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ABSTRACT. A multiplicative (Nambu-Poisson) tensor of top order on a
Lie group is characterized. As an application, we determine multiplica-
tive structures on 3-dimensional Lie groups.

1. INTRODUCTION

A Nambu-Lie group is defined as a natural generalization of a Poisson Lie
group. In fact, if n is a multiplicative k-vector field on a Lie group G which
satisfies fundamental identity, then a pair (G, ) is called a Nambu-Lie group.
If k = 2, then (G, 1) is especially called a Poisson Lie group [1],[3]. A Nambu-
Lie group was studied by J.Grabowski and G.Marmo [2] and I.Vaisman
(5]. In [2], they proved that there are no Nambu-Lie structures of order
k > 3 on simple Lie groups. I.Vaisman [5] gave an alternative definition of
multiplicativity by defining the k-bracket of 1-forms on G. In this paper, we
characterize the properties of multiplicative Nambu-Poisson tensors of top
order (i.e., n = k). Note that the word "Nambu-Poisson” is void in this case.
As an application of these characterizations, we determine multiplicative
(Nambu-Lie) structures defined on 3-dimensional Lie groups.

2. NAMBU-LIE GROUPS

Let G be an n-dimensional connected Lie group with the Lie algebra g.
We denote by I'(A*TG) the set of k-vector fields (or contravariant tensor
fields of order k) on G. Let F be the set of C*®-functions on G. Each element
n of I'(A*TG) defines a k-bracket of functions f; € F as follows.

{f1, e f&} = n(dfy, ..., df)-
Since this k-bracket satisfies Leibniz rule, we can define a vector field
Xf1yrfims DY

Xflv---;.fk—l (g) = {flsﬂ'afk—l,g}v geF.
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Definition 2.1. An element 1 of I'(A*TG), k > 3, is called a Nambu-
Poisson tensor of order k if n satisfies

for any fi, ..., fr-1 € F.
Note that if k¥ = n, every 5 is a Nambu-Poisson tensor [4].

Definition 2.2. An element n of ['(AFTG) is said to be multiplicative if n
satisfies

Ngh = Lguh + Rh,7g
for any g,h € G, where L, and R, denote, respectively, the left and the right

translations. Let G be a Lie group endowed with a multiplicative Nambu-
Poisson tensor 1. Then a pair (G,n) is called a Nambu-Lie group.

For an element A € A¥g, we define vector fields A and A by
Ay =L, A, A,=R,A, forall g€G.

Then it is clear that A (resp. A) is a left (resp. right) invariant vector field
on G. Let us recall the following, which was proved by J-H Lu [3].

Proposition 2.1. Let G be a compact (or semisimple) Lie group. Then
for every multiplicative k-vector field n € I (AkTG), there ezxists an element
A € A¥g such that

Mg =Ag— Ay
forall g € G.

Using the above proposition, we show the following theorem.

Theorem 2.2. Let (G, n) be an n-dimensional compact or semisimple Nambu-

Lie group, and let n be of top order. Then n= 0.

Proof. By Proposition 2.1, there exists an element A of A™g such that 5 =
A—-A Forallg,h €@,

AdyAp = R Ly Ay = R Agh.
On the other hand, since G is a unimodular Lie group, we have
AdgAp = (det Adg)A -1 = Agpg-1.
Hence we obtain that Rg:xl_\gh = 1_\9;19-1. This means that a left invariant

vector field A is also a right invariant vector field. i.e., Ry, Ay = Agp.This
equation induces

Ru A, = Ry, L, A = Ly, Ry A
- Agh - L‘g'Lh*A.

Thus we have Ry, A = Lj, A for all h € G, and this means n = A — A=
0. ' O
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Let 1 be a Nambu-Poisson tensor of order k£ on G. Then 7 defines a bundle

mapping
B :T*G x - - xT*G — TG

——

k — 1 times

given by
< B, ﬂ'ﬂ(ah ey ak-—l) >= n(ala soey A1, :6)7
where all the arguments are covectors.
For such a tensor 9, I.Vaisman [5] defined a k-bracket of 1-forms by

k
{a’la eeey ak} = d(n(ah ooy ak)) + Z('—l)k-‘-"i(ﬁn(al’ ooy a;y ceey ak))daj’
j=1
where o; (j = 1,...,k) are 1-forms on G.
The following theorem proved by I.Vaisman [5] gives one of the charac-
terizations of Nambu-Lie groups.

Theorem 2.3. IfG is a connected Lie group endowed with a Nambu-Poisson
tensor field n which vanishes at the unit e of G, then (G,n) is a Nambu-Lie
group if and only if the k-bracket of any k left (right) invariant I-forms of
G is a left (right) invariant 1-form.

Using Theorem 2.3, we characterize a multiplicative tensor 7 of top order.
Let g be a Lie algebra of G with a basis Xj,...,X,. We also denote the
extended left invariant vector fields induced from X; by the same letter.
Since 7 is of top order,  has an expression = fX; A --- A X, for some
fe€F.Letw; (i=1,...,n) be left invariant 1-forms dual to X;. Under these
notations we prove

Theorem 2.4. Let n= fX1A---AX,, f€ F bea tensor of top order on
G. (Recall that such a tensor is always a Nambu-Poisson tensor.) Then g
is multiplicative if and only if f(e) = 0 and

n
Xif+ (3 Ch)f=a, i=1,..n,
k=1
where {C£} are structure constants of g with respect to the basis X1, ..., X,

and ¢; (¢=1,...,n) are some constants.

Proof. By Theorem 2.3, we know that 5 is multiplicative if and only if 7, = 0
and

{wiy ey 0n} = d(M@1y 0y 0n)) + D (=1 ity (W1, ooy TRy orry ) ) e
k=1

=df + £ i(Xe)dwy = df + f( Y cl;kwa)
k=1

a,k=1
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is a left invariant 1-form. Since < X;, {w1,...,wn} > is constant for any X;,
we have

< Xiy {wr, mon} >= Xif + (Z Ch)f=ai i=1,ym.
k=1

3. EXAMPLES

In this section, as an application of Theorem 2.4, we calculate Nambu-Lie
group structures (i.e., multiplicative Nambu-Poisson tensors) of order 3 on
3-dimensional simply connected Lie groups. Since such tensors are of top
degree, we have only to see whether they are multiplicative or not.

Throughout this section, we denote by G the simply connected Lie groups
corresponding to Lie algebras g. Linearly independent three left invariant
vector fields are denoted by X,Y,Z. Then n € ['(A3T'G) is written as n =
fXAYAZ f e C®G). It is well-known that there are 9 types of 3-
dimensional Lie algebras. If g is not a simple Lie algebra, its corresponding
simply connected Lie group has global coordinates z,y, z. Hence a function
f can be considered to be defined on R3(z,y, z).

Type 1. [g, 8] = 0. Namely g is an abelian Lie algebra. The corresponding
Lie group G is given by

e 0 0
Gz{ 0 e 0
0 0 ¢

Using these coordinates z,y,z, left invariant vector fields are written as
X = 53;, Y = 'a%’ Z = -53;. By Theorem 2.4, a function f(z,y,z) must
satisfy £(0,0,0) = 0, and %ﬁ = a, %5 = b, %{: = ¢, where a, b, c are some
constants. Hence f = ax + by + ¢z, and '

z,y,zeR}.

= (az +b +cz)—(l/\£—/\—a—

= Y 0r 0Oy 0z

gives a Nambu-Lie group structure on G.
By the similar method, we can get the results for other types.
Type 2. dim[g, g] = 1. There are 2 cases as follows.

Case (1). g = Heisenberg Lie algebra. g is characterized by the condition
[g, 8] C 1-dimensional center. The corresponding Lie group G is given by

1 2 =z
G:{ 01 y
0 0 1

A Nambu-Lie group structure on G is given by
a 0 0
5:; A -a—:'y- A 5;.

m,y,zER}.

n=(az + by)
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Case (2). A Lie algebra g endowed with a property [g,g] ¢ the center of
¢. The corresponding Lie group G is given by ~

¥tz 0 geY
G = { 0 e 0
0 0 ev

n = {az + c(e” — 1)}-(% A

w,y,zER}.

9,8
0y 0z
gives a Nambu-Lie group structure on G.
Type 3. dim[g, g] = 2. g@® = 0. There are 4 cases as follows.

Case (1). Left invariant vector fields X,Y, Z satisfy [X,Y] =0, [X,Z]=
—-X, [Y,Z] = —X - Y. The corresponding Lie group G is given by

e~? ze"? ge~%2
G= { 0 e % ye 22 || z,y,z2€ R}.
0 0 e 2%
We know that 9 5 5
_ 2z el - =~
n=ele 1)3:::/\63//\02

gives a Nambu-Lie group structure on G.

Case(2). Left invariant vector fields X,Y, Z satisfy [(X,Y] =0, [X,Z] =
—X, [Y,Z] = -Y. The corresponding Lie group G is given by

e 0 ge ¥
G= { 0 e ye 2
0 0 e 2%

x,y,zeR}.

We have

Case (3). Let g be a Lie algebra endowed with the following bracket
relations. [X,Y] =0, [X,Z] = —-X, [Y,Z] = —q¢Y, (¢ # 0,1). The corre-
sponding Lie group G is given by

e"92 0 ge—(a+l)z
G = { 0 e % ye(etl):
. 0 0 e—(q+1)z

0 0 0
n= c(e(q-*'l)z - 1)'(;9—:5 A g-y- A 3

x,y,zeR}.

We have

Case (4). Let g be a Lie algebra endowed with the following bracket
relations. [X,Y] =0, [X,Z] = =Y, [V,Z] = X ~ qY, (¢* < 4). The
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corresponding Lie group G has rather complicated expression. Put k =
q/2, p=v1—-k%=1+/4—¢%/2. Then G is given by
1

Ee‘kz(——k sin(pz) + pcos(pz)) —%e_kz sin(pz) e~k
G={ Lok sin(pz) Le=F(pcos(pz) + hsin(pz)) ye ¥ %“ZGR}
0 0 e-—2kz
Then

n_{awun%A%A%,q¢o
= 8 A 8 A0 —
C.’Bg; A 3y A 339 q= 0
gives a Nambu-Lie group structure on G.

Type 4. dim[g, g] = 3. It is well-known that such Lie algebras are simple,
and there are 2 cases. The corresponding simply connected Lie groups are

G1 = SU(2) and G = SL(2,R), where SL(2,R)/Z = SL(2,R). Since Gy is’
compact, and G, is semisimple, we have n = 0 by Theorem 2.2.
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