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In this survey article, we review recent results on singularities of solutions
to Monge-Amp\‘ere equations of two independent variables [12], and give the
generic classification for Monge-Amp\‘ere equations of three independent vari-
ables. Then we find the remarkable difference in generic singularities which
appear in the case of two variables and three variables. The details will be
given in the forthcoming paper.

Solutions to a Monge-Amp\‘ere equation

$\det(.\frac{\partial^{2}z}{\partial\prime r_{i}\partial x_{j}})_{1\leq i,j\leq n}=g(x_{1},x_{2},$
$\ldots,$

$x_{n},$ $z,$ $\frac{\partial z}{\partial x_{1}},$ $\frac{\partial z}{\partial\tau_{2}}.$

$\cdots,$
$\frac{\partial z}{\partial x_{n}}.)$

for a function $z=z(x),$ $x=(x_{1}, .\tau_{2}, \ldots x_{n})\rangle$
’ can be treated as a Legendrian

submanifold, a geometric solution, in the $(x, z,p=\partial z/\partial x)$ space satisfying
a condition due to the equation. Then the singularities of a solution are
regarded as Legendrian singularities; singularities of a geometric solution via
the Legendrian projection $(x, z,p)\mapsto(x, z)$ .

The list of generic singularities of Legendrian projections of Legendrian
submanifolds (which are not necessarily geometric solutions) consists of the
cuspidal edge ( $A_{2}$-singularity) and the swallowtail ( $A_{3}$-singularity) in the case
of two variables. See Figure 1.

In the case of three variables, the list consists of $A_{2},A_{3},$ $A_{4}$ and $D_{4^{-}}$

singularities. The $A_{4}$-singularity is called the butterfly. The $D_{4}$ singularities
are the pyramid (elliptic umbilic, $D_{4}^{-}$) and the purse (hyperbolic umbilic,
$D_{4}^{+})[4]$ . Figures 2 and 3 illustrate the caustics, the loci of singularities in
$(x_{1}, x_{2},x_{3})$-space in each cases $A_{2},$ $A_{3},$ $A_{4},$ $D_{4}^{-}$ and $D_{4}^{+}$ .
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Figure 1: the cuspidal edge (left) and the swallowtail (right)

Figure 2: Caustics of $A_{2},$ $A_{3}$ and $A_{4}$-singularities in the three space

Figure 3: Caustics of $D_{4}^{+}$ and $D_{4}^{-}$ -singularities in the three space
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In [12], we study on the singularities of solutions to the Monge-Amp\‘ere
equation

$\det$ ( $\frac{\frac{\partial^{d})f}{\partial x^{2}\partial^{2}f}}{\partial y\partial x}$ $\frac{\partial^{9}arrow f}{\partial_{\backslash }y,\frac{\partial^{2}fx\partial}{\partial y^{2}}})=c$,

$c$ being a constant, the equation of improper affine spheres, and

$\det$ ( $\frac{\frac{\partial^{2}f}{\partial^{2}f\partial x^{2}}}{\partial y\partial\prime \mathrm{r}}$

.

$\frac{\partial^{2}f}{\partial..y,\frac{\partial^{9}f\prime r\partial}{\partial y^{2}}})=c(1+(\frac{\partial f}{\partial x})^{2}+(\frac{\partial f}{\partial y})^{2})^{2}$ ,

the equation of surfaces with the constant Gaussian curvature. Then it is
shown that generic singularities of solutions to each equation are cuspidal
edges and swallowtails as in the case without an equation. Moreover, in the
case $c\neq 0$ , also the list of generic singularities of dual surfaces turns to be
the same. To show the classification results, we used in [12] the criterion of
cuspidal edges and swallowtails established in [17].

We clarify our class of Monge-Amp\‘ere equations, Hessian Monge-Amp\‘ere
equations, recalling the formulation established in [13]. Then we generalise
the classification result in [12] to general Monge-Amp\‘ere equations in \S 3.
Moreover, in the case of three variables, we announce that there appear
extra singularities in generic solutions to a Monge-Amp\‘ere equation, other
than $A_{2},$ $A_{3},$ $A_{4},$ $D_{4}$-singularities in \S 4. Moreover in \S 5 we explain roughly
the method of generating families to show the classification results in this
paper.

In this paper, all manifolds and mappings are assumed to be of class $C^{\infty}$

unless otherwise stated.

2 Monge-Amp\‘ere equations with Lagrangian
pairs.

In [13], we introduce a class of Monge-Amp\‘ere equations; Monge-Amp\‘ere
systems with a Lagrangian pair. Consider $\mathrm{R}^{2n+1}$ with coordinates $(x, z,p)=$
$(x_{1}, x_{2}, \ldots,x_{n}, z,p_{1},p_{2}, \ldots,p_{\mathfrak{n}})$ and the contact form

$\theta=dz-p_{1}dx_{1}-p_{2}dx_{2}$ – $-p_{n}dx_{n}$
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on $\mathrm{R}^{2n+1}$ . The contact distribution $D=\{\theta=0\}\subset T\mathrm{R}^{2n+1}$ has the decom-
position $D=D_{1}\oplus D_{2}$ into the pair of two Lagrangian sub-bundles

$D_{1}= \langle\frac{\partial}{\partial p_{1}},$ $\frac{\partial}{\partial p_{2}}$

$\ldots,$
$\frac{\partial}{\partial p_{n}}\rangle$

and
$D_{2}= \langle\frac{\partial}{\partial x_{1}}+p_{1^{\frac{\partial}{\partial z’}}}\frac{\partial}{\partial x_{2}}+p_{2^{\frac{\partial}{\partial z’}}}\ldots,$

$\frac{\partial}{\partial x_{n}}.+p_{n}\frac{\partial}{\partial z}\rangle$

for the symplectic form $d\theta$ on $D$ . We call $(D_{1}, D_{2})$ a Lagrangian pair. Since
$D_{1},$ $D_{2}$ are both integrable, we have the Legendrian double fibrations:

$\mathrm{R}^{2n+1}$

$\pi_{1}\swarrow$ $\searrow\pi_{2}$

$\mathrm{R}^{n+1}$ $\mathrm{R}^{n+1}$ ,

where $\pi_{1}(x, z,p)=(x, z)$ and $\pi_{2}(x, z,p)=(p, x\cdot p-z),$ $x \cdot p=\sum_{i=1}^{n}x_{i}p_{i}$ ,
are projections along $D_{1}$ and $D_{2}$ respectively.

In general, a differential system $\mathcal{M}$ on a contact manifold is called a
Monge-Amp\‘ere system if $\mathcal{M}$ is locally generated by a contact form $\theta$ and an
$n$-form $\omega([21][22])$ .

In particular consider an $n$-form $\omega$ on $\mathrm{R}^{2n+1}$ of the form $\omega=\omega_{1}-\omega_{2}$ ,
$\omega_{1},$ $\omega_{2}$ satisfying that $u\rfloor\omega_{1}=0$ for any $u\in D_{1},$ $v\rfloor\omega_{2}=0$ for any $v\in D_{2}$ ,
$\omega_{1}|D_{2}$ is a volume form on $D_{2}$ , and that $\omega_{2}|D_{1}$ is a volume form on $D_{1}$ .
Then the differential system generated by $\theta$ and $\omega$ is called a Monge-Amp\‘ere
system with the $La_{\theta}ran_{\mathit{9}^{ian}}$ pair $(D_{1}, D_{2})$ . Then we can take $\omega=\omega_{1}-\omega_{2}$

with

$\omega_{1}=g(x, zp\})dx_{1}\wedge dx_{2}\wedge\cdots\wedge d.x_{n}$, $\omega_{2}=dp_{1}\wedge dp_{2}\wedge\cdots\wedge dp_{n}$,

for a non-vanishing function $\mathit{9}=g(x, z,p)$ . Since $n$ and the function $g$

determine the system, we designate it by $\mathcal{M}(n,g)$ . Note that we assume $g$ is
non-vanishing (on the domain we work on).

An immersed submanifold $L^{r\iota}$ in $(\mathrm{R}^{2n+1}, D)$ of dimension $n$ is called Leg-
endrian if $\theta|_{L}=0$ for a contact form $\theta$ , namely, if $L$ is an immersed integral
submanifold to $D$ . A Legendrian submanifold $L$ in $(\mathrm{R}^{2n+1}, D)$ is called a ge-
ometric solution to a Monge-Amp\‘ere system generated by $\theta$ and $\omega$ if $(\theta|_{L}=0$

and) $\omega|_{L}=0$ .
A function $z$ : $Uarrow \mathrm{R}$ on a domain $U$ of $\mathrm{R}^{n}$ induces a Legendrian

submanifold $L$ in $\mathrm{R}^{2n+1}$ by

$L=\{(x, z,p)=(x,$ $z(.x),$ $\frac{\partial z}{\partial x})|x\in U\}$ .
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Then $L$ is a geometric solution to $\mathcal{M}(n, g)$ if and only if $z$ is a classical
solution to the equation

$\det(.\frac{\partial^{2}z}{\partial x_{i}\partial x_{j}}.)_{1\leq i,j\leq n}=_{\mathit{9}}(x_{1},$ $\ldots,$
$x_{n},$ $z,$ $\frac{\partial z}{\partial x_{1}},$

$\ldots,$
$\frac{\partial z}{\partial\tau_{1}}.)$

We call this type of equations Hessian $\Lambda fonge- Amp^{t}ere$ equations.
Note that a geometric solution $L$ in $\mathrm{R}^{2\mathrm{n}+1}$ gives a multi-valued classical

solution if $\pi_{1}|_{L}$ is immersive. A singular point of $L$ means a non-immersive
point of $\pi_{1}|_{L}$ .

We denote by $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}(z)$ the Hessian determinant of $z=z(x_{1}, x_{2}, \ldots,x_{n})$ .

Example 2.1 Consider the equation $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}(z)=c,$ $(c\neq 0)$ for improper affine
spheres $z=z(x_{1}, \ldots, x_{n})$ of dirnension $n$ . The corresponding Monge-Amp\‘ere
system $\mathcal{M}(n, c)$ to it is generated by the contact form $\theta=dz-p_{1}dx_{1}$ - -

$p_{n}dx_{n}$ and Ca7 $=cdx_{1}\wedge dx_{2}\wedge\cdots\wedge dx_{n}-dp_{1}\wedge dp_{2}\wedge\cdots\wedge dp_{n}$ .

Example 2.2 The equation $K=c,$ $(c\neq 0)$ for surfaces of constant Gaussian
curvature is described by the Monge-Amp\‘ere system $\mathcal{M}(2, c(1+p_{1}^{2}+p_{2}^{2})^{2})$

generated by the contact form $\theta=dz-p_{1}dx_{1}-p_{2}dx_{2}$ and

$\omega=c(1+p_{1}^{2}+p_{2}^{2})^{2}dx_{1}\wedge dx_{2}-dp_{1}\wedge dp_{2}$ .

By J\"orgens, Calabi and Pogorelov’s theorems, a global convex solution
$z$ : $\mathrm{R}^{n}arrow \mathrm{R}$ to the equation $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}(z)=c(c>0)$ is necessarily a quadratic
polynomial function. By Hilbert’s theorem, we see that there does not ex-
ist any complete surface satisfying $K=c(c<0)$ . Also we see, by Lieb-
$\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}^{)}\mathrm{s}$ theorem, any complete surface with $K=c(c>0)$ is a sphere.
Therefore it is indispensable to study singularities of solutions to Monge-
Amp\‘ere equations. Then generic classification of singularities of geomet-
ric solutions to the corresponding Monge-Amp\‘ere systems provides one of
higher perspective beyond intuitive and analytic approaches to the solutions
to Monge-Amp\‘ere equations. Moreover we classify singularities of the orig-
inal solution $z=z(x_{1},x_{2}, \ldots, x_{n})$ as well as its Legendre transformation
$\tilde{z}=\sum_{i=1}^{n}p_{i}x_{i}-z=\sum_{i=1}^{n}\frac{\partial z}{\partial x_{i}}x_{i}-z$ .

The geometric foundation on Monge-Amp\‘ere equations is given, for in-
stance, in $[21][22][18][6][15][5]$ . For related geometric studies on singularities
can be seen in $[9][20][17][14]$ . For a related analytic study on Monge-Amp\‘ere
equations can be seen, for instance, in [10].

The fundamental observation we will use in particular is the following:
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Lemma 2.3 Let $L\subset \mathrm{R}^{2n+1}$ be a geometric solution to a Monge-Amp\‘ere
system A4 $(n, g)$ for a non-vanishing function $g$ . Then $\ell\in L$ is a $sin_{\mathit{9}}ul_{}ar$

point of $\pi_{1}|_{L}$ if and only if $\ell\in L$ is a singular point of $\pi_{2}|_{L}$ .

Proof: Since $\theta|_{L}=0$ , we see $\ell\in L$ is a singular point of $\pi_{1}|_{L}$ if and only if
$dx_{1}\wedge dx_{2}\wedge\cdots\wedge d.x_{n}|_{L}=0$ at, $\ell$ . Similarly, since $\theta=-(d(\sum_{i=1}^{n}p_{i}x_{i}-z)-$

$\sum_{i=1}^{n}.x_{i}dp_{i})=0$ on $L$ , we see $\ell\in L$ is a singular point of $\pi_{2}|_{L}$ if and only if
$dp_{1}\wedge dp_{2}\wedge\cdots\wedge dp_{n}|_{L}=0$ at $\ell$ . Now

$\omega=g(x, z,p)dx_{1}\wedge dx_{2}\wedge\cdots\wedge dx_{n}-dp_{1}\wedge dp_{2}\wedge\cdots\wedge dp_{n}=0$

on $L$ , and $g(\ell)\neq 0$ . Thus we see $dx_{1}\wedge dx_{2}\wedge\cdots\wedge dx_{n}|_{L}=0$ at $\ell$ if and
$\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\square$

if $dp_{1}\wedge dp_{2}\wedge\cdots\wedge dp_{n}|L=0$ at $\ell$ .
Also the following is fundamental:

Lemma 2.4 $\pi_{1*}|\mathrm{K}\mathrm{e}\mathrm{r}(\pi_{2}|_{L})_{*}$ is injective. Similarly $\pi_{2*}|\mathrm{K}\mathrm{e}\mathrm{r}(\pi_{1}|_{L})_{*}$ is injec-
tive.

Proof: Since $(\pi_{1}, \pi_{2})$ : $\mathrm{R}^{2n+1}arrow \mathrm{R}^{n+1}\cross \mathrm{R}^{n+1}$ is an embedding, the restriction
$\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{i}1\mathrm{y}(\pi_{1}|_{L},.\pi_{2}|_{L})$

: $Larrow \mathrm{R}^{n+1}\cross \mathrm{R}^{n+1}$ is an immersion. Therefore Lemma 2.4
$\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s}\square$

3 Monge-Amp\‘ere equations of two variables.
The result in [12] is generalised to the following result:

Theorem 3.1 Let $g(x_{1}, x_{2}, z,p_{1},p_{2})$ be a non-vanishing analytic function on
a domain of $\mathrm{R}^{5}$ . Then, for generic geometric solutions to the Monge-Amp\‘ere
system $\mathcal{M}(2, g)$ corresponding to the equation

$\det(\frac{\partial^{2}z}{\partial_{X_{i}}\partial x_{j}})_{1\leq i,j\leq 2}=g(x_{1},$ $x_{2},$ $z,$ $\frac{\partial z}{\partial x_{1}}.’\frac{\partial z}{\partial x_{2}})$ ,

the pair of $\pi_{1}$ -Legendrian singularity and $\pi_{2}$ -Legendrian singularity at any
point is given exactly by the list:

$(A_{1}, A_{1}),$ $(A_{2}, A_{2}),$ $(A_{2}, A_{3}),$ $(A_{3}, A_{2})$ .

All four cases actually appear in a geometric solution to $M(2, g)$ and they
are stable under smal,$l$ perturbations amon9 geometric solutions to $\mathcal{M}(2, g)$ .
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For a generic Legendrian submanifold $L^{9}arrow$ in $\mathrm{R}^{5},$ $\theta|_{L}=0$ , we $\mathrm{h}a\mathrm{v}\mathrm{e}$ six
cases:

$(A_{1}, A_{1}),$ $(A_{1}, A_{2}),$ $(A_{1}, A_{3}),$ $(A_{2}, A_{1}),$ $(A_{9,\sim}, A_{2}),$ $(A_{3}, A_{1})$ .

By Theorem 3.1, for a generic $L^{2}$ in $\mathrm{R}^{\overline{0}}$ with $\theta|_{L}=0,\omega|_{L}=0$ , just
the cases $(A_{1}, A_{1}),$ $(A_{2}, A_{2})$ are realised as generic singularities of a Monge-
Amp\‘ere equation, and moreover two cases $(A_{2}, A_{3}),$ $(A_{3}, A_{2})$ occur generically
as singularities of a Monge-Amp\‘ere equation, while they are not generic as
singularities of Legendrian immersions via the Legendrian double fibration.
The equation provides the essential restriction via Lemma 2.3.

Similarly as in [12], Theorem 3.1 can be proved by using the criterion
of [17]. Also the method of generating families can be applied; in the next
section, we show the outline of the method, in the case of three variables.
The method is applied equally to the case of two variables. We assume 9
is analytic in Theorem 3.1 and in Theorem 4.1 below. This is because we
use the theorem of Cauchy-Kovalevskaya to guarantee the solvability of an
initial value problem.

4 Monge-Amp\‘ere equations of three variables.

As is mentioned already in Introduction, it is known that the generic Legen-
drian singularities of three dimension are $A_{1}$ , $A_{2)}A_{3},$ $A_{4},$ $D_{4}^{+},$ $D_{4}^{-}[4]$ . However
we easily see that the generic singularities of geometric solutions to a Monge-
Amp\‘ere system with a Lagrangian pair of three variables never have the same
list. Regarding with the symmetry between $\pi_{1}$ and $\pi_{2}$ , suppose they have the
same list, and suppose $\pi_{2}|_{L}$ is of type $D_{4}$ at $\ell\in L$ for a generic $L$ via both
$\pi_{1}$ and $\pi_{2}$ . Then $\dim \mathrm{K}\mathrm{e}\mathrm{r}(\pi_{2}|_{L})_{*}=2$ . Then, by Lemma 2.4, we have $\pi_{1}|_{L}$ is
of rank 2 so it must be of type $A_{k}$ . However, by Lemma 2.3, the singular
loci of $\pi_{1}|_{L}$ and $\pi_{2}|_{L}$ coincide. The singular locus of an $A_{k}$-singularity is
non-singular itself, On the other hand, the singular locus of a $D_{4}$-singularity
is a cone, which has a singularity. These lead a contradiction.

In the case of three variables, in fact we get the list

$A_{1},$ $A_{2},$ $A_{3},$ $A_{4},$ $D_{4}^{+},$ $D_{4}^{-},$ $A_{3}(+$ , - $)$ , $A_{3}$ (-, -)

of generic singularities of geometric solutions.
The singularities of type $A_{3}(+$ , - $)$ (“ $\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{l}$ cone”) and $A_{3}(-$ , - $)$ (“cone-

cone”) appear also as instantaneous singularities (of codimension one) in
wave front evolutions $[1][26]$ . The pictures of the caustics (the singular loci in
the $(x_{1},x_{2}, x_{3})$-space) corresponding to $A_{3}(+$ , - $)$ and $A_{3}(-, -)$-singularities
are given in Figure 4. See also $[2][3]$ .

More exactly we have:
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Figure 4: Caustics of $A_{3}(+$ , - $)$ and $A_{3}(-$ , - $)$ in the three space

Theorem 4.1 Let $g(x_{1}, x_{2}, x_{3}, z,p_{1},p_{2},p_{3})$ be a non-vanishin9 analytic func-
tion on a domain of $\mathrm{R}^{7}$ . $Then_{f}$ for generic geometric solutions to the Monge-
Amp\‘ere system $\mathcal{M}(3, g)$ corresponding to the equation

$\det(\frac{\partial^{2}z}{\partial x_{i}\partial x_{j}})_{1\leq i,j\leq 3}=g(x_{1},$ $x_{2},$ $.x_{3},$ $z,$ $\frac{\partial z}{\partial x_{1}},$ $\frac{\partial z}{\partial x_{2}},$ $\frac{\partial z}{\partial x_{3}})$ ,

the pair of $\pi_{1}$ -Legendrian $sin_{\mathit{9}}ularity$ and $\pi_{2}$ -Legendrian singularity at any
point is given $exactl,y$ by the list:

$(A_{1}, A_{1}),$ $(A_{2}, A_{2}),$ $(A_{2}, A_{3}),$ $(A_{2}, A_{4}),$ $(A_{3}, A_{2}),$ $(A_{3}, A_{3}),$ $(A_{4}, A_{2})$ ,
$(A_{3}(+, -),$ $D_{4}^{+}),$ $(A_{3}(-, -),$ $D_{4}^{-}),$ $(D_{4}^{+}, A_{3}(+,-))$ , and $(D_{4}^{-}, A_{3}(-,-))$ .

All eleven cases actually appear in a geomebric solution to $\mathcal{M}(3, g)$ and
they are stable under small perturbations among geometric solutions to $\mathcal{M}(3,g)$ .

The stratiPcations of $L$ by singularities of double Legendrian fibrations
are illustrated as Figure 5.

Note that, by Theorem 4.1, each of these singularities appears as a generic
and stabl,$e$ singularity of a Monge-Amp\‘ere equation. Also note that another
singularity $A_{3}(+, +)$ ( $‘ {}^{\mathrm{t}}\mathrm{t}\mathrm{h}\mathrm{e}$ birth of flying saucer” $[2][3]$ ) does not appear
generically in solutions of a Monge-Amp\‘ere equation.

5 Solutions to generalised Chynoweth-Sewell
equations.

Here we exhibit a typical consideration of the proof of Theorem 4.1.
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Figure 5: Stratifications by double Legendrian fibrations of a geometric so-
lution.
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Let $L^{3}\subset \mathrm{R}^{7}$ be a geometric solution to $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}(z)=c,$ $(c\neq 0)$ . Suppose
$\pi_{1}|_{L}$ is of rank 2 and $\pi_{2}|L$ is of rank 1 at a point $\ell$ on $L$ . Then we can set

$L$ : $x_{1}=u,$ $x_{2}=v,$ $x_{3}=- \frac{\partial h}{\partial w},$ $z=h- \frac{\partial h}{\partial w}w,$ $p_{1}= \frac{\partial h}{\partial u},$ $p_{2}= \frac{\partial h}{\partial v},$ $p_{3}=w$ ,

for a parameter $(u, v, w)$ centred at $\ell$ and a generating function $h=h(u, v, w)$ .
Then the anal: sis on singularities of solutions to the equation $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}(z)=c$ is
reduced that of the equation

$c \frac{\partial^{2}h}{\partial w^{2}}+$

$\frac{\partial^{2}h}{\partial u^{2}}$ $\frac{\partial^{2}h}{\partial u\partial v}$

$\frac{\partial^{2}h}{\partial v\partial u}$ $\frac{\partial^{2}h}{\partial v^{2}}$

$=0,$ $\cdots\cdots(\mathrm{C}\mathrm{S})$

for $h=h(u, v, w)$ . The equation $(\mathrm{C}\mathrm{S})$ is called a Chynoweth-Sewell equation
[5] and appears in meteorology [8].

In general, for the equation

$\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}(z)=g(x, z,p)$ ,

we reduce our classification problem to the analysis of classical solutions to

$\Gamma(u, v, w)\frac{\partial^{2}h}{\partial w^{2}}+$

$\frac{\partial^{2}h}{\partial u^{2}}$

$\frac{\partial^{2}h}{\partial v\partial u}$

$\frac{\partial^{2}h}{\partial u\partial v}$

$\frac{\partial^{2}h}{\partial v^{2}}$

$=0,$ $\cdots\cdots$ (GCS)

a generalised Chynoweth-Sewell $equat_{\text{ノ}}ion$, for a non-vanishing function $\Gamma$ , by
setting

$\Gamma(u, v, w)=g(u, v, \frac{\partial h}{\partial w}, w\frac{\partial h}{\partial w}-h, -\frac{\partial h}{\partial u}, -\frac{\partial h}{\partial v}, w)$ .

The generating family for the projection $\pi_{1}$ of $L$ is given by

$F(w;x_{1},x_{2}, x_{3}, z)=z-x_{3}w+h(x_{1}, x_{2}, w)$ .

This means that $L$ is given by

$L=\{(x_{1},x_{2}, .x_{3}, z,p_{1},p_{2},p_{3})|F=0,$ $\frac{\partial F}{\partial w}=0,p_{i}=\frac{\partial F}{\partial x_{i}}$ for some $w\}$ .

On the other hand, the generating family for the projection $\pi_{2}$ of $L$ is
given by

$G(u,v;p_{1},p_{2},p_{3},\tilde{z})=\tilde{z}-p_{1}u-p_{2}v-h(u, v,p_{3})$ .
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This means that$L$ is given by

$L= \{(x_{1)}x_{2}, x_{3}.\tilde{z},p_{1},p_{2},p_{3})|G=\frac{\partial G}{\partial u}=\frac{\partial G}{\partial v}=0,$ $x_{i}= \frac{\partial G}{\partial p_{i}}$ for some $(u, v)\}$

Note that $\tilde{z}=x_{1}p_{1}+_{\backslash }x_{2}p_{2}+x_{3}p_{3}-z$.
Solving the initial value problem of (GCS), we get the general form of $h$

and thus $F$ and $G$ .
The initial value problem for $h(u, v, w)$ of (GCS) is solved for given

$\varphi(u, v)=h(u, v, 0))\psi(u, v)=\frac{\partial h}{\partial w}(u, v, 0)$ .

We see $F(w;0,0,0, \mathrm{O})=h(\mathrm{O}, 0, w)$ , and

$\frac{\partial F}{\partial z}(w;0,0,0,0)$ $=$ 1,

$\frac{\partial F}{\partial x_{2}}(w;0,0,0,0)$ $=$ $\frac{\partial h}{\partial v}(0,0, w)\}$

Suppose

$\frac{\partial F}{\partial x_{1}}(w;0,0,0,0)$ $=$ $\frac{\partial h}{\partial u}(0,0, w)$ ,

$\frac{\partial F}{\partial x_{3}}(w;0,0,0,0)$ $=$ $w$ .

$\frac{\partial^{2}h}{\partial w^{2}}(0,0,0)=0,$ $\frac{\partial^{3}h}{\partial w^{3}}(0,0,0)=0,$ $\frac{\partial^{4}h}{\partial w^{4}}(0,0,0)\neq 0$ .

Then $F$ is a versal unfolding of $F(w;0,0,0,0)$ if and only if

1, $\frac{\partial h}{\partial u}(0,0, w),$ $\frac{\partial h}{\partial v}(0,0, w),$ $w$

form a generator of the quotient vector space

$Q= \frac{\mathrm{R}[[w]]}{\langle F(w;0,0,0,0),\frac{\partial F}{\partial w}(w\cdot 0,0,0,0))\rangle_{\mathrm{R}[[w]]}}$ .

See [4]. This condition is equivalent to that

$\frac{\partial^{3}h}{\partial w^{2}\partial u}(0,0,0)\neq 0,$ or $\frac{\partial^{3}h}{\partial w^{2}\partial v}(0,0,0)\neq 0$ .

Recall that $\pi_{2}|_{L}$ is given by

$(\tilde{z},p_{1},p_{2}.p_{3})=(\tilde{z}(u,v),$ $\frac{\partial h}{\partial u},$ $\frac{\partial h}{\partial v},$ $u))$ ,

with $d\tilde{z}=x_{1}dp_{1}+x_{2}dp_{2}+x_{3}dp_{3}$ . Since $\pi_{2}|_{L}$ is of rank 1 at $\ell\in L$ , we have

$\frac{\partial^{2}h}{\partial u^{2}}(0,0,0)=0,$ $\frac{\partial^{2}h}{\partial u\partial v}(0,0,0)=0,$ $\frac{\partial^{2}h}{\partial v^{2}}(0,0,0)=0$ .
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By the equation (GCS) and t,h $a\mathrm{t}_{1}\Gamma(0,0,0)\neq 0$ , we see

$\frac{\partial^{3}h}{\partial w^{2}\partial u}(0,0,0)=0,$ $\frac{\partial^{3}h}{\partial w^{2}\partial v}(0,0,0)=0$ .

Thus we see the singularity of $\pi_{1}|_{L}$ at $L$ is of corank 1 but never of $A_{k}$-type.
In fact we get the extra singularities $A_{3}(+$ , - $)$ and $A_{3}(-$ , - $)$ .

Example 5.1 Let consider the equation $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}(z)=1$ of three variables.
Then

$h(u, v, w)$ $=$ $\frac{1}{6}u^{3}+\frac{1}{2}uv^{2}+uvw+\frac{1}{2}v^{2}w-\frac{1}{2}(u^{2}-v^{2})w^{2}-\frac{1}{6}(u-2v)w^{3}$

$+ \frac{1}{12}w^{4}+\frac{1}{20}w^{5}+\frac{1}{30}w^{\mathrm{b}^{\neg}}$

give a geometric solution $L^{3}\subset \mathrm{R}^{7}$ with $\pi_{1}|_{L}$ is of type $A_{3}(+$ , - $)$ and $\pi_{2}|_{L}$ is
of type $D_{4}^{+}$ at $\mathrm{O}\in \mathrm{R}^{7}$ .
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