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Symbolic calculus of pseudo-differential operators
and curvature of manifolds

RERVRZREBORELHAN  Hif TE (Chisato [wasaki)
Depart. of Math. University of Hyogo

Abstract

The method of construction of the fundamental solution for a heat equations as pseudo-
differential operators with parameter time variable is discussed, which is applicable to calculate
traces of operators. This gives extensions of a local version of both Gauss-Bonnet-Chern
Theorem and Riemann-Roch Theorem. Moreover a characterization of complex manifolds
which hold a local version of Riemann-Roch Theorem is obtained.

1 Introduction

In this paper we give, by means of symbolic calculus of pseudo-differential operators, both an
extension theorem of a local version of Gauss-Bonnet-Chern theorem given in C.Iwasaki[10] and
that of a local version of Riemann-Roch theorem given in C.Iwasaki[11]. We give also a charac-
terization of complex manifolds where a local version of Riemann-Roch theorem holds. For more
precise discussion see C.Iwasaki[12] and C.Iwasaki[13] .

Let M be a Riemannian manifold of dimension » without boundary. The Gauss-Bonnet-Chern
theorem is stated as follows:
n

Y (~1)? dim H, (M) = / Ch(z, M)dv,
M

»=0

where H), is the set of harmonic p-forms, C, (z, M)dv is the Euler form if n is even and C,, (x, M )dv =
0 if n is odd. Its analytical proof based on the following formula

(-1 dim Hy(M) = [ S (=12 trey 2,2l

p=0 M p=0

where e, (£, z,y) denotes the kernel of the fundamental solution E,(t) of Cauchy problem for the
heat equation of A, on differental p-forms I'(APT*(M));

E,(t)p(2) = /M ep(t,2,)0W)dv,, o € T(NPT*(M))

satisfies

]

(-5;+A,,)Ep(t) 0 in(0,T)x M,
E,00 = I inM.



So, we may call a local version of Gauss-Bonnet-Chern theorem holds, if we have

n

(1.1) E(—l)” trey (t, 7, 2) = Cn(z, M) + 0(V)

p=0
as t tends to 0.
The author has prooved (1.1) in [10], using both algebraic theorem on linear spaces stated in
H.1.Cycon,R.G.Froese,W Kirsch and B.Simon(3] and the method of construction of the fundamental
solution by technique of pseudodifferential operators of new weights on symbols. In this paper, a

genaralization of a local version of Gauss-Bonnet-Chern theorem is obtained. Before stating our
theorems, we introduce notations.

We denote 7 the set of index

I ={I={(i1,ig,"*,ir):0<r<n,1 <4 < - <ig <m},

a . 0\
(b)=01fa<b,orb<0, (O)—l..

Fix an integer £ such that 0 < £ < n in the rest of this paper.

Set the following constants {fp}p=0.1,.. » of the form with arbitrary constants {k;};=¢+1,..,n

n

(1.2) fp=(2:e)+ Y k,-(Z:’?) 0<p<n)

j=max{p,¢+1} J

Theorem 1.1 (Main Theorem I) Let M be a Riemannian manifold without boundary of di-
menssion n and let E,(t) be the fundamental solution on T'(APT*(M)). Suppose fp are of the form
(1.2). Then we have

S (=15, trep(t, 7, 7) = Co(a)t 344 + 0t~ 3+4+3)  ast—0,
p=0

where Cy(z) and is given as follow;
(1) If £ is odd, Cy(z) =0
(2)If £ is even (£ = 2m), Ce(z) = ZIGI,MI)=£ Cr(z), for I = (11,42, - Jie) €T

1 1.1
Cr(z) = (—=)"= ()™ Y sign(m)sign(o)
27’ ml 2 s,
XR"«(1)t'«(a)ia(x)ia(z) e e Ri.(z-1)iw(¢)"v(l—1)"a(t)'

Remark 1.2 Assume £ = n. Then f, = 1 of (1.2) for all p. Theorem 1.1 is a local version of
Gauss-Bonnet-Chern theorem.

Remark 1.3 Assume k; =0 for all j. Then fo= (075 (0<p<¥), fy =0¢+1<p<n) So

n—&

Theorem 1.1 coinside with the result in P.Ginther and R.Schimming(4].
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Now consider the similar problem for Dolbeault complex on a Kaehler manifold M, that is, a
generalization of a local version of Reimann-Roch theorem. Let e,(t,z,y) denotes the kernel of
the fundamental solution E,(t) of Cauchy problem I'(APT*(0:1) (M )S,

E,(t)p(z) = /M ep(t,2,8)0(W)dv,, o € T(NPT*OD(a1))

satisfies

(EAIE®H = 0 nOT)xM,
E,(0) = I inM,

The author in [11] have given a proof of a local version of Riemann-Roch theorem, constructing
the fundamental solution according to the method of symbolic calculus for a degenerate parabolic
operator in C.Iwasaki and N.Iwasaki[9]. There are several papers about a local version of Riemann-
Roch theorem. T.Kotake[15} proved this formula for manifolds of dimension 1. V.K.Patodi[17] has
proved for Kaehler manifolds of any dimension. P.B.Gilkey[8] also has shown, using invariant
theory. E.Getzler[6] treated this problem by different approach. We obtain an extension of this
problem as follows:

Theorem 1.4 (Main Theorem II) Let M be a compact Kaehler manifold whose complez di-
mension is n, and let E,(t) be the fundamental solution on A?(M) = T(APT*(*D)(M)). Suppose
Jp are of the form (1.2). Then we have

n n
> (1P £, trey(t, 7, z)dv = (5-71;) CP(z)t ™ + 0t~ ™) st —0,
p=0

where DP (z) are defined as follows:
CP(z) = 21€1,W)=¢ CP(z), where for I = (i1,ig,+- ,ig) €T

Q .
C'P(z) = [det(e“—-fci)]zz /\dvl .

Here Q is a matriz whose (j, k) element is 2-form defined as

(Q);‘k = Z Rkjas“’a Aot

a,b=1
and . ) ) ) . ; ;
do! =AW AG? AW AT Awn-t,
where I¢ = (j1,42,+ yJn—t) €T such that IUI° = {1,2,--- ,n}.

Remark 1.8 Assume £ =n. Then f, =1 of (1.2} for all p. In this case Theorem 1.4 is a local
version of Riemann-Roch theorem.

It is known that a local version of Riemann-Roch theorem does not hold on complex manifolds
by P.B.Gilkey[7]. A characterization of complex manifolds where a local version of Reimann-Roch
theorem holds is given by the Kaelher form ® of complex manifolds as follows.
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Theorem 1.6 (Main Theorem III) (1) If n is even and 869 # 0, then we have

i("‘l)p trep(t, z,z)dv, = (27r)vn(_1).3. (iaécb)%

2 @)

=% + Ot~ 3+1).

(2) If 3% = 0, then we have

A
2(-1)1’ trep(t, 7, 2)dvp = (-2-%)"[ det(sinl?(%)) e’ o),

where A is a 2n X 2n real anti-symmetric matriz whose (p,q) element is 2-form(See (5.2) for the
precise definition).

Our point is that one can prove the above theorems by only calculating the main term of the

symbol of the fundamental solution, introducing a new weight of symbols of pseudodifferential
operators.

The plan of this papaer is following, In section 2 an algebraic theorem, which is the key of the
proof, is stated . The sketch of proof is given in section 3, section 4 and section 5.

2 Algebraic properties for the calculation of the trace

Let V be a vector space of dimension n with an inner product and let AP(V) be its anti-symmetric
p tensors. Set A*(V) = 3°7_,AP(V). Let {vy, -+ ,vs} be an orthonormal basis for V. Let a} be

a linear transformation on A*(V) defined by afv = v; A v and let a; be the adjoint operator of a
on A*(V). S

Definition 2.1 Set A = {(#1,"‘ spe) P 1 k<201 <y < - < g < 2n}, Vo1 =

ax+a}, yok =i Hak—af) fork € {1,2,--- ,n}, ya =i, Yy for A= (u1,- ) € A
and'u =1

We have
VYo + YoV = 204, 1S p,v<2n
and
7,%:1 for any A € A.
The following propositions are shown in [3] under the above assumptions.

Proposition 2.2 We have the following equality for transformation on A*(V).

0 if A ;
trlva) = {2; :;Aiz

Corollary 2.3 For any A,B€ A

0, A#B;

tr(yavs) = {2n if A= B.

163



164

Definition 2.4 Set 8, = 1,8; = ivyj_172; for 1 < j < n and Br =i, B, forI = (i, - ,ix) €
I.Ty=1T= ZIEI,u(I)=k Br.

It holds that for I = (i1,19,-- - yik) €T
Br= 0§ 7)
where [ = (2i; —1,2iy,23 — 1,263, , 2} — 1,2ix) € A. It is clear that

atar=5(1+ B, Bifk =Bl B =1

by the properties of ;.
Proposition 2.5 We have for any I = (i1, - ,ix) € T the following assertions;

(Dfp <k

triBrajsaj, - -~ a5,03, 03, - aj, ] = 0.

(Q)S“PPOSCP= k and {jlajz)"' ajk} # {il,i%"' )ik} or {hl)h2a"' ,hk} a {ilai%"' 1ik}- Then
we have

tr{frajiaj, - - aj a5, a3, -+ af, ] = 0.

(8) Let 7, o be elements of the permutation group of degree k. Then we have

tr[ﬂ;afw(l)aiu(,)a,?r(z) Biyea) -~-a:”(h)ai,(,,,] = 2"_ksign(1r)8-ign(a).

Let ¥, be the projection of A*(V) on AP(V). The following Proposition is the key algebraic
argument of the proof of this section.

Proposition 2.6 For any p (0 < p < n) we have the following equation

n
\I/,,=ZMqu‘q,
q=0
where _
- +ig—i{I Y[~ 4
Mom T () (5)
p.eSisn

Note that a (n+ 1) x (n+ 1) matrix M = (Mpq)o<p,e<n is regular because

M= Y are()(29).

0<ji<p.q

Then we have

Theorem 2.7 Let ap, (£+ 1 < p < n) be constants. The equation

Z fo¥e = (_1)£2A—nn + Z ol

g=0 p=£+1



has solution as follows:

fp= (_1)17{(2:?) + Zn: k,(z:i)} for any p

j=max(€+1,p)

with constants k;j (€ + 1 < j < n) defined by

k,-=(-—1)52""'{2‘*"(—1)‘6)+ 3 j)ap}.

p=£+1
Especially
(1) If £ =n, then
Efq‘l’q =(-1)"Tx
q=0

holds if and only if :
: fp=(-1)? for any p.

(2) Ifap = (—1)1’2“"(‘1’) (£+1<p<n), we have fp of the following form

‘= {(~1)P(:::';), (0<p<o);
oo (£+1<p< ).

(3) If o = (~1)°2¢"(%) (€+ 1 < p < m), we have f, of the following form

. 0, 0<p<n-£-1)
14 (-nnttP( P ), (n—€<p<n).

3 The proof of Main Theorem I (Riemannian manifolds)

Let M be a smooth Riemannian manifold of dimension n with a Riemannian metric g. Let
X1, X2, , X, be a local orthonormal frame of T(M) in a lokal path U. And let w!,w?,.-- ,w"
be its dual. The differential d and its dual ¥ acting on T'(APT*(M)) are written as follows,using
the Levi-Civita connection V {See Appendix A of S.Murakami[16] ):

n

d= Ze(wf)vx,, $== 1(X;)Vx;,

3=1 i=1
where we use the following notations.
Notations.
e(ww = w? Aw, (Xjw(Y1, -+, Ypu1) = w(X, Y000, Y1)
Let R(X,Y) be the curvature transformation, that is
R(X,Y)=[Vx,Vy] - Vixy
Set

R(X:, X;)Xx = Y RaijXe 1<4,5,k,<n.
£=1
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The Laplacian A = d¥ + 9d on ., T(APT*(M)) has the following Weitzenbdck’s formula:

(31) —{va,vX, vax,x,>+ze(w> DR(X:, X))

Jj=1 i,5=1

‘We use the following notations in the rest of this section.
aj = e(wx),  ax = t(Xk).

The fundamental solution E(t) has a expansion, due to [10].
E(t) ~ Y u;(t,=,D),
j=0

where u;(t,z, D) are pseudodifferential operators with parameter ¢.

The following statement is obtained in p.255 of [10]. The kernel of pseudo-differential operator

with symbol ug(t, z,§) is obtained as
ﬁ’o(ty z, Z) = (2,”)—71./ Uo (t’ma §)d§
R

= ()" Vaetge (14 0(vA)),

where n
Z qu,-jaza,-a;aq.
i,J,k,q=1
We shall calculate
3.2) tr (Briio(t,z, 2))de = (5—=)"tr (Bre~*F)dv(1 + 0(v2)),

2\/—t
for IeZ §(I)=r

Using
o—tR E{( 1) RFe4),

and by Proposition 2.5 we have

)il ™ m+1 o — .
0 e e

‘We have the following proposition.

Proposition 8.1 For I = (iy,i2,- -+ ,i,) € T (r = 2m)

(3.4) tr(Br(-1)"R™) = 2" Z sign(m)sign(o)

7,068,

XRi, yinyionyiom " Ringosyiniryiatr—tyiowm:
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By (3.2),(3.3) and Proposition 3.1 we have

2" Tt= 35 C(z)dv + Ot~ EHEHY), ifr=2m;

(3.5) tr (Brio(t, z,z))dz = {O(t_g+§+§)’ if r is odd

with Cj(z) defined in Defifnition 1.1. Similarly we have

(3.6) tr (Brii;(t, z,z))dz = Ot~ 2 +5+4),

By Theorem 2.7 we obtain

v hetna) = (02" Y (Bre(sza)

p=0 TeZ j(I)=¢
n
+ Z aptr (Tpe(t, z,z)).
p=£+1

By (3.5) and (3.6) we have
tr (Tpe(t, z,z)) = O(t~3+5+4).

Applying (3.5) (3.6), we have

tr (i fpep(tvz, x)) =

=0

Cr(z)t~2+% 4 0(t—3+5+%), if £is even;
0(t—3+5+4), if £ is odd.

4 The proof of Main Theorem II (Kaehler manifolds)

Let M be a compact Kaehler manifold whose complex dimension is n with a hermitian metric
g. Set Zy,25,--- ,Zx be a local orthonormal frame of T1°(M) in a local patch of chart U. And
let w!,w?, .. ,w" be its dual. The differential & and its dual * acting on A°?(M) are given as
follows, using the Levi-Civita connection V:

T n

8= e(@)Vy,,8 =~ «Z;)Vz,

i=1 j=1
where we use the following notations.

Notations.

Z=%, wi=& (i=1--,n),
e(Ww=w*Aw, YZg)w(Y1, ,Yp-1) =w(Za Y1, , Yp1),
(@eA={L--,n1,--- 7).
Let R(Z,, Zg) be the curvature transformation;
R(Za,Zp) = V2.,V 2,) = V(2,25 (BEA).
The curvarute transformations satisfy

R(Z;,Z;) =0, R(Z,Z;)=0,
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because of M is a Kaehler manifold. Set

R(Z:,Z;)Z = ZRwﬁ vy (BE€A).

YEA

The Laplacian L = 8*8 + 86* on A%*(M) = Y p=0 A%P(M) has the following Bochner-Kodaira
formula:

1 n n n
L= ‘§{E(VZ,V2, +Vz,Vz,) =) V(vz,z,wzjz,) - Z R(Z;,2;)}.
j=1 j=1 j=1

We use the following notations in the rest of this section.

e(a'f’) = a;,L(Zk) = Qag.
The fundamental solution has a expansion, due to [11]

E(t) ~ Y _ujt,z,D),

Jj=0

where u;(t,z, D) are pseudodifferential operators with parameter ¢ and the main part of their
symbols uq(t,z,§) is represented of the pricise form. The kernel iio(t,z,z) of pseudodifferential
operator with symbol uo(t, z, £) is obtained as in p.90 [11]

iio(t, 2, 7) = (2mt) ™ det(—- 20} /3ets.

exp(tMo) — Id
Note that
(4.1 et,z,z)dv = ﬁo<t, z,z)dz(1 + 0(t))
We shall calculate
(4.2) tr (Briio(t, z, z))dw = (2mt) =" tr (ﬂ, det(;rttﬁ%)) dv,
for I € Z, §(I) = r, where (Mo)jx = R(Z;, Zx) = = 35 =1 Rogiralay
= Xpa=1 Rikgpagap.
Set ‘ N
det(-(m)—(ttMNz—;—:ﬁ) - jZ;A,tf.

Then we have by proposition 2.5

tMo

(43) tr (ﬂ[ det(m

)) = tr (Br A" + O(t™+1).

Set 2 a matrix whose (7, k) element is 2-form defined by

n n
@jx ==Y Riggp@ AwP = 3 Ry ® A,

rg=1 rq=1

Then we have
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Proposition 4.1

(4.4) tr (BrAr)dv = (=17 (3) 2" [de( Ado™.

Q )]
exp — Id’]ar

From (4.2),(4.3) and Proposition 4.1 the following equation holds.
tr (Briio(t, z, z))dz

r 1 n—ri—n+tr Q ° —n4r
=(-1) (m)”Z tn+ [det( ]T/\dv’ +0( L),

expQ — Id) 2
Now by Theorem 2.7 we obtain

tr ) freplt,mz)) = (125" Y tr (Brelt, )

p=0 IeZ fi(I)=¢t

+ Y aptr (Tpelt, z,2))
=£+1

with some constants a;(£+ 1 < j < n). Applying (4.5) we have

z aptr (Tpe(t, z,x))dv = Ot "+,
p=f+1

By (4.1) and (4.5) we obtain

= 1.n 9] .
tr (Y frepltyz,2))dv = (5=)"t™"+ det(————)| Adv’
v 2mi rez%)#[ expQ —Id ]21

+ O(t—"+‘+1).

5 The proof of Main Theorem III (Complex Manifolds)

Let M be a complex manifold with a Hermitian metric g. Choose a local chart and a orthnormal
system as in the previous section. Using the Levi-Civita connection V, we have the following
representation for differential d and its adjoint 9 acting on AP4(M):

n n n

d=3 e )Vz, + i‘,e(@")vz,, == 2V, - 3 UZ)V3,

j=1 =1 i=1 =1

The connection V is the Levi-Civita connection . So both Vg and the torsion T vanish. But V
does not preserve type of vector fields, that is, VI s 0 for the complex structure I. In this case,
generally we have R(Z;, Z;) # 0, R(Z:i,Z;) # 0 . For the representation of our operator L, we

introduce connection V5 and V¥ and give characterization of these connections.

Definition 5.1
(1) Let V¥ be the Hermitian connection of M, that is, the unique connection which satisfies the
Jollowing conditions;

vig=0, ViI=0, T5(V,W)=0 (v e TOO (M), W e T(°'1)(M)).
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Let S*g,, (2, 8,7 € A) be the following functions of this connection V¥ ;

a n -~ o s ~T -—
V2Zi=3 582 V5.Z;=Y S5
k=1 k=1

(2) Let V° be the unique connection which satisfies the following conditions;
Vig=0, V5I=o,

and
oW, T5(U, V) + g(U,TS(W,V)) =0 for U, V e TMO (M), W e TOV (1),

Proposition 5.2 We have the following representation

(5.1) 5=3 aiDs, 8 == auD,+3. 3.,

r=1 r=1 i=1

where
n

Da=Za- Y ckiajap— Y 8%alar (acA)

aik=1 Jk=1
with functions clg (o, B, € A) defined by V5, Z5 = Yover CapZy.

The following proposition holds for the Kaehler form ®(u,v) = g(Iu,v).

Proposition 5.3

. ,
000 = 3 wimu@t AG™ AW ALK,
dik,tm=1

where

1 1 - For For For For
Wemik = "2'lek + 3 z :{ijckz + CCim — CmiCiz = cz_jckih}'
r=1

We have the following representation formula for L on complex manifolds instead of Bochner-
Kodaira formula, using (5.1).

Theorem 5.4 It holds on A®*(M) = 3°7_; A%9(M),
. 1 <
L=55"156 = _E{E(Vﬁjvgj +V3,VE,) - V3
J=1

n

+ Y @ N(Z)o(R (2, 2)2,, 2,))

g k,r=1

n n

Mk = = P

- E : wlmjka;amajak =2 E WrrkGy Ok,
Lmj k=1 rd,k=1

where n
D= {V3 2.+ V% Z, + T%(Z,,Z,)}.

r=1



Remark 5.5 If M is o Kaehler manifold, then we have the following equations;

809 =0, V3=V =V, TS=T% = 0.

In the case 33®% # 0, we can construct the fundamental solution for (3‘% + L) on complex
manifolds as a pseudo-differntial operator, using the above Theorem 5.4 instead of (3.1). By
the similar argument we obtain the assertion(1) of The Main theorem III. But in this cse, the
supsertrace has the singularity with respect to ¢ as t — 0. So, in this case we may say that ”a local
version of Reimann-Roch theorem does not hold.”

On the other hand, in the case 89® = 0 introducing a curvature transformation RM (Z;,2x)
which corresponds a new connection VM = 2V — V5, we obtain the assertion (2) of the Main
Theorem III by (5.1) and the above theorem. Here A is defined as follows:

(5.2) (A)Pq = Xn: Q(RM(Zb Zm)Xq’Xp)"‘_-’l Aw™,

¢,m=1

1 . 1 ,
Zj= ﬁ(xj —iXnt3), Z; = 7—5(Xi +1Xnij)-

This assertion coincides with the result which is proved in J.M.Bismut[2] by the probabilistic
method.
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