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1 Introduction

Submanifolds in manifolds with some geometric structures are interesting
objects for geometry. For example, Legendrian submanifolds in contact
manifolds and Lagrangian submanifolds in symplectic manifolds. In this
paper, we study submanifolds in Engel manifolds. We observe proper-
ties of loops, namely embedded circles, which are always tangent to the
standard Engel structure in the standard Engel -space. We obtain the
classification of such loops up to horizontal homotopy.

Engel structures are interesting object for differential topology. An
Engel structure is a distribution of rank 2 on a -dimensional manifold
which is maximally non-integrable (see Section 2 for precise definition). A
distribution is a subbundle of the underlying manifold. Engel structures
have an important property like contact structures. All Engel structures
are locally equivalent. Therefore, global study is important for Engel
structures ([M], [Ajl],. . . , etc). Recently, sufficient condition for the ex-
istence of an Engel structure is obtained by Vogel [V]: There exists an
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Engel structure on a -dimensional manifold if and only if the manifold
is parallelizable. Then, Engel manifolds must be going to be studied as a
object for global differential topology. An embedded circle in the standard
Engel space which is everywhere tangent to the Engel structure is stud-
ied in this note. We call such a circle a horizontal loop. Horizontal loops
might be an interesting issue to Engel topology like Legendrian knots
to contact topology. A contact structure on a 3-dimensional manifold is
a distribution of rank 2 which is completely non-integrable. A Legen-
drian knot is an embedded circle into a -dimensional contact manifold
which is everywhere tangent to the contact structure. Legendrian knots
are important for contact topology. They take important roles in con-
structions and classifications of contact manifolds. Therefore, horizontal
loops should be good tools for constructions and classifications of En-
gel structures. Engel structures and contact structures on 3-dimensional
manifolds are so closely related that mutual contributions between Engel
topology and 3-dimensional contact topology are expected. By reducing
horizontal loops in the standard Engel space to Legendrian knots, we
obtain the classification of horizontal loops.

2 Engel structures and horizontal curves
2.1 Basic definitions

An Engel structure is a maximally non-integrable distribution of rank two
on a 4–dimensional manifold. Generally, it is defined as follows. Let $M$

be a -dimensional manifold, and $D$ a distribution, or a subbundle of the
tangent bundle $TM$, of rank 2. We can regard $D$ as a locally hee sheaf of
vector fields on $M$ . Let [X, $Y$] denote a sheaf of vector fields generated by
all Lie brackets [X, $\mathrm{Y}$] of vector fields $X,$ $\mathrm{Y}$ which are cross-sections of $D$ .
Set $D^{2}:=D+[D, D]$ , and $D^{3}:=D^{2}+[D^{2}, D^{2}]$ . Then, an Engel structure
on $M$ is defined as a distribution $D\subset TM$ of rank 2 which satisfies the
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following conditions:

rank $D_{p}^{2}=3$ , rank $D_{p}^{3}=4$ (2.1)

at any point $p\in M$ .
A certain Engel manifold is constructed from a 3-dimensional contact

manifold. A contact structure is a completely non-integrable distribu-
tion of corank one on an odd-dimensional manifold. Let $E$ be a contact
structur$e$ on a -dimensional manifold $N$ . By taking fibrewise porjec-
tivization of the contact structure $E$ , we obtain a new 4-dimensional
manifold $\mathrm{P}E=\bigcup_{x\in}{}_{N}\mathrm{P}(E_{x})$ . On the -dimensional manifold $\mathrm{P}E$ , an En-
gel structure $D(E)$ is defined as $D(E)_{q}:=(d\pi)^{-1}l$ , where $\pi:\mathrm{P}Earrow M$ is
a canonical projection, $q=(p, l)\in \mathrm{P}E$ is a point, and $l\in T_{p}M$ is a line
(see [M]). Such a procedure is called a Cartan prolongation (see [BCG3],
[M], [Aj l] $)$ .

An Engel structure has a characteristic direction. Let $D$ be an Engel
structure on a -dimensional manifold $M$ . From this Engel structure $D$ ,
a line field is defined as follows: $L(D):=\{X\in D|[X, D^{2}]\subset D^{2}\}$ . The
line field $L(D)$ is called the Engel line field. It is known that a contact
structure is induced from an even-contact structure $D^{2}$ on an embedded
manifold $N\subset M$ which is transverse to the Engel line field $L(D)$ . The
contact structure is obtained as $D^{2}\cap TN$ . Such a procedure is called a
deprolongation (see [M], [BCG3]).

In this paper, we work just in the standard Engel space $(\mathbb{R}^{4}, E)$ , that
is, an ordinary 4-dimensional space $\mathbb{R}^{4}$ endowed with the standard Engel
structure. The standard Engel structure on $\mathbb{R}^{4}$ is defined as a kernel of
the following pair $\omega_{1},$ $\omega_{2}$ of l-forms:

$\omega_{1}=dy-zdx$ , $\omega_{2}=dz-wdx$ , (2.2)

where $(x, y, z, w)\in \mathbb{R}^{4}$ are coordinates. Let $E$ denotes the standard Engel
structure on $\mathbb{R}^{4}$ :

$E:= \{\omega_{1}=0, \omega_{2}=0\}=\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\{\frac{\partial}{\partial x}+z\frac{\partial}{\partial y}+w\frac{\partial}{\partial z},$ $\frac{\partial}{\partial w}\}$ .
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We call the 4-dimensional space $(\mathbb{R}^{4}, E)$ endowed with the standard Engel
structure the standard Engel space. It is clear that the standard Engel
structure $E$ actually satisfies the condition (2.1) of the definition. In
this case, the Engel line fields is $L(E)=$ Span $\{\partial/\partial w\}$ . With respect
to the standard Engel structure on $\mathbb{R}^{4}$ , the induced contact structure on
$\mathbb{R}^{3}\subset \mathbb{R}^{4}$ , the $(x, y, z)$-space, is $C=\{\omega_{1}=dy-zdx=0\}$ . It is also called
the standard contact structure on $\mathbb{R}^{3}$ .

A $ho7\dot{\mathrm{v}}zontal$ curve $\Gamma\subset M$ in a Engel manifold $(M, D)$ is a curve
which is tangent to the Engel structure $D$ everywhere: $T_{p}\Gamma\subset D_{p}$ at any
$p\in M$ . Horizontal loops in the standard Engel space $(\mathbb{R}^{4}, E)$ are dealt
with in this paper. A horitontal loop in $(\mathbb{R}^{4}, E)$ is an embedding $\gamma:S^{1}arrow$

$(\mathbb{R}^{4}, E)$ of an oriented circle $S^{1}$ into $(\mathbb{R}^{4}, E)$ which satisfies the condition
$\gamma_{*}(T_{p}S^{1})\subset(E)_{\gamma(p)}$ . In other words, $\gamma$ satisfies the conditions $\gamma^{*}\omega_{1}=0$

and $\gamma^{*}\omega_{2}=0$ , where $\omega_{1},$ $\omega_{2}$ are 1-forms defined as equations (2.2). For
horizontal loops, we introduce an equivalence relation. Two horizontal
loops $\gamma 0,$ $\gamma_{1}$ : $S^{1}arrow(\mathbb{R}^{4}, E)$ are said to be horizontally homotopic if there
exists a smooth mapping $H:S^{1}\cross Iarrow(\mathbb{R}^{4}, E)$ which satisfies that, setting
$H_{t}(s):=H(s, t),$ $H_{0}=\gamma_{0}$ and $H_{1}:=\gamma_{1}$ , and that $H_{t}$ : $S^{1}arrow(\mathbb{R}^{4}, E)$ is a
horizontal loop for any $t\in I=[0,1]$ .

Similarly to horizontal curves in Engel manifolds, a curve in a contact
-manifold which is everywhere tangent to the contact structure is called

a Legendrian curve. Studying Legendrian knots is one of important issues
in contact topology (see [B], [E1], [EF], [Et] for example).

2.2 Horizontal projections and rotation number

The horizontal projection is defined as follows. Let $(x, y, z, w)$ be coordi-
nates of the standard Engel space $(\mathbb{R}^{4}, E)$ . Set $P_{3}:=\{y=0\}\cong \mathbb{R}^{3}$ , and
$P_{2}:=\{y=0, z=0\}\cong \mathbb{R}^{2}$ . Let $p_{1}$ : $\mathbb{R}^{4}arrow P_{3},$ $(x, y, z, w)rightarrow(x, z, w)$ ,
and $p_{2}$ : $P_{3}arrow P_{2},$ $(x, z, w)\mapsto(x, w)$ be the canonical projections. We call
them the first and the second $ho$rizontal projections.

We define an invariant, the rotation number, of a horizontal loop in the
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standard Engel space. It is similar to the rotation number for Legendrian
knots (see [B]). Let $\gamma:S^{1}arrow(\mathbb{R}^{4}, E)$ be a horizontal loop. The projected
curve $p_{2}\mathrm{o}p_{1}\circ\gamma:S^{1}arrow P_{2}\cong \mathbb{R}^{2}$ is an immersed plane curve because the
standard Engel structure is transverse to $y$ and $z$-axes. Then, we can
calculate the degree of the immersed oriented curve $p_{2}\circ p_{1}\circ\gamma:S^{1}arrow$

$P_{2}\cong \mathbb{R}^{2}$ with respect to $x$ and $w$-axes, in other words, with respect to
a trivialization of the Engel structure $E$ . We call it the rotation number
of $\gamma$ . Let $r(\gamma)$ denote it. This definition is independent of the choice
of the trivialization by a similar reason to the case of Legendrian knots
(see [B]). It is because $H_{1}(\gamma)$ is null in $H_{2}(\mathbb{R}^{4})$ . Then, the rotation
number is invariant under diffeomorphisms preserving Engel structure,
and horizontal homotopies of horizontal loops.

We can lift a certain immersed closed plane curve to a horizontal loop
in the standard Engel space. We call this procedure a $hor\dot{\tau}zontal$ lift. Let
$g:S^{1}arrow P_{2}\cong \mathbb{R}^{2},$ $g(s)=(g_{1}(s), g_{4}(s))$ , be an immersed closed curve
in the $(x, w)$-plane. Suppose that the algebraic area bounded by the
immersed curve is zero:

$\int_{g(S^{1})}g_{4}(s)dg_{1}(s)=0$ . (2.3)

The condition guarantees that the lift$e\mathrm{d}$ curve is closed. We remark that
horizontal projections of horizontal loops in $(\mathbb{R}^{4}, E)$ and horizontal pro-
jections of Legendrian closed curves satisfy this condition. Then, the
given immersed plane curve $g(s)=(g_{1}(s), g_{4}(s))$ satisfying the condi-
tion (2.3) above is lifted to a Legendrian immersed circle with singular
points in the $(x, z, w)$-space $P_{3}\cong \mathbb{R}^{3}$ with the standard contact structure
$C’=\{\omega_{2}=dz-wdx=0\}$ . Further, if the obtained Legendrian circle
satisfies a similar condition to equation (2.3), then it can be lifted to a
horizontal loop in the standard Engel space.

Example 2.1. If an immersed curve as the top of Figure 1 is given, we
can lift the curve from the top to the bottom of Figur$e1$ .

We use this horizontal lift in an argument in Section 6.
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3 Classification result

The following is one of main results in this paper.

Theorem A. Let $\gamma_{0},$ $\gamma_{1}$ : $S^{1}arrow(\mathbb{R}^{4}, E)$ be horitontal loops in the standard
Engel space. These loops $\gamma_{0}$ and $\gamma_{1}$ are horizontally homotopic if and only
if their rotation numbers coincide: $r(\gamma_{0})=r(\gamma_{1})$

According to this Theorem, we can classify horizontal loops as the follow-
ing Remark $\mathrm{B}$ in Section 4. We claim that there actually is a horizontal
loop with rotation number $k$ for any integer $k\in \mathbb{Z}$ .

4 Vertical projections

The vertical projection is defined as follows. Let $(x, y, z, w)$ be coordinates
of the standard Engel space $(\mathbb{R}^{4}, E)$ as above. Set $Q_{3}:=\{w=0\}\cong \mathbb{R}^{3}$ ,
and $Q_{2}:=\{w=0, z=0\}\cong \mathbb{R}^{2}$ . Let $\pi_{1}$ : $\mathbb{R}^{4}arrow Q_{3},$ $(x, y, z, w)rightarrow$

$(x, y, z)$ , and $\pi_{2}$ : $Q_{3}arrow Q_{2},$ $(x, y, z)rightarrow(x, y)$ be the canonical projections.
We call them the first and the second vertical projections.

We should remark that the first projection is along the direction of
an Engel line field, and the second one is along the Legendrian fiber
with respect to the induced standard contact structure on $Q_{3}\cong \mathbb{R}^{3}$ (see
Subsection 2.1). Let $\gamma:S^{1}arrow(\mathbb{R}^{4}, E)$ be a horizontal lop in the standard
Engel spac$e$ , and $C=\{\omega_{1}=dy-zdx=0\}$ an induced standard contact
structure on $Q_{3}\cong \mathbb{R}^{3}$ . Then, $\pi_{1}\circ\gamma:S^{1}arrow(\mathbb{R}^{3}, E)$ is a Legendrian
immersion with singularities. At a point where $\gamma$ is tangent to w-direction,
the projection $\pi_{1}\circ\gamma$ has a singular point. Such Legendrian curves with
singularities are studied by Ishikawa [I] and Zhitomirskil [Zh]. We call
the image of further projection $\pi_{2}\circ\pi_{1}\circ\gamma:S^{1}arrow Q_{2}\cong \mathbb{R}^{2}$ a front of $\gamma$ .
It is a wave front of a Legendrian knot $\pi_{1}0\gamma$ . The mapping $\pi_{2}0\pi_{1}0\gamma$ is
an immersion with singular points. The singular points are cusps of type
$(2, 5)$ , that is, points where $\pi_{2}\circ\pi_{1}0\gamma$ is locally diffeomorphic to a curve
$trightarrow(t^{2}, t^{5})$ at $t=0$ .
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Contrary to the vertical projection, we can reconstruct a horizontal
curve in the standard Engel space from a certain plane curve. We call
this procedure a vertical lift. It is based on the prolongation procedure
explained in Subsection 2.1. Let $f:S^{1}arrow \mathbb{R}^{2}\cong Q_{2},$ $f(s)=(f_{1}(s), f_{2}(s))$ ,
be an immersion with cusps of type $(2, 5)$ . Assume that the plane curve
$f$ is nonvertical, in other words, it satisfies $df_{1}(s)/ds\neq 0$ at regular
points and $d^{2}f_{1}(s)/ds^{2}\neq 0$ at cusp points. We remark that the vertical
projection of a horizontal loop is actually nonvertical. Then, we can
lift the given plane curve $f(s)=(f_{1}(s), f_{2}(s))$ to a Legendrian curve
$\overline{f}:S^{1}arrow \mathbb{R}^{3}\cong Q_{3},\overline{f}(s)=(f_{1}(s), f_{2}(s),$ $f_{3}(s))$ , in $\mathbb{R}^{3}$ with the standard
contact structure $C=\{\omega_{1}=dy-zdx=0\}$ whose vertical projection is
the given $f(t)$ . Its $z$-coordinate $f_{3}(s)$ is obtained as a slope of the curve
$f(s)$ . Precisely, it is written down as follows:

$f_{3}(s)=$ $\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{r}e\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}.\mathrm{t}\mathrm{s}$

,
(4.1)

It is clear, from the definition of the standard contact structure, that
the obtained curve $\overline{f}(s)$ is Legendrian. FUrthermore, we can lift the ob-
tained Legendrian curve $\overline{f}(s)=(f_{1}(s), f_{2}(s),$ $f_{3}(s))$ in $(\mathbb{R}^{3}\cong Q_{3}, C)$ to
a horizontal loop $\tilde{f}(s)=(f_{1}(s), f_{2}(s),$ $f_{3}(s),$ $f_{4}(s))$ in the standard Engel
space $(\mathbb{R}^{4}, E)$ whose vertical projection is the given plane curve $f(s)$ . Its
$w$-coordinate is obtained similarly to above. It is obtained as a slope of
a plane curve induced from $\overline{f}(s)$ by the projection to the $(x, z)$-plane.
Note that the projected plane curve $\mathrm{p}\mathrm{r}\mathrm{o}\overline{f}:S^{1}arrow \mathbb{R}^{2}$ is a nonvertical
immersion with cusps of type $(2, 3)$ , namely locally equivalent to a curve
$t\mapsto(t^{2}, t^{3})$ . It is because of the assumption that $f(s)$ is an immersion
cusps of type $(2, 5)$ (see Example 4.1 bellow). Then, the $w$-coordinate of
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$\tilde{f}(s)$ is obtained as follows:

$f_{4}(s)=$ $\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}.\mathrm{t}\mathrm{s}$

,
(4.2)

It is clear that the obtained curve $\tilde{f}(s)$ is horizontal with respect to the
standard Engel structure $E=$ {dy--zdx $=0$ , dz–wdx $=0$}.
Example 4.1. We observe these lifts at a cusp point. Suppose that a non-
vertical cusp of type $(2, 5)$ on the $(x, y)$ -plane $\mathbb{R}^{2}\cong Q_{2}$ is Parameterized
as $g(s)=(t^{2}, t^{5})$ . Then, it is lifted to a space curve $\overline{g}(s):=(t^{2}, t^{5},5t^{3}/2)$

in $\mathbb{R}^{3}\cong Q_{3}$ which is Legendrian for the standard contact structure
$C=$ {dy--zdx $=0$ }. The proj $e$ction $\mathrm{p}\mathrm{r}\circ\overline{g}(s)=(t^{2},5t^{3}/2)$ to the
$(x, z)$-plane has a cusp of type $(2, 3)$ at $t=0$ , where $\mathrm{p}\mathrm{r}:(x, y, z)rightarrow(x, z)$

is a canonical projection. Then, $\overline{g}(s)$ is lift to a horizontal smooth curve
$\tilde{g}(s):=(t^{2}, t^{5},5t^{3}/2,15t/4)$ in the standard Engel space $(\mathbb{R}^{4}, E)$ .
Example 4.2. As a global circle, an immersed circle on $(x, y)$-plane with
cusps of type $(2, 5)$ is lifted as in Figure 1.

$\frac{1\vee}{1}\approx$
$\mathrm{c}=\prime \mathrm{s})$

$\approx$ $‘=,$ $3)$

$\mathrm{F}\mathrm{i}_{1}\mathrm{r}\mathrm{e}1$ : projectioo and lifts.

The rotation number of this curve is 1. We can count by using the picture
in Figure 1 on the $(x, w)$-plane.

By using vertical lifts, examples of horizontal loops which have all
integer as their rotation numbers.
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Remark B. For any integer $n\in \mathbb{Z}$ , there is a horizontal loops $\gamma$ whose
rotation number is the given integer $n:r(\gamma)=n$ . In fact, we have
the following catalogue of fronts of horizontal loops (see Figure 2). By
lifting an $F_{k}$-type front vertically, we obtain a horizontal loop $\overline{F}_{k}$ with
rotation number $r(\overline{F}_{k})=k$ . Thus, we conclude that horizontal loops in

$\mathrm{r}=\cup$

rsd

Figure 2: Catalog of fronts

the standard Engel space are classified by the rotation number, and that
for any integer, there corresponds a class.

We can calculate rotation numbers of horizontal loops obtained from
honts of type $F_{k}$ (see Figure 2). According to Example 4.2, a cusp of a
front corresponds to an immersed curve with one twist with the reversed
orientation. Thus, in order to calculate the rotation number of a hori-
zontal curve from a front of type $F_{k}$ , we have only to count the degree of
an immersed curve in Figure 3. As a result, we obtain that the rotation

–

Figure 3: How to count rotation numbers

number of a horizontal loop from a front of type $F_{k}$ is $k$ .
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5 Engel Reidemeister moves

In order to prove Theorem $\mathrm{A}$ , we need the following result. We discuss
Reidemeister moves for Engel horizontal loops. It is not only a useful
tool, but an interesting result as itself.

Theorem $\mathrm{C}$ (Engel Reidemeister moves). Let $\gamma_{0},$ $\gamma_{1}$ : $S^{1}arrow(\mathbb{R}^{4}, E)$ be
horizontal loops in the standard Engel space. These loops are horizontally
homotopic if and only if the front $\pi_{2}\circ\pi_{1}\circ\gamma_{0}(S^{1})$ is moved to the other
front $\pi_{2}\circ\pi_{1}\circ\gamma_{1}(S^{1})$ via a finite sequence of the following moves:
$0$ an isotopy of $\mathbb{R}^{2}$ preserving the curve non-vertical,

I

II-(1)

$\cup$

$11-(2)$ $rightarrow$

III

Note that moves I and II-(2) never occur in Legendrian Reidemeister
moves.

6 Observations

We can observe the results of this note bom a view point of homotopy
principle ( $\mathrm{h}$-principle for short). One of the most famous examples of
$\mathrm{h}$-principle is a Whitney’s theorem on immersions of a circle into a plane
([W1], [Am]): $\mathrm{r}e$gular homotopy classes of immersed circles are classified
by their rotation numbers. The rotation number for horizontal curves is
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also the main tool for the classification in Theorem A in this note. And,
the rotation number for horizontal curves is defined by taking a projection
to a plane. Then, by taking such a projection, we obtain a version of a
Whitney’s theorem with some conditions for some ar$e\mathrm{a}$ . In other words,
we find a new relation which satisfies $\mathrm{h}$-principle. On the other hand, in
order to show $\mathrm{h}$-principle there is a strong machinery, Gromov’s method
(see [G], [Am]). A relation, homotopy among Legendrian immersions,
similar to the relation in this not$e$ is studied by that method in [G]. The
results in this note should also be proved by that method.

The result of this note can be generalized to higher dimensional cases.
The notion of Engel structure is a special case of the notion of Goursat
structure. The Goursat structure on a -manifold is a contact structure.
However, the Darboux-type theorem, or local triviality, does not hold in
higher dimensional cases. We extend Theorem A to the higher dimen-
sional cases.
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