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Extra singularities of geometric solutions to
Monge-Ampere equations of three variables.
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1 Introduction.

In this survey article, we review recent results on singularities of solutions
to Monge-Ampére equations of two independent variables [12], and give the
generic classification for Monge-Ampére equations of three independent vari-
ables. Then we find the remarkable difference in generic singularities which
appear in the case of two variables and three variables. The details will be
given in the forthcoming paper.

Solutions to a Monge-Ampere equation

det 0%z Y o 0z 0z 0z
a’L‘za’UJ 1Silj_<_n_g 1;425 .- 3%ny :81:1781_2)-'-’82:”

for a function z = z(z),z = (1,3, ..., Zn), can be treated as a Legendrian
submanifold, a geometric solution, in the (z,z,p = 82z/0z) space satisfying
a condition due to the equation. Then the singularities of a solution are
regarded as Legendrian singularities; singularities of a geometric solution via
the Legendrian projection (z, z,p) — (z, 2).

The list of generic singularities of Legendrian projections of Legendrian
submanifolds (which are not necessarily geometric solutions) consists of the
cuspidal edge (Aj-singularity) and the swallowtail (As-singularity) in the case
of two variables. See Figure 1.

In the case of three variables, the list consists of Aj, As, A4 and Ds-
singularities. The A4-singularity is called the butterfly. The Dy singularities
are the pyramid (elliptic umbilic, D;) and the purse (hyperbolic umbilic,
DY) [4]. Figures 2 and 3 illustrate the caustics, the loci of singularities in
(21, T4, '3)-space in each cases Aj, As, Ay, Dy and Djf.
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Figure 1: the cuspidal edge (left) and the swallowtail (right)

Figure 2: Caustics of Ay, A3 and As-singularities in the three space

Figure 3: Caustics of D and Dy -singularities in the three space



In [12], we study on the singularities of solutions to the Monge-Ampere

equation
o f  Of
dz? 0Oxdy | _
det 2f Pf =c,
Oydx  Oy?
¢ being a constant, the equation of improper affine spheres, and
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the equation of surfaces with the constant Gaussian curvature. Then it is
shown that generic singularities of solutions to each equation are cuspidal
edges and swallowtails as in the case without an equation. Moreover, in the
case ¢ # 0, also the list of generic singularities of dual surfaces turns to be
the same. To show the classification results, we used in [12] the criterion of
cuspidal edges and swallowtails established in [17].

We clarify our class of Monge-Ampére equations, Hessian Monge-Ampére
equations, recalling the formulation established in [13]. Then we generalise

the classification result in [12] to general Monge-Ampére equations in §3.-

Moreover, in the case of three variables, we announce that there appear
extra singularities in generic solutions to a Monge-Ampeére equation, other
than A,, As, A4, Dy-singularities in §4. Moreover in §5 we explain roughly
the method of generating families to show the classification results in this
paper.

In this paper, all manifolds and mappings are assumed to be of class C*°
unless otherwise stated.

2 Monge-Ampére equations with Lagrangian
pairs.

In [13], we introduce a class of Monge-Ampére equations; Monge-Ampere
systems with a Lagrangian pair. Consider R***! with coordinates (z, 2,p) =
(z1,%2,...,%n, 2,P1,P2, - -, Pn) and the contact form

0 = dz — prdzy — padzy — -+ - — Prdzy,
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on R*"*1. The contact distribution D = {# = 0} ¢ TR***! has the decom-
position D = D; @ D, into the pair of two Lagrangian sub-bundles

0 0 0
D, = , o
' <ap1 p; apn>

Doy = __a_+ _3-__ __?_4_ 9_ i.{. _8.
2=\ 8z, " Paz 0z, p28z""’8.1:n Pnas

for the symplectic form df on D. We call (D, Dy) a Lagrangian pair. Since
D1, D, are both integrable, we have the Legendrian double fibrations:
R2n+1

"/ N
Rn+1 Rn+1 ’

and

where 71'1(.’1/', Z,p) = (.I,Z) and 7T2($,Z,p) = (pa T-p-—= Z)a T -p= 2?:1 ZiPi,
are projections along D; and D, respectively.

In general, a differential system M on a contact manifold is called a
Monge-Ampeére system if M is locally generated by a contact form 6 and an
n-form w ([21][22]).

In particular consider an n-form w on R?*™! of the form w = w; — Wo,
wy, wy satisfying that u | w; = 0 for any w € Dy, v |wy = 0 for any v € D,,
wi]|Ds is a volume form on D,, and that we|D; is a volume form on Dj.
Then the differential system generated by 6 and w is called a Monge-Ampére
system with the Lagrangian pair (D;,D;). Then we can take w = w; — wy
with

w1 = g(T,2,p)dry AdTa A - ANdTn, wy=dp; Adps A--- A dp,,

for a non-vanishing function g = g(z,z,p). Since n and the function g
determine the system, we designate it by M(n, g). Note that we assume g is
non-vanishing (on the domain we work on).

An immersed submanifold L™ in (R*"*!, D) of dimension n is called Leg-
endrian if 6|z = 0 for a contact form @, namely, if L is an immersed integral
submanifold to D. A Legendrian submanifold L in (R?™*!, D) is called a ge-
ometric solution to a Monge-Ampere system generated by 6 and w if (8|, = 0
and) w|p = 0.

A function z : U — R on a domain U of R™ induces a Legendrian
submanifold L in R?*+! by

zelU } .

L= {(x, z,p) = (‘”’z(‘”)’%)

44



Then L is a geometric solution to M(n,g) if and only if z is a classical
solution to the equation

det Pz =gl Ty, 2 —ai 0z
) 8[1’;18{1;3 1<ij<n_.g Ly ydin, ’axl,-.-7a$1

We call this type of equations Hessian Monge-Amp‘ere equations.

Note that a geometric solution L in R*"*! gives a multi-valued classical
solution if ;|;, is immersive. A singular point of L means a non-immersive
point of m|L.

We denote by Hess(z) the Hessian determinant of z = 2(21, %3, - ., Tn)-

Example 2.1 Consider the equation Hess(z) = ¢, (¢ # 0) for improper affine
spheres z = z(zy,. .., Tn) of dimension n. The corresponding Monge-Ampeére
system M(n, c) to it is generated by the contact form § = dz —pidz, —- - —
Pndz, and w = cdzy Adza A Adzn —dpt Adpa A -+ A dpn.

Example 2.2 The equation K = ¢, (¢ # 0) for surfaces of constant Gaussian
curvature is described by the Monge-Ampére system M (2, c(1 + p} + p3)?)
generated by the contact form § = dz — p;dz1 — padzz and

w = ¢(1 +p? + p3)2dz; A dzo — dpy A dps.

By Jérgens, Calabi and Pogorelov’s theorems, a global convex solution
z: R™ — R to the equation Hess(z) = ¢ (c > 0) is necessarily a quadratic

polynomial function. By Hilbert’s theorem, we see that there does not ex-

ist any complete surface satisfying K = ¢ (¢ < 0). Also we see, by Lieb-
mann's theorem, any complete surface with K = ¢ (¢ > 0) is a sphere.
Therefore it is indispensable to study singularities of solutions to Monge-
Ampére equations. Then generic classification of singularities of geomet-
ric solutions to the corresponding Monge-Ampére systems provides one of
higher perspective beyond intuitive and analytic approaches to the solutions
to Monge-Ampére equations. Moreover we classify singularities of the orig-

inal solution z = z(y,Zs,...,%,) as well as its Legendre transformation
0z

=3 Pii— 2= Gz i T

The geometric foundation on Monge-Ampeére equations is given, for in-
stance, in [21][22][18][6][15][5]. For related geometric studies on singularities
can be seen in [9]]20][17][14). For a related analytic study on Monge-Ampere
equations can be seen, for instance, in [10].

The fundamental observation we will use in particular is the following:
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Lemma 2.3 Let L C R*™*! be a geometric solution to a Monge-Ampére
system M(n,g) for a non-vanishing function g. Then £ € L is a singular
point of m|1 if and only if £ € L is a singular point of ms|r.

Proof: Since 0| = 0, we see £ € L is a singular point of 71| if and only if
dzy Adzy A --- Adzyp|r = 0 at £. Similarly, since § = —(d(} 1, piz; — 2) —
S, Tidp;) =0 on L, we see £ € L is a singular point of my|;, if and only if
dpy Adpa A -~ ANdp,|L = 0 at £. Now

w=¢(z,2,p)dx; Adzo A - AdT, —dpy Adps A+~ Adp, =0
on L, and g(f) # 0. Thus we see dz; Adzy A -+ Adz,|p = 0 at £ if and only

if dpy Adpa A~ ANdpplr =0 at £. 0
Also the following is fundamental:

Lemma 2.4 7y,|Ker(m|). is injective. Simalarly mo.|[Ker(m|1)s is injec-
tive.

Proof: Since (m1,m3) : R**! — R™" x R™! is an embedding, the restriction
(milp, m2|r) : L — R™*1xR™*! is an immersion. Therefore Lemma 2.4 follows
easily. O
3 Monge-Ampere equations of two variables.

The result in [12] is generalised to the following result:

Theorem 3.1 Let g(x1, %3, 2,1, p2) be a non-vanishing analytic function on
a domain of R°. Then, for generic geometric solutions to the Monge-Ampére
system M(2, g) corresponding to the equation

det i =g | T1,%9,2 —Qi oz
axzaxj 1<i <o - g L1y &2, ’axl\’ 83;2 )

the pair of m -Legendrian singularity and w,-Legendrian singularity at any
point is given exactly by the list:

(A1, A1), (A2, Az), (A, As), (A3, Ay).

All four cases actually appear in a geometric solution to M (2, g) and they
are stable under small perturbations among geometric solutions to M(2,g).
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For a generic Legendrian submanifold L? in R®, 8| = 0, we have six
cases:

(A1, A1), (A1, A2), (A1, As), (Az, A1), (Ag, A2), (43, A1).

By Theorem 3.1, for a generic L? in R® with 0| = O,w|r = 0, just
the cases (A, A;), (As, Ay) are realised as generic singularities of a Monge-
Ampeére equation, and moreover two cases (As, As), (As, A2) occur generically
as singularities of a Monge-Ampére equation, while they are not generic as
singularities of Legendrian immersions via the Legendrian double fibration.
The equation provides the essential restriction via Lemma 2.3.

Similarly as in [12], Theorem 3.1 can be proved by using the criterion
of [17]. Also the method of generating families can be applied; in the next
section, we show the outline of the method, in the case of three variables.
The method is applied equally to the case of two variables. We assume g
is analytic in Theorem 3.1 and in Theorem 4.1 below. This is because we
use the theorem of Cauchy-Kovalevskaya to guarantee the solvability of an
initial value problem.

4 Monge-Ampére equations of three variables.

As is mentioned already in Introduction, it is known that the generic Legen-
drian singularities of three dimension are A;, As, As, A4, D, Dy [4]. However
we easily see that the generic singularities of geometric solutions to a Monge-
Ampére system with a Lagrangian pair of three variables never have the same
list. Regarding with the symmetry between 7; and 72, suppose they have the
same list, and suppose 7|z is of type Dy at £ € L for a generic L via both
71 and 7. Then dim Ker (), = 2. Then, by Lemma 2.4, we have m | is
of rank 2 so it must be of type A;. However, by Lemma 2.3, the singular
loci of m|z and mo|r coincide. The singular locus of an Ai-singularity is
non-singular itself, On the other hand, the singular locus of a D,-singularity
is a cone, which has a singularity. These lead a contradiction.
In the case of three variables, in fact we get the list

AI)AZ)A?») A4’ DIaD4—1—7 A3(+7 —)7 A3(_7 _)

of generic singularities of geometric solutions.

The singularities of type As(+, —) (“cuspidal cone”) and As(—, —) (“cone-
cone”) appear also as instantaneous singularities (of codimension one) in
wave front evolutions [1][26]. The pictures of the caustics (the singular loci in
the (x1, 72, 73)-space) corresponding to As(+,—) and As(—, —)-singularities
are given in Figure 4. See also [2][3].

More exactly we have:
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Figure 4: Caustics of As(+,—) and As(—,—) in the three space

Theorem 4.1 Let g(x1, 3, T3, 2,01, P2, P3) be a non-vanishing analytic func-
tion on a domain of R". Then, for generic geometric solutions to the Monge-
Ampére system M(3, g) corresponding to the equation

det 9%z Y S 0z 0z 0z
axzamj lSi'jSS g 1,42,43, ’81;1’8372,8:33 )

the pair of my-Legendrian singularity and my-Legendrian singularity ot any
point is given exactly by the list:

(AhAl)) (A2,A2)> (A2aA3>) (A2’A4)7 (AS,AZ)a (A37 A3)7 (A47A2)7
(A3(+1_)1D:1+-), (A3(-_7—)’DZ)7 (DJ>A3(+1_))> and (DZ’A3(—7_))'

All eleven cases actually appear in a geometric solution to M(3,9) and

they are stable under small perturbations among geometric solutions to M(3,g).

The stratifications of L by singularities of double Legendrian fibrations
are illustrated as Figure 5.

Note that, by Theorem 4.1, each of these singularities appears as a generic
and stable singularity of a Monge-Ampére equation. Also note that another
singularity As(+,+) (“the birth of flying saucer” [2][3]) does not appear
generically in solutions of a Monge-Ampére equation.

5 Solutions to generalised Chynoweth-Sewell
equations. |

Here we exhibit a typical consideration of the proof of Theorem 4.1.
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Figure 5: Stratifications by double Legendrian fibrations of a geometric so-
lution.
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Let L? C R7 be a geometric solution to Hess(z) = ¢, (¢ # 0). Suppose
71 is of rank 2 and 73|z is of rank 1 at a point £ on L. Then we can set

oh Oh oh dh
L : x=u, o =, Ty =g, zzh—%w, pl:%’-pzz%’ P3 = W,

for a parameter (u, v, w) centred at £ and a generating function h = h(u, v, w).
Then the analysis on singularities of solutions to the equation Hess(z) = c is
reduced that of the equation

9h  O%h

d%h ou?  Gudv

G Y| an o [TV ()
ovou  Ov?

for h = h(u,v,w). The equation (CS) is called a Chynoweth-Sewell equation
[5] and appears in meteorology (8].
In general, for the equation

Hess(z) = g(z, 2,p),

we reduce our classification problem to the analysis of classical solutions to

*h  9%h
O?h 92
F(u,v,w)g—w—i + ggh agz‘?:’ =0, - (GCS)
dvdu  v?

a generalised Chynoweth-Sewell equation, for a non-vanishing function T, by

setting
oh  Oh oh  0Oh

u,v, -3—’1177 wé_’(; i) '_'8_7;’ —%1 U))
The generating family for the projection m of L is given by

I'u,v,w) = g(

F(w;zy,%9,23,2) = z — z3w + h(Z1, To, w).
This means that L is given by
oF oF }

i 0,p; = — for some w

L=1( : F=
| {(Tl,wz,%a,zapl,szPf%) 0, 9z

On the other hand, the generating family for the projection my of L is
given by
G(u,v;P1,P2,P3, £) = £ — pru — pav ~ h(u, v, ps).



This means that L is given by

06 _ 3G _
ER op;
Note that z = x1p1 + @op2 + T3p3 — 2.

Solving the initial value problem of (GCS), we get the general form of h

and thus F and G.
The initial value problem for h(u,v,w) of (GCS) is solved for given

L= {($1,$2,TC3>5,]31,P27P3) G=

(—9—}1—'(% v, 0).

We see F'(w;0,0,0,0) = h(0,0,w), and

oF oF oh
- (,0,00,0) = 1, 61(w0000)_—8-£(

SF(wOOOO) = Qﬁ(O,O,w), aF(wOOOO) = w.
T2

ov
Suppose

07 0’ w)?
8173

9*h 33h J*h
==(0,0,0) = 0,2(0,0,0) = 0, 5=(0,0,0) #0.
Then F'is a versal unfolding of F(w;0,0,0,0) if and only if

8h oh
’8 —(0,0,w), =— 5

form a generator of the quotient vector space

0~ R[w] ,
(F(w;0,0,0,0), 3 (w;0,0,0,0) )

—(0,0,w),w

See [4]. This condition is equivalent to that

&h &h
5=55-(0,0,0) 0, or 5=

Recall that 73|y is given by

(0,0,0) # 0.

(2,p1,p2.p3) = (Z(u, ),gh gh w),

with dz =_:c1dp1 + &odps + zadps. Since my|L is of rank 1 at £ € L, we have

o%h d*h d%h

5:2(0:0,0) = aa(000) 0,5-(0,0,0) =0.

0,z; = Qg— for some (u,v) } )
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By the equation (GCS) and that I'(0, 0, 0) # 0, we see

Oh ' h
— =0, ———(0,0,0) = 0.
555 (0,0,0) = 0, 52-(0,0,0)
Thus we see the singularity of ;|1 at L is of corank 1 but never of Ax-type.
In fact we get the extra singularities As(+,—) and As(—, —).

Example 5.1 Let consider the equation Hess(z) = 1 of three variables.
Then
1 1 1 1

1
h(u,v,w) = gu?’ + -2-uv2 + uvw + -2-112w - —2—(u2 —vHw? — —6-(u - 20)w?

1 4 5 6
+12w + 20w + 30w
give a geometric solution L®* C R with m| is of type As(+,—) and |y is
of type Df at 0 € R".
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