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Differential Equations Associated to
a Representation of a Lie algebra
from the Viewpoint of Nilpotent Analysis

Tohru Morimoto

1 Introduction

If we generalize the notion of a manifold to that of a filtered manifold, the usual
role of tangent space is played by the nilpotent graded Lie algebra which is
defined at each point of the filtered manifold as its first order approximation.
On the basis of this nilpotent approximation we have been studying various
structures and objects on filtered manifolds to develop Nilpotent Geometry and

- Analysis.
In this paper we present a simple principle to associate systems of differential
equations to a representation of a Lie algebra in the framework of nilpotent

analysis.

2 Transitive graded Lie algebras, Representa-
tions and cohomology groups

Let g = @,cz0p be a transitive graded Lie algebra, that is, a Lie algebra
satisfying:

1) [9p:84] C Bp+q
ii) dimg_ < oo, where g_ = @, <o 9p, the negative part of g
iii) (Transitivity) For ¢ > 0,z; € g;, if [z;,9-] = 0, then z; = 0.
Let V = @,z Vy be a graded vector space satisfying:
i) dimV, < .
it) There exists-g; such that V; =0 for ¢ < q;.

Let A : g = gl(V) be a representation of g on V such that
(A1) Mgp)Vy C Vpyq.
(A2) There exists go such that if A(g_)z, = 0 for ¢ > go then z, = 0.



We then consider the cohomology group H(g—,V) = @, .z HE(g-,V) of the
representation of g_ on V, namely the cohomology group of the cochain com-
plex:

2, Hom(AP~1g_, V), -2 Hom(APg_, V), 2, Hom(AP+'g_, V), -2

where Hom(APg_, V), is the set of all homogeneous p-cochain w of degree r, that
is, W(gay A+ Aa,) C Vay4otap+r for any ai, - ,a, <0, and the coboundary
operator 9 is defined by

i—1 \%
Buw(X1, oy Xpp1) = I (D7TIAX)w(Xy,-- o, Xip s Xpra)
. \4 \'4
+ Z(“l)'ﬂw([X,-,Xj],Xl,...,X,-,..,X,-,...,Xp+1)

for w € Hom(APg_,V), and X,,...,Xp41 € 9.
Note that the condition (A2) above is equivalent to saying that

(A2') H%(g-,V) =0 for r > qo.
This condition guarantees the finite dimensionality of the cohomology group;
that is, there exists ko such that H?(g_,V) = 0 for r > ko. (See [6]).

Now what we assert in this paper may be roughly stated as follows:

Principle The first cohomology group H(g—,V) = @ H}(g-,V) represents
a system of differential equations and V = @V, represents its solution space.

If the gradation of g_ is trivial, that is, g— = g-1, then the cohomology
group HP(g_,V) is just the Spencer cohomology group, and in this case the
above principle may be naturally accepted for those who are familiar to the
formal theory of differential equations & la Spencer ([3], [12]) and there are
related works ([11], [14], [1])-

We shall see that it is in the framework of nilpotent analysis that the principle
above, in its general form, is properly and well settled. It then enables one to
produce plenty of examples of systems of differential equations related to various
geometric structures on filtered manifolds.

To formulate precisely the statement above we need some basic notions in
nilpotent geometry and analysis, in particular, those of filtered manifolds, ge-
ometric structures on filtered manifolds, weighted jet bundles, and differential
equations on filtered manifolds.

3 Filtered manifolds and geometric structures

A filtered manifold is a differential manifold M endowed with a filtration {f} ¢z
consisting of subbundles 7 of the tangent bundle T'M such that

i) £ D P,
i) fPTM =0, U,ezf” =TM,
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iii) [f7,§%] € ¢ for all p,q € Z,

where 7 denotes the sheaf of the germs of sections of 7.
There is associated to each point z of a filtered manifold (M, §) a graded
object
grfe = @ grpfe, with gryfs = /27,
pEZ

which is not only a graded vector space but also has a natural Lie bracket in-
duced from that of vector fields and proves to be a nilpotent graded Lie algebra.

A filtered manifold (M, f) is said to be of type g- if grf, is isomorphic to a
graded Lie algebra g_ for all z € M.

Let (M, f) be a filtered manifold of type g—. We define R(O(M, §;g_), for
z € M to be the set of all graded Lie algebra isomorphism 2 : g_ — grf,, and
set RO (M,f;9-) = Uperr RO (M,f;9-)z. Then RO)(M,§;g-) is a principal
fibre bundle over M with structure group Autg(g- ), the group of automorphisms
of the graded Lie algebra g_ and is called the reduced frame bundle of (M, {).

Let Go be a Lie subgroup of Aute(g-). A reduction of R(O(M,f;g_) to
Gy is a principal subbundle of R(®)(M,f;g._) with structure group Gp, and is
a geometric structure of first order on (M,f) of type g_, alternatively called
Go-structure on (M,f).

4 Weighted jet bundles and differential equa-
tions

Let (M,f) be a filtered manifold. We say that a local vector field X on (M, )
is of weighted order < k and write w-ordX < k if X is a section of f~%. A
differential operator P on (M, f) is said to be of weighted order < k and written
w-ordP < k if P =" X, -+ X, (locally) for local vector fields X;,---, X, and
if " w-ordX; < k.

Now consider a filtered vector bundle (E, {E?P},¢z) over a filtered manifold
(M, §) such that
i) EP is a vector bundle over M of rank finite.
ii) E=E""D>..-DEPDEPt 5... 5 Evrtl =,

Let E denote the sheaf of local sections of E and E, the stalk over a € M.
First we define a filtration {f*E,} of E, by setting {*E_ to be the subspace of
E, consisting of s € E, such that (P(a?, s))(a) = 0 for any differential operator
P and any section a® of the annihilating bundle (Ei*+!)+ of Et! whenever

w-ordP + 1 < k.
We then define:

3*E=J 3B, 3E=E,/f*"E,.
aeM
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We denote by j* and j¥ the natural projections E — J*E and E, — J*E
respectively. It is easy to see that J*E is a vector bundle over M. There is a
natural filtration of J*E defined by §{¢J*E = 0 for £ > k+1 and by the following

exact sequences for £ < k:
0 — fHIg*E — JFE 2% 3tE — 0,

where 7 are the natural projections. The vector bundle J*E equipped with
this filtration will be called the weighted jet bundle of order k of (E,f) over
(M, §).

The subbundle f*3*E is called the symbol of J*E and given explicitly by
the following fundamental exact sequence of bundle mappings:

0 — Hom(U(grf), grE)x — J*E — J*"1E —s 0.

Here for z € M, we denote by grE, the associated graded vector space to
{EF} and by U(grf,) the universal enveloping algebra of grf.. Remarking
that U(grf.) is graded: U(grf.) = € Us, where U, denotes the set of all ho-
mogeneous elements of degree £ (degf = Y p; if £ = A;--- A with A; €
grp;fz), we denote by Hom(U(grfz), grE.)r the set of all linear mapping f :
U(grf.) — grE, of degree k, namely f(Ui;) C gre+rE;. Thus in the above
sequence Hom(U(grf),grE); denotes the vector bundle whose fibre at z is
Hom(U (g7fz), 97 Ez)k-

Now some elementary properties are in order:
(1) Since the map j5 : E, — J*E_ preserves the filtration, that is )_.c(f""lE )

C f**13*E_for £ € Z, we have the bundle map:
LB - 3B

(2) If ¢ : (E,{E?}) = (F,{F?}) is a bundle map of degree r, that is,
@(E?) C FP*r for all p, then it induces the bundle map for all £:

i JE = JHTF.

Now let us consider differential equations on a filtered manifold, confining
our discussion to the linear case for the sake of simplicity. It is not difficult to

extend the following discussions to the non-linear case.
Let (E, {EP}) and (F, {F7}) be filtered vector bundles over a filtered mani-

fold (M, f). A bundle map (of degree r)
$:JE—- F

is a linear differential operator of weighted order k and the kernel of &, denoted
by R, is a system of linear differential equations. A section s of E is a solution
of R if ®(j*s) = 0.

Without loss of generality we may assume that & is of degree 0 and E*+! =
Fktl =,
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If & : J*F — F is a bundle map of degree 0, it induces bundle maps for
1<k
@' :J'E — F/FFL,
It then induces the symbol map:
gri® : '3 E(= Hom(U(grf), grE):) = {FO (= gr,F),

which we write: ;
gr® : Hom(U(gr),grE) — grF.

We call ®i(or R* = Ker®®) differential operator(or equation) associated to
® (or R resp.), gr® the symbol map associated to ®. We denote Ker® by
5(®) = @ s;(®) and call it the symbol of &.

A bundle map & : J*E — F of degree 0 gives rise to the bundle maps for all
A .

4
p'®: J°E = 3'3*F L5 JF,

simply denoted by p(®) : JE — JF and called the prolongation of ®. Note that
- asection of E is a solution of ® if and only if it is a solution of p®¢ for an £ > k.
Note that Hom(U(grf), grE) is a right U(grf)-module by

<aé,n>=<a,én> (1)
and left U(grf)-module by

<na>=<nf,a> (2)
for « € Hom(U(grf,grE) and &,n € U(grf). We then have:

Proposition 1 If & : J*E — F is a bundle map of degree 0, then the symbol
map of the prolongation:

gr(p®) : Hom(U(grf), grE) — Hom(U(grf),grF)

© 18 a right U (grf)-homomorphism. Hence the symbol s(p®) = € s,(p®P) is a right
U(grf)-module.

This proposition is fundamental for the formal theory of differential equa-
tions on filtered manifolds (See [10] ).

We say a system of differential equation ® is of finite type if the symbol of
its prolongation s(p®) is finite dimensional, that is, there exists a kg such that
s¢(p®) = 0 for £ > ko. :

A system of finite type can be essentially reduced to a system of ODE.

For a general existence theorem of an analytic solution to a system of infinite
type, see [9], [10].
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5 Differential equations associated to a repre-
sentation

Let g = @pez gp be a transitive graded Lie algebra, V = @,z V, a graded
vector space, and A : g — gl(V) a representation of g on V as in the preceding
sections. ,

Let U(g-) or simply U denote the universal enveloping algebra of g_. Note
that the set of all left U(g-)-homomorphisms of U(g-) to V, denoted by
Homy (U(g-),V), is a left U(g-)-module. (If V' is a right U-module, then the
set of all right U(g—-)-homomorphisms of U(g-) to V is a right U(g-)-module
and denoted by Hom(U(g-),V)u.)

Now define a mapping

A:V - Homy(U(g-),V)

by
<&EAWw)>=¢€v forEelU,veV,

which is clearly a left U-isomorphism.
We set
I'U={¢e€U:deg€ <a},

and we have the following commutative diagram for s > r:
V, 2 Homy(U(g-),V). — Homy{I**U(g-),V),
Ll Le | Le d

V. 4 Homy(U(g-),V)r =+ Homy(I®~"U(g-),V)r

" where @ denotes the restriction map and L¢ denotes the left multiplication by

¢. Now we set
W=V

9<qo0

Then we see
Homy (I%°~"U(g-),V), = Homy (I°~"U(g-), W), C Hom(U(g-), W),

and .
Homy (1%~ "U(g-),V), =V, forr < go.

For r > g,, by the condition (A2), the restriction maps
V, = Homy(I7'U(g-),V), = Homy (I~ "U(g-),V)r
are injective. We have also

Homy (I7'U(g-), V), & ZHom(g_, V),
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where the latter space denotes the set of cocycles, that is the kernel of 9 :
Hom(g_, V), — Hom(A%g_,V),. Hence we have:
For r < qo

V. — Homy (U, V), — Homy(I%~"U, V), < Hom(U, W),

For r > qq
Homy (I%°~"U,V), < Hom(U,W),
U
V. — Homy(U,V), < Homy(I7'U,V),
) 0
0 — Ve —  ZHom(g_,V), — Hl(g-,V)

It being prepared, we define
s = @sr, with s, C Hom(U(g-), W),

by the following conditions:
(0)Forr<gy s5.-=V,.
(1) For r > g

s, C Homy(I~'U(g-),V), C Hom(U(g-), W), (3)
0—+s. — ZHom(g-,V), —» Hl(g-,V) >0 (exact). 4)
Then we have
s=1V.

This means that (3) and (4) above may be regarded as defining equations of V,
(r > go). |

Let G be a Lie subgroup of Autg(g-) with Lie algebra go and assume that
the representation of g is integrated to a representation of Go. Let (M, f) be
a filtered manifold of type g on which there is given a Gy-structure P(¥ —
M c RO(M,f;g-).

In general, if X is a left Go-module, then we can construct the associated
vector bundle (P(®) x X) /Gy on M, which we denote by M *X. Note that M x g-
is nothing but grf. Therefore all the preceding discussions on left U(g-.) module
V are translated to that on left U(grf)-module M * V. Hence we.could define a
class of systems of differential equations on M whose symbols are specified by V:
The left U(grf)-module M +V is embedded in Hom(U(grf), M *V) as left U(grf)-
module whose defining equations are given by H*(grf, M V) = M »H(g_,V).
However, according to our convention, the symbols of prolonged equations are
right U(grf)-modules ( Proposition 1). So we need to switch from left to right.
In general, for a Lie algebra A we have an involutive anti-isomorphism 5 of
U(A) determined by: ¥(1) = 1, y(z) = —z for z € A, and Y(&n) = v(n)v(€)
for ,n € U(A). If B is a left U(A)-module, then it can be converted to a right
U(A)-module by vz = y(z)v for z € A and v € B.
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In this way we regard MV as a right U(grf)-module and let it be embedded
into Hom(U (grf), M * V') as right U(grf)-module whose defining equations are
given by H(grf, (M xV)',08") = M+ H'(g_,V',d'), where the prime ’ indicates
that it is considered as right module. The coboundary operator ¢’ is defined for
right g module V' by

. Vv
Ow(X1,. ., Xpr1) = D (-Diw(X1,..., Xiye oy Xpi1)Xi

\A

L v
+ (—1)1+]u)([Xi,Xj]X1,...,Xi,..Xj,..,Xp+1)
for w € Hom(APg_, V'), and X;,...,Xp+1 € g—. Then we see
- H(g-,V,8) =H(g-,V',8).

We are now in a position to define a class of systems of differential equations
S(g_,v,M,5,p®). Let g1 be the smallest integer such that H g (g—,V) = 0 for

a>aqQ1

Definition 1 We say a system of differential equations R C J9(M * W) is of
symbol type @, ., Vy ( or the symbol of R 1s defined by H(g_,V)) and denote
R € Sg_,v,m,p,po) if the symbol 5,(R) = (M xV)g forg <

Thus a representation of g on V determines a class R € Sg_ v,m,5,p®) 0f
systems of differential equations on a filtered manifold (M, f) of type g— on
which a Gp -structure P(©) is given.

In other word, a system of differential equations R € S(g_ v,a,5,p(0) is char-
acterized by the property that its symbol has the form determined by (g—, V).

It is therefore clear that for R € S¢;_ v a,j,p) the symbol of its prolonga-
tion s(pR) is contained in (M x V), and if all the compatibility conditions are
satisfied in the course of prolongation then s(pR) = (M V'

In particular, if dim V' < oo then R% € §;_ v, um 5,p) is of finite type. Let
gr be the smallest integer such that V, = 0 for ¢ > g7. Then s,(pR) = 0 for
g > qr and the prolonged equation p?R can be written in such a solved form
that all the derivatives of weighted order g is expressed in terms of lower order
derivatives. Thus the solution space of R is of finite dimension < dim V.

For a given system of differential equations @ the symbol s(p®) of p® is
determined from that of ® purely algebraically. Therefore deciding whether a
system is finite type or not is an algebraic problem, which however often involves
awful computations.

The advantage of starting from a representation (g_.V) is to avoid the direct
computation of prolongation and to reduce it to the computation of cohomology
groups.

In the case where g is simple the cohomology groups can be computed by
Kostant’s generalized Borel-Weil theory ([4]).
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6 Differential equations on bi-Leg'endrian mani-
folds

As an example let us consider g = sl(n + 2, K) with K = C or R, and define a
gradation

g=g-2+8-1+0go+9g1+92
by the eigen space decomposition of adJ, where J is the matrix (a;;)o<i,j<n+1
such that ago = 1, an+1n+1 = —1 and a;; = 0 for the others. Thus the gradation
is described by the following figure:

8o g1 g2

g% go 0

g-2 97, go

Note that the negative part g_(= g—2®g-1) is isomorphic to the Heisenberg
Lie algebra of dimension 2n + 1, and we have a direct sum decomposition

g-1 =95 @9%
as in the figure above into gg-irreducible subspaces. We have
[g)—{l’gi(l] = [9):1,9.1./.1] =0,

Hence gX, and gX, are Legendrian subspaces of g_;. We denote by Derg(g_)
the Lie algebra of all derivations of degree 0. Then

go & {a € Dero(g-) | a(e%;) C 6%, a(g¥)) C o¥1}

We know that the prolongation of g_ is the infinite dimensional contact Lie
algebra, and the prolongation of g_ @ go is, as easily verified, isomorphic to g.

Now let V = K™*2 and consider the standard representation of g on V. If
we denote by {eo, €1, - ,€n+1} the standard basis of V and set

Vi=<e > Vo=<er e, > V1 =<ep41 >

Then we have V = @ V, and satisfies A(gp)Vy C Vpiq-
We then consider the cohomology group H?(g-.,V) of the representation of
g- on V. By a simple computation we have:

Proposition 2 The representation of g on V being as above, we have
H'(g-,V) = H;(g-,V) ® H{(s-,V)

and
Hj(g-,V) = Hom(g%,,V_1), Hi(g-,V) = Hom(S?g¥,,V_4),

where S%gY, denotes the two-times symmetric tensor product of g¥,.
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Let G = SL(n + 2,K) and for k¥ > 0 let F*G be the largest subgroup of
G whose Lie algebra is F*g, where we set F*g = D, gp- We denote by Q
the homogeneous space G/F°G. It is a model space of the filtered manifolds
of type g_ having geometric structures of type F°G/F*G. There is a unique
left invariant tangential filtration {f?} on Q which coincides with {FPg/F%g}
at the origin. Clearly it is of type g_, and therefore ! is a contact structure.
Moreover, the decomposition g_; = g%, @ g¥, defines the decomposition f~! =
fx' ®fy" into Legendrian subbundles. The principal bundle G/F'G — Q defines
a standard geometric structure on Q of type F°G/F'G.

In this case these structures can be seen more concretely. The homogeneous
space Q is the flag manifold consisting of all pairs ¢ = (1:1,72) of subspaces of
V with dimm =1, dim7ne =n+1 and g, C 2. The mappings which send ¢ to
n. and 7, define projections m; : Q — P(V) and 72 : Q = P(V)* respectively
and

Q = {([v],[a]) € P(V) x P(V*);<v,a >=0}.

Moreover @ is canonically identified with PT*P(V), the projective cotangent

bundle of the projective space P(V'), which has a canonical contact structure D

given by ’
D = Ker(m)« ® Ker(mi)«

We see easily that Ker(m), = f5', Ker(m). = fy'. Therefore the contact

~structure D coincides with §~.

The exponential mapping g — G composed with the projection on to @
gives a local diffeomorphism from g— into @, which defines local coordinates

(z!,...,z",y',...,y", z) of the point of Q corresponding to
0 0 0
s
: 0 0
zn
z |y y* | 0

Then the contact structure D is defined by :
1 R I N
w:dz+-2-2(—y de* + z'dy") = 0.

The Legendre subbundles 3 and f;' are spanned respectively by

5§ 8 1,98 _ .
e w e ™ g~y e

Now let us see what is the differential equations that the representation of g
on V determines on the homogeneous space ). We note that the representation
of go on V is integrated to a representation of F°G/F'G on V. Since we have
FOG/F'G -principal bundle G/F'G over Q, the F°G/F'G -module V = @ V;

247



248

defines the associated vector bundle Ey = @) Ey,. Note that

Vo Hom(g}—,h V-l) - Hom(U(g—)vv-—l)O ,
Vi = Hom(g%;, Vo) = Hom(g%; ® g¥;,V_1) C Hom(U(g-),v-1)1.

[

Differential equations on @ defined by H'(g_,V) are differential equations for
a section of Ey._, written in terms of local coordinates in the following form:

]

gﬂ?u = fi(x,y,z,u)‘
42 L
inéyju = fij(w,y’z,U,#, 3?“{),

where f;, f;; are arbitrary functions.
If f;, fi; both identically vanish, the solutions are given by

u=a+ Zbiy‘ +c(z - %Zm‘y’)

In our case of g = sl(n + 2) with the contact gradation g = @zz_z 8p,a
filtered manifold (M, f) of type g is nothing but a contact manifold, namely
f~! is a contact distribution on M. Let RO (M,f,g_) be the reduced frame
bundle of (M, f) of weighted order 1, that is, the fibre R(®)(M,f;g_); onz € M
is the set of all graded Lie algebra automorphisms z : g = grf, It is a principal
fibre bundle on M with structure group Auto(g-), the group of automorphisms
of the graded Lie algebra g_ (degree preserving). Note that F°G/F'G is a
closed Lie subgroup of Auto(g-). A principal subbundle P of R((M,f;g-)
with structure group F°G/F'G is a first order geometric structure on (M, §) of
type F°G/F'G, which turns out to be a bi-Legendrian structure on M in the
following sense.

Definition 2 A bi-Legendrian structure on a manifold M (or on a contact man-
ifold (M, D)) is a triple (D, Ly, Ls) ( resp. pair (L1, L3) ) of subbundles of the
tangent bundle TM of M such that

D=1, &Ls,

that D is a contact distribution and that L, and Ly are Legendre subbundles
of D. A bi-Legendrian (contact) manifold is a manifold equipped with a bi-
Legendrian structure.

Remark 1 Let (M, D) be a contact manifold of dimension 2n + 1. Giving a
subbundle E of D of rank n is equivalent to defining a Monge-Ampeére equation
on (M, D) which is decomposable in the sense of Machida-Morimoto (see [5] ).
Hence a bi-Legendrian structure (L, L;) on a contact manifold (M, D) defines
two Monge-Ampére equations L, Ly on (M, D) which are decomposable and
parabolic.



Remark 2 Since the prolongation of g_ ®go is g and simple, to each bi-Legendr-
ian structure on a manifold M we can construct a Cartan connection modeled
after G - G/F°G ([13])

According to the prescription explained in the preceding section, we can
define the class of systems of differential equations that the representation of g
on V determines on a bi-Legendrian manifold (M,f,§%",fy)-

It should be remarked that the unknown function of a system of differential
equations belonging to this class is thus a section of M * V_; on M, which may
be regarded as a contact vector field. In fact, we note that V_; * M can be
identified with gr_f = TM/D and the sections of TM/D can be identified
with the infinitesimal contact transformations (contact vector fields) of (M, D).

Next let us consider the tensor representation of g = sl(n + 2, K) on the
symmetric tensor product W = S?V = S2K™+2. If we put W, =D, ;- Vi ®
V;, then we have W = @ W, and g,W, C Wp,. By computation we have:
Proposition 3 The representation of g— on W being as above, we have

H'(g_,W)=H.,(9-,W) @ H;(g-, W)
and
HYy(g-,W) = Hom(gX,,W_,), H}(9-,W) = Hom(5°g¥;, W_s),

where S3gY, denotes the three-times symmetric tensor product of g¥,.

The systems of differential equations on the homogeneous space Q = G/ F°G
associated to the above representation have the following local expression:

0

P = &
53

e T

where f; is an arbitrary functions of z,y, z,u, and fijx is an arbitrary function
of z,y, z and the derivatives of u of which weighted orders are less than 3 .
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