’(.1, s)) such that

Cr(ﬁ) = V(< Fl(zv 3)7 . ',Fk(l', s)vjk-}-l(zas)»"' '1jk+L(xv S) >)'
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The lemma 2.6 yields that the lifting 7 of the vector field 7 satisfies the relations,
< Fl(xas)r T ,Fk(w,s),jk+1($, S), te ajk+[4(x73) >

=< 511(F1(I,8)), Tt 731(Fk(z’ 3))v7§1(jk+1($v 8))1 ) i}:l(jk+L(z’ 3)) >.

As it has been seen above Proposition 2.4, the vector '5'1 prop2 is tangent to Cr(ﬁ). If the above
equality does not hold, it would entail the relation

D = {8 € S, A(s) = 0}§W(V(< i}:l(Fl(m7 8))’ o '1v-:l(Fk(z1s))vi):l(jk-f-l(z’s))v t ,1_):1(jk+L(-T, S)) >))?

after elimination theoretical consideration. This yields

k+L
7 (Fy(z, 8)) ZC’ZFg(a: s) + my(z, F) + Z je(z,s),1 < q <k,
€=1 =k+1
N k+L
71 (Jp(z, 8)) = Z ]g:ES k+1<p<k+1L,
e=kt1

for mq(z,ﬁ) € Oz ®m%, 1 < q < k and some constants C,f,l < £ < k. First we see that
the expression ¥, (dp(x,8)) cannot contain terms of Fy(x,s) like F (0, s) in view of the situation
that the versality of the deformation makes all linear in z variable terms dependent on some
of deformation parameters. Secondly the non-degeneracy of the matrix M°? := (Cg)lsq,[sk is
necessary so that the above equality among ideals holds.

From this relation and the preparation theorem, we see

OF (z,s) oot hn(a, s)c'iF(m ,8)

#1(F(z,5)) = M° - F(z,s) + M*(z, F(z,5)) + h1,1(z, 5) % E
1 n

with M(z, F(z,8)) = t(mi(z, F), - -, my(z, F)).

More precisely we can state that C} =1, Cf = 0,2 < £ < k. The dependence of some coffi-
cients of #; on F;(z,t) is necessary so that C? # 0 for some 2 < ¢ < k. But this is impossible be-
cause if not it would mean that some of the coefficients of ¥, contains factor Fy(z,s), -, Fx(x,s)
that contradicts the construction of 1'):1 in Proposition 2.4. This can be seen from the fact
that the expressions 253&2) ... 2B(z0) hze) .., aFgS?” do not contain the deformation

parameters present in the polynomials Fx(z,s),---, Fi(z, s). Q.E.D.

Lemma 3.2 A basis of logarithmic vector fields ¥p, - -+ ,¥r € Derg(log D) can be produced from
the functions of(s) defined as follows,

M(z,F(z,s)) - ¢i(z) = ZT: of(s)ér + 1 (F(z, s))
£=0

= Za 8)€& mod(d, F(z,s)),

where the vector valued fucntion M(z, F(z,s)) denotes the one defined in the Lemma 8.1 and
U = }:;':1 hjp(z, s)%ﬁ is a certain vector field with holomorphic coefficients.
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Proof
‘We remark the following relation,

n

$1(F(z,9))pi(x) = 51(FO () i(z) + Y 01(5;)€ () i) Zsm &(z))¢i(x)

j=1
=Y #1(s;)&(2)¢i(x) mod(dzF(z,3)).
j=0

The relation (3.2) above entails,

M(z,F(z,s))- szl (s5)7E;(s)Ee(z) mod(d, F(z, s)).
=0 j=0
As ¢;(x) can be considered to be a basis of Og module ®(s) above, vectors (¢2(s),--,07(s)),

0 <1 < 7 are Og linearly independent at each generic point S\ D. If we put

$s) = 3" 6(s5)7E(8)
Jj=0

then the vector field ¥; € Der ZxS
Zae(s)—— + ¢i(z) 1,
=0

is tangent to Cr(F). The only non-trivial relations that may arise between #; and @y i # ¢ is
$:(2)Ty = du (@)%

These vectors give rise to the same push down vector field in Derg(log D). Namely,

T (¢! (m)ﬁi ) - ‘K*(¢l’ Z Z Rz &7 3) 63(
3=0 £=0
for the coefficients R ;, ;(s) determined by
T T
Evl s])¢t ¢‘l’ eJ ($ EZ Rz @/ J(s e‘(z)mOd(d F(:L‘, ))
j=0 £¢=0
This means that o, - - -, &, form a free basis of DerixS(Cr(F)) hence %, - - - , U that of Derg(log D).

Q.E.D.

This lemma gives us a correspondence between ¢;(x) € & and ¥; € Ders(log D), therefore it is
quite natural to expect that the mixed Hodge structure on ® would induce that on Derg(log D),
and would hence contribute to describe B;(s) of Theorem 2.7, 1 in a precise manner. A good un-
derstanding of this situation is indispensable to characterize the rational monodromy of solutions
to the Gauss-Manin system in terms of the mixed Hodge structure on &.

In other words, we formulate the following proposition (see [2] Theorems A2, A4, [11] (3.19),
[13] (4.5.3) Corollary 2 for k =1 and [9] (6.13), [3] Theorem 3.2 for k general).
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Proposition 3.3 There ezist holomorphic functions w;(s) € Og, 0 < j < T such that the
components of the matriz ,

(34) CB(s) =) wi()Tys),
j=0

give rise to a basis of logarithmic vector fields Uy, - -, U, € Derg(log D). Namely, if we write
2(s) = (0£(3)) i o<, » then the expression

. T 8
(35) 5= ol

consists a base element of the Og module Derg(log D).

Especially in the case of quasihomogeneous singularity f(a:, u) we have the following simple
description of the vector field that can be deduced from Lemma 3.2. To do this, it is enough to
remark that the vector field ¥ is the Euler vector field by definition and #(s,) = z(::’ , where
w(s;) denotes the quasihomoeneous weight of the variable s;.

Proposition 3.4 (/4] Theorem 2.4) In the case of quasihomogeneous singularity (2.1), the basis
(3.5) of Ders(log D) can be calculated by

of(s) =Y w(s;)s;mi;(s).
=0
Furthermore, the vector valued function M(z, F(z,s)) of Lemma 3.1 has the expression,

M(z,F(z,s)) = M° - F(z,s) = diag (w(f1),"+,w(fe)) - F(z,s).

4 Multiplication table and the topology of real
hypersurfaces

In this section we continue to consider the situation where p = 741 for k = 1 in (2.5). We
associate to the versal deformation of the hypersurface singularity

(4.1) F(z,s) = f(z) + Y siei(),

i=0

the following matrix £(s) = (0f(s))o<i.e<r after the model (3.2),

(4.2) F(z,s)ei(z) = iof(s)eg(z) mod(d, F(z, s)).
£=0

(4.3) ei(x)ej(z) = i‘rfd(t)eg(m) mod(d,.F(z, s)).

=0
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Further on we make use of the convention eg(z) = 1 and s = (so,t). We will denote the deforma-
tion parameter space t € T = (C7,0).
We recall the Milnor ring for £ = 1 whose analogy has been introduced in (2.5),

QF r— OXXS
OF(z, OF(z,8)\
OXXS< a(:l')’“" o:.’))

We introduce the Bezoutian matrix BF (s) whose (z',. j) element is defined by the trace of the
multiplication action F(z, s)e;(z)e;(z)- on the Milnor ring QF,

F(z, s)ei(z)e;(x (Za ses(x))e;(x)

¢=0
,
=) ois (Z z))mod(d. F(z, s)).
c=0 r=0
For the sake of simplicity we will use the following notation,
(4.4) T () = (774(t))oge p<r-

To clarify the structure of the Bezoutian matrix B (s) we introduce a matrix

(45) T(t) = (Z g(t)r"(t)) ,

r=0
with the notation

,
4.6) G (1) = trier(2)) = S rEo(®)

=0
The (4, j) element of the matrix T(t) (4.5) equals to tr(e;(x)e;(x)-) on the Milnor ring Qr. It is
possible to show that {t € T';det(T'(t)) = 0} coincides with the bifurcation set of F\(z, ) outside
the Maxwell set. Thus we get the Bezoutian matrix

(4.7) BF(s) = £(s) - T(2).

Following statement is a simple application of Morse theory to the multiplication table see [14]
Theorem 2.1. From here on we assume that |s| is small enough and denote by X={zeClzl <
&} a closed ball such that all critical points of F(z, s) are located inside X.

Proposition 4.1 sign X(s) - T(t) ={ number of real critical points with respet to the variables
z in F(z,8) >0, x € X NR"} -{ number of real critical points with respet to the variables z in
F(z,s) <0, z € XNR"}. Here sign(A) denotes the signature of a symmetric matriz A i.e. the
difference between the number of positive and negative eigenvalues.

Let us denote by h(z,t) the determinant of the Hessian

0?F(z, s)) .
dz:0x; ' <HISV

We associate the following u holomorphic functions hg(t), - - -, h-(t) € Og to the function h(z,t),

h(z, t).:= det(

(4.8) h(z,t) =Y he(t)ee(z) mod(d;F(z,s)).

£=0
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Further by means of (4.7) we introduce the matrix
(4.9) BH(t): Zn )ré(¢
=0

where

n°(t) ho(t)

=T |
" (¢) he (t)

We consider the matrix B¥¥(s) = (-)o<a,b6<» Whose (a, b)—element is defined by the trace of the

following expression on the Milnor ring Qp,

c=0 m=0

(4.10) h(z,t)F(x, 8)eq(x)es(x) = (E he(t)ee z))(E 0S(s) Z % (tem(2))

=353 kot eelzlenz)

£=0 ¢=0 m=0

= Z Z Z he(t)ol(s)Tm (t) E 735 m (t)er(@)mod(d, F(z, ).
=

0 ¢=0 m=0 r=0

If we take the trace of this, we get
,
= 305l o DRl rEm (86,0,
=0 m=0 =0 r=0
After (4.8) and (4.9) this matrix has the following expression,
(4.11) ' BHF(5) = ©(s) - BH(¢).
We consider the following closures of semi-algebraic sets,

Woo := {x € X "R"; F(z,s) = 0},

Wyo :={z € X NR"; F(z,s) > 0}, Weo:={z € X NR" F(z,s) < 0}.
Theorem 4.2 The following expression of the Euler characteristics for W. holds,

sign(BH (t)) + sign(BHF (s))

x(W>0) = x(W=o) =

2

sign(BH(t)) — sign(BHF (s))

X(Wso) = Xx(Weo) = (=1)" 5

Proof

After Szafraniec [14], or simply applying Morse theory to the real fibres of F(x,s), we have

the following equalities,

> (sgn h(z, 1))

xEcritical points of F(x,s)
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= sign(tr(h(z, t)es(z) - e;(x) N 1<ij<n = Z (-=1)*®).

zEcritical pointspoints of F(z,s)

Here we denoted by tr(h(z,t)e;(z)  e;(z)-) the trace of a matrix defined by the multiplication by
the element h(z,t)ei(x) - e;(x) considered mod(d,F(z, s)) for the basis e;(x),1 <i < p.

> (sgn h(z,t))(sgn F(z,s))

zecritical points of F(x,s)

= sign(tr(h(z,t)F(z, s)ei(7) - €;(z) N1gij<n = > (=1 (sgn F(z,)).

z€critical points of F(x,s)

Here we denoted by tr(h(z,t)F(z, s)ei(z)- e;(x)-) the trace of a matrix defined by the multiplica-
tion by the element h(z,t)F(z, s)ei(x) - e;(z) considered mod(d. F{x,s)) for the basis e;(z),1 <
i < p. Here A(z) is the Morse index of the function F(z,s) at = and sgn h(z,t) = (—1)=).
Q.E.D.
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