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1 Introduction

In this article, we consider a topological aspect of the Bryant-Salamon $G_{2}-$

manifolds and of some Ricci flat manifolds. We also give examples of special
Lagrangian submanifolds of $T^{*}S^{n}$ with the Stenzel metric.

Physicists as well as mathematicians are interested in Ricci-flat (K\"ahler)

manifolds as a special case of Einstein manifolds. Ricci-flat metrics are
often constructed on vector bundles over Riemannian manifolds where some
group action of cohomogeneity one is effectively used. In this case, the base
manifold is regarded as a degenerate orbit, while the principal orbits are of
codimension one in the total space, i.e., the sphere bundles.

This reminds us of the theory of isoparametric hypersurfaces. In fact,
isoparametric hypersurfaces in the sphere $S^{n}$ exist in one parameter families,
which laminate $S^{n}$ with two other degenerate submanifolds, called the focal
submanifolds. If we delete from $S^{n}$ one of the focal submanifolds, then the
remaining part is a disk bundle over another focal submanifold [M\"u]. Two
of the Bryant-Salamon $G_{2}$-manifolds fit this theory exactly. Namely, the
spin bundle $S$ over $S^{3}$ is associated to isoparametric hypersurfaces $S^{3}\cross S^{3}$

in $S^{7}$ , and is shown to be homeomorphic to $S^{7}\backslash S^{3}$ . On the other hand,
the anti-self-dual bundle $\Lambda_{-}^{2}(\mathbb{C}P^{2})$ over $\mathbb{C}P^{2}$ is associated to the so-called
Cartan hypersurfaces in $S^{7}$ , and turns out to be homeomorphic to $S^{7}\backslash \mathbb{C}P^{2}$

(Theorem 3.1).
We thus come to consider more generally, the space $\overline{M}\backslash D$ , where $\overline{M}$

is a compact Riemannian manifold with positive Ricci curvature, and $D$ is
some subset. For instance, $T^{*}S^{3}$ can be considered as $S^{6}\backslash S^{3}$ (\S 5), on which
the Stenzel metric exists. Our problem to consider is when there exists a
non-flat complete Ricci-flat metric on $\overline{M}\backslash D$ , in the real category. In \S 4, we
partially answer to this problem. For a complex version, see [BK],[TY].

Another aspect of Ricci flat manifolds is relations with special geometry.
With respect to the Stenzel metric, $T^{*}S^{n}$ becomes a Calabi-Yau manifold
with calibrations $\Re(e^{i\theta}\Omega)$ , where $\Omega$ is the global holomorphic $n$-form (see
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\S 5). Then what are special Lagrangian submanifolds? Here again the the-
ory of isoparametric hypersurfaces works well. Harvey and Lawson’s result
[HL], generalized by Karigiannis and Min-Oo recently [KM], tells us that the
conormal bundle over an austere submanifold in $S^{n}$ is a special Lagrangian
submanifold of $T^{*}S^{n}$ . We have many examples of austere submanifolds in
$S^{n}$ , consisting of sorne minimal isoparametric hypersurfaces, and of focal
submanifolds of all isoparametric hypersurfaces [IKM].

In the following, we give some details, but for a full story, see [Mi2].

2 The Bryant-Salamon $G_{2}$-manifolds

By a $G_{2}$-manifold, we mean a Riemannian manifold with the holonomy
group $G_{2}$ . The metric is called a $G_{2}$-metric.

Denoting the exterior product of three vectors of an orthonormal coframe
$e^{1},$

$\ldots,$
$e^{7}$ of $\mathbb{R}^{7}$ by $e^{ijk}=e^{i}$ A $e^{j}\wedge e^{k}$ , define a 3-form $\phi$ on $\mathbb{R}^{7}$ by

$\phi=e^{125}-e^{345}+e^{136}-e^{426}+e^{147}$ -.. $e^{237}+e^{567}$ . (1)

The automorphism group $G_{2}$ of the Cayley numbers can be also defined
as the subgroup of $GL(7,\mathbb{R})$ preserving $\phi$ [B1]. A $G_{2}$-structure on a 7-
dimensional manifold $X$ is a reduction of the structure group of the linear
frame bundle to $G_{2}$ . Let $O$ be the $GL(7,\mathbb{R})$-orbit of $\phi(^{\underline{\simeq}}GL(7,\mathbb{R})/G_{2})$ ,
then a $G_{2}$-structure is equivalent to the existence of a global -form $\phi$ on $X$

satisfying $\phi_{x}\in O_{x}$ . Since $G_{2}\subset SO(7)$ , a $G_{2}$-structure induces a Riemannian
metric $g$ on $X$ . The holonomy group is contained in $G_{2}$ if and only if
$d\phi=d*\phi=0$ , and is equal to $G_{2}$ if and only if there are no non-trivial
parallel 1-forms on $X$ , provided that $X$ is simply connected and connected.
Note that a $G_{2}$-metric is Ricci flat [B1].

Many $G_{2}$-manifolds, complete or compact ones, have been constructed
$([\mathrm{B}\mathrm{S}], [\mathrm{J}], [\mathrm{K}])$ . The first examples of complete $G_{2}$ manifolds were obtained
by Bryant and Salamon on $X=S,$ $\Lambda_{-}^{2}(S^{4})$ and $\Lambda_{-}^{2}(\mathbb{C}P^{2})$ . Let $g_{b}$ and
$g_{f}$ be the standard metrics on the base and the fiber space, respectively,
normalized appropriately by constant multiples. Consider a hypersurface
$N_{f}$ of $X$ consisting of fiber vectors of length $r$ . On $X= \bigcup_{r\geq 0}N_{r}$ , they seek
a metric so that the 3-form which depends on the metric, satisfies the non-
linear PDE’s $d\phi=d*\phi=0$ . Restricting the metric to the warped $\mathrm{p}\mathrm{r}o$duct
form $g=u(r)f_{b}+v(r)g_{f}$ , where $u(r)$ and $v(r)$ are functions of $r$ , they reduce
the equations to ODE’s, and obtain metrics

$g=(\lambda+r^{2})^{2/3}g_{b}+(\lambda+r^{2})^{-1/3}g_{f}$ on $S$

$g=(\lambda+r^{2})^{1/2}g_{b}+(\lambda+r^{2})^{-1/2}g_{f}$ on $\Lambda_{-}^{2}(M^{4})$ .
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When $\lambda>0$ , these metrics extend to complete ones on $X= \bigcup_{r\geq 0}N_{r}$ . The
non-existence of non-trivial parallel 1-forms is then proved, which establishes
$\mathrm{H}\mathrm{o}1(g)=G_{2}$ . It turns out that the metric is homogeneous on $N_{r}$ , where $N_{r}\cong$

$S^{3}\cross S^{3}$ for $X=S,$ $N_{r}\cong \mathbb{C}P^{3}$ for $X=\Lambda_{-}^{2}(S^{4})$ , and $N_{r}\cong SU(3)/T^{2}$ for
$X=\Lambda_{-}^{2}(\mathbb{C}P^{2})$ ( $T^{2}$ is a maximal torus). We note that, however, the metric
is different from the standard one. Indeed when $X=\Lambda_{-}^{2}(S^{4})$ , the metric
on $N_{r}\cong \mathbb{C}P^{3}$ is not the Fubini-Study metric, but a non-K\"ahler Einstein
metric. The one on $N_{r}$ of $X=\Lambda_{-}^{2}(\mathbb{C}P^{2})$ is also non-K\"ahler Einstein.

We notice that $S^{3}\cross S^{3}$ and the flag manifold $SU(3)/T^{2}$ are homeomor-
phic to typical isoparametric hypersurfaces in $S^{7}$ . In particular, the latter
is the Cartan hypersurface, on which the induced metric is K\"ahler Einstein.

3 Homogeneous and isoparametric hypersurfaces
in the sphere

Now, we give a brief review of isoparametric hypersurfaces in the sphere.
By isoparametric hypersurfaces, we mean hypersurfaces with constant

principal curvatures (see [Th]). These are given as level sets $W_{t}=f^{-1}(t)$

of the so-called Cartan-M\"unzner function $f$ : $S^{n}arrow[-1,1]$ , for $t\in(-1,1)$
[M\"u]. The level sets $W\pm=f^{-1}(\pm 1)$ have lower dimension and are called
the focal submanifolds. Note that $W\pm \mathrm{a}\mathrm{n}\mathrm{d}W_{0}$ are minimal submanifolds.
Typical examples of isoparametric hypersurfaces are homogeneous hyper-
surfaces, which are given as principal orbits of the isotropy representation of
rank two symmetric spaces $[\mathrm{H}\mathrm{s}\mathrm{L}]$ . All homogeneous ones are classified, but
there exist infinitely many non-homogeneous isoparametric hypersurfaces
with four principal curvatures [OT], [FKM].

The most important fact in our argument is that the ambient sphere is
stratified as

$S^{n}= \bigcup_{t\in[-1,1]}W_{t}$ , (2)
by hypersurfaces $W_{t},$ $t\in(-1,1)$ and the two focal submanifolds $W_{\pm}$ . The
number $g$ of principal curvatures is limited to 1,2,3,4, or 6 [M\"u]. Those with
three principal curvatures are known as Cartan hypersurfaces, which are
tubes over standardly embedded Veronese surfaces $\mathrm{F}P^{2}$ where $\mathrm{F}=\mathbb{R},$ $\mathbb{C},$ $\mathbb{H},$ $C$

in $S^{4},$ $S^{7},$ $S^{13}$ and $S^{25}$ ($C$ is the Cayley algebra) [C].
We are concerned with the case $S^{7}$ . All isoparametric hypersurfaces in

$S^{7}$ are homogeneous and so are classified. We denote a $k$-dimensional sphere
with radius $a$ by $S^{k}(a)$ .

(a) $g=1$ : $f^{-1}(t)=S^{6}(\sqrt{1-l^{2}}),$ $t\in(-1,1)$ .

232



(b) $g=2$ : $f^{-1}(t)=S^{k}(\sqrt{\frac{1-t}{2}})\cross S^{6-k}(\sqrt{\frac{1+t}{2}}),$ $t\in(-1,1),$ $1\leq k\leq 5$ ,
generalized Clifford torus.

(c) $g=3$ : isotropy orbits of the symmetric space $SU(3)\cross SU(3)/SU(3)$ ,
the Cartan $hypersurfaces\cong SU(3)/T^{2}$ .

(d) $g=4$ : isotropy orbits of the symmetric space $SO(6)/SO(2)\cross SO(4)$ .

(e) $g=6$ : isotropy orbits of the symmetric space $G_{2}/SO(4)$

Theorem 3.1 We have homeomorphisms $S\cong S^{7}\backslash S^{3}$ and $\Lambda_{-}^{2}(\mathbb{C}P^{2})\cong$

$S^{7}\backslash \mathbb{C}P^{2}$ , where $S^{3}$ and $\mathbb{C}P^{2}$ are embedded in $S^{7}$ in the standard way. $In$

other words, a compactification of $S$ and $\Lambda_{-}^{2}(\mathbb{C}P^{2})$ is given by $S^{7}$ .

Proof: (Sketch. See [Mi2]) By M\"unzner’s result, $S^{n}\backslash W_{+}(S^{n}\backslash W_{-}$ , re-
spectively) is a disk bundle over $W_{-}$ ( $W_{+}$ , respectively). In the case of
isoparametric hypersurface $S^{3}\cross S^{3}$ in $S^{7}$ , both $W_{+}$ and $W$-are totally
geodesic $S^{3}$ , and $S^{7}\backslash S^{3}$ is a disk bundle over $S^{3}$ . Since $S$ is a $\mathbb{R}^{4}$ bundle
over $S^{3}$ with $N_{r}\cong S^{3}\cross S^{3}$ for $r>0$ , we have a homeomorphism $S\cong S^{7}\backslash S^{3}$ .
On the other hand, the Cartan hypersurfaces in $S^{7}$ is homeomorphic to the
flag manifold $SU(3)/T^{2}$ , and $W_{+}$ and $W$-are both standardly embedded
$\mathbb{C}P^{2}$ . Thus $S^{7}\backslash \mathbb{C}P^{2}$ is a disk bundle over $\mathbb{C}P^{2}$ . Since $\Lambda_{-}^{2}(\mathbb{C}P^{2})$ is a $\mathbb{R}^{3}$

bundle over $\mathbb{C}P^{2}$ with $N_{r}\cong SU(3)/T^{2}$ , we can find a
$\mathrm{h}\mathrm{o}\mathrm{m}\infty \mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}\square$

$\Lambda_{-}^{2}(\mathbb{C}P^{2})\cong S^{7}\backslash \mathbb{C}P^{2}$.

Remark 3.2 : The Bryant-Salamon $G_{2}$-manifolds are investigated in
details in [AW], but this simple fact is not referred to.

Remark 3.3 : In the case $M=S^{4}$ , the hypersurface $N_{f}$ of $\Lambda_{-}^{2}(S^{4})$ is
diffeomorphic with $\mathbb{C}P^{3}$ . By the result of Cleyton and Swann, [CS], Theorem
9.3, we see that a compactification of $\Lambda_{-}^{2}(S^{4})$ is given by $\mathbb{C}P^{3}\cross S^{1}$ .

4 Complete Ricci flat metric on $S^{n}\backslash D$

L\"u, Page and Pope constructed complete Ricci flat metrics on $S^{m}\cross \mathbb{R}^{2n+2}$

$(m, n\geq 1)$ , modifying the construction of non-homogeneous Einstein metrics
on compact manifolds [LPP]. Since $S^{m} \cross \mathbb{R}^{2n+2}\cong\bigcup_{r\geq 0}S^{m}\cross S^{2m+1}(r)$ , using
the isoparametric family $S^{m}\cross S^{2n+1}$ in $S^{n+2m+2}$ and the focal submanifolds
$S^{m}$ and $S^{2n+1}$ , we see that $S^{m+2n+2}\backslash S^{2n+1}$ is a disk bundle over $S^{m}$ , i.e.,
$S^{\mathrm{m}}\cross \mathbb{R}^{2n+2}$ . Thus we obtain the following (part (iii) will be proved in the
next section):
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Theorem 4.1 A complete non-flat Ricci flat metric exists on

(i) $S^{7}\backslash \mathbb{C}P^{2},$ $S^{7}\backslash S^{3}$ : the Bryant-Salamon metric

(ii) $S^{m+2n+2}\backslash S^{2n+1},$ $n,$ $m\geq 1$ : the L\"u-Page-Pop metric

(iii) $S^{6}\backslash S^{2},$ $S^{14}\backslash S^{6}$ : the Stenzel metric (K\"ahler)

Note that $S^{N}\backslash S^{n}\cong \mathbb{R}^{N}\backslash \mathbb{R}^{n}$ . As a less topologically trivial case, we
may ask a question, which we will consider on another occasion.

Problem. For each isoparametric family $\{W_{t}\}$ in $S^{n}$ , does there exist a
complete Ricci-flat, non-flat metric on $S^{n}\backslash W_{+}$ or on $S^{n}\backslash W_{-}$ ?

5 Stenzel metric and calibrated geometry

We give a brief introduction to the Stenzel metric on $T^{*}S^{n}$ . Identify $T^{*}S^{n}$

with $Q^{n}=\{z\in \mathbb{C}^{n+1}|z_{0}^{2}+\cdots+z_{n}^{2}=1\}$ by $T^{*}S^{n}\ni(x,\xi)arrow x\cosh|\xi|+$

$i\xi/|\xi$ I $\sinh|\xi|$ , and induce a complex structure on $T^{*}S^{n}$ from $Q^{n}$ . Then
consider a holomorphic $(n, 0)$ form $\Omega$ given by

$\Omega(T):=$ ( $dz_{0}\wedge\cdots$ A $dz_{n}$ ) $(Z,T)$ , $Z=z_{0^{\frac{\partial}{\partial z_{0}}}}+\cdots+z_{n^{\frac{\partial}{\partial z_{n}}}}\in \mathbb{C}^{n+1}$

The K\"ahler form of the Stenzel metric is given by

$\omega_{St}=\frac{i}{2}\sum_{j,k=1}^{n}a_{jk}dz_{\mathrm{j}}$ A $d\overline{z}_{k}$

where
$a_{jk}=( \delta_{jk}+\frac{z_{j}\overline{z}_{k}}{|z_{0}|^{2}})u’+2\Re(\overline{z}_{j}z_{k}-\frac{\overline{z}_{0}}{z_{0}}z_{j}z_{k})u’’$ ,

and $u$ is a function of $r=|z|$ , of which details we need not here. This is a
highly generalized Eguchi-Hanson metric, first constructed explicitly.

Proposition 5.1 There evists a non-flat complete Ricci-flat K\"ahler metric
on $S^{6}\backslash S^{2}$ and $S^{14}\backslash S^{6}$ .

Proof: Because $S^{3}$ and $S^{7}$ are parallelizable, it follows that
$T^{*}S^{n}\cong S^{n}\cross\square$

$\mathbb{R}^{n}\cong\bigcup_{r\geq 0}S^{n}\cross S^{n-1}(r)\cong S^{2n}\backslash S^{n-1}$ .
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In the calibrated geometry developed by Harvey and Lawson, one way
to obtain special Lagrangian submanifolds in $\mathbb{C}^{n+1}$ is to take the conor-
mal bundle of the so-called austere submanifold in $\mathbb{R}^{n+1}$ (Theorem 3.17 in
Chapter III [HL] $)$ . A submanifold $N$ in $\mathbb{R}^{n+1}$ or in $S^{n}$ is austere if any shape
operators have eigenvalues in $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}\mathrm{s}\pm\lambda_{j}$ , and if the multiplicities $\mathrm{o}\mathrm{f}\pm\lambda_{j}$ co-
incide, where $\lambda_{j}=0$ is admissible. The cone over an austere submanifold of
$S^{n}$ is austere in $\mathbb{R}^{n+1}$ . Austere surfaces are nothing but minimal surfaces.
In some cases, austere submanifolds are classified [B2], [DF].

In [IKM], we found a large class of compact austere submanifolds in $S^{n}$ :

Theorem 5.2 [IKMJ The focal submanifolds of any isoparametric hypersur-
faces in $S^{n}$ are austere. Minimal isopammetric hypersurfaces in $S^{n}$ , whose
$pr\dot{\eta}ncipal$ curvatures have the same multiplicity, are austere.

On the other hand, Karigiannis and Min-Oo proved:

Theorem 5.3 [KM] The conormal bundle of a submanifold $N$ in $S^{n}$ is a
special Lagrangian submanifold of $T^{*}S^{n}$ with the Stenzel metric, if and only
if $N$ is austere.

Note that the Stenzel metric is standard when restricted to $S^{n}$ . From
these and the detailed version of Theorem 5.2, we obtain

Theorem 5.4 The conormal bundles of the focal submanifolds $W\pm of$ any
isoparametric hypersurfaces are special Lagrangian submanifold $ofT^{*}S^{n}$ equipped
with the Stenzel metric. Infinitely many non-homogeneous examples are in-
cluded among them. The conormal bundle of the following minimal isopara-
metric hypersurfaces in $S^{n}$ are special Lagrangian submanifold of $T^{*}S^{n}$ :

$W=S^{n-1}$

$W^{2d}=S^{d}\cross S^{d}$ , $n=2d+1$
$W^{3d}$ $n=3d+1$ $d=1,2,4,8$
$W^{4d}$

’

$n=4d+1$ , $d=1,2$
$W^{6d},$

’

$n=6d+1$ , $d=1,2$

where $W$ has, respectively, 1, 2, 3, 4 and 6 principal curvatures. The phase
$e^{i\theta}$ is determined by the dimension of $W$ or $W\pm\cdot$
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