NAMBU-LIE GROUPS ENDOWED WITH MULTIPLICATIVE TENSORS OF TOP ORDER

NOBUTADA NAKANISHI

Department of Mathematics, Gifu Keizai University, 5-50 Kitagata, Ogaki-city, Gifu, 503-8550, Japan E-mail address: nakanisi@gifu-keizai.ac.jp

ABSTRACT. A multiplicative (Nambu-Poisson) tensor of top order on a Lie group is characterized. As an application, we determine multiplicative structures on 3-dimensional Lie groups.

1. Introduction

A Nambu-Lie group is defined as a natural generalization of a Poisson Lie group. In fact, if η is a multiplicative k-vector field on a Lie group G which satisfies fundamental identity, then a pair (G, η) is called a Nambu-Lie group. If k = 2, then (G, η) is especially called a Poisson Lie group [1],[3]. A Nambu-Lie group was studied by J.Grabowski and G.Marmo [2] and I.Vaisman [5]. In [2], they proved that there are no Nambu-Lie structures of order $k \geq 3$ on simple Lie groups. I.Vaisman [5] gave an alternative definition of multiplicativity by defining the k-bracket of 1-forms on G. In this paper, we characterize the properties of multiplicative Nambu-Poisson tensors of top order (i.e., n = k). Note that the word "Nambu-Poisson" is void in this case. As an application of these characterizations, we determine multiplicative (Nambu-Lie) structures defined on 3-dimensional Lie groups.

2. NAMBU-LIE GROUPS

Let G be an n-dimensional connected Lie group with the Lie algebra \mathfrak{g} . We denote by $\Gamma(\Lambda^k TG)$ the set of k-vector fields (or contravariant tensor fields of order k) on G. Let \mathcal{F} be the set of C^{∞} -functions on G. Each element η of $\Gamma(\Lambda^k TG)$ defines a k-bracket of functions $f_i \in \mathcal{F}$ as follows.

$${f_1,...,f_k} = \eta(df_1,...,df_k).$$

Since this k-bracket satisfies Leibniz rule, we can define a vector field $X_{f_1,\ldots,f_{k-1}}$ by

$$X_{f_1,...,f_{k-1}}(g) = \{f_1,...,f_{k-1},g\}, g \in \mathcal{F}.$$

Definition 2.1. An element η of $\Gamma(\Lambda^k TG)$, $k \geq 3$, is called a Nambu-Poisson tensor of order k if η satisfies

$$\mathcal{L}_{X_{f_1,\dots,f_{k-1}}}\eta=0$$

for any $f_1, ..., f_{k-1} \in \mathcal{F}$.

Note that if k = n, every η is a Nambu-Poisson tensor [4].

Definition 2.2. An element η of $\Gamma(\Lambda^k TG)$ is said to be multiplicative if η satisfies

$$\eta_{gh} = L_{g*}\eta_h + R_{h*}\eta_g$$

for any $g, h \in G$, where L_g and R_g denote, respectively, the left and the right translations. Let G be a Lie group endowed with a multiplicative Nambu-Poisson tensor η . Then a pair (G, η) is called a Nambu-Lie group.

For an element $\Lambda \in \Lambda^k \mathfrak{g}$, we define vector fields $\bar{\Lambda}$ and $\tilde{\Lambda}$ by

$$\bar{\Lambda}_g = L_{g_*}\Lambda, \quad \tilde{\Lambda}_g = R_{g_*}\Lambda, \text{ for all } g \in G.$$

Then it is clear that $\bar{\Lambda}$ (resp. $\tilde{\Lambda}$) is a left (resp. right) invariant vector field on G. Let us recall the following, which was proved by J-H Lu [3].

Proposition 2.1. Let G be a compact (or semisimple) Lie group. Then for every multiplicative k-vector field $\eta \in \Gamma(\Lambda^k TG)$, there exists an element $\Lambda \in \Lambda^k \mathfrak{g}$ such that

$$\eta_g = \bar{\Lambda}_g - \tilde{\Lambda}_g$$

for all $g \in G$.

Using the above proposition, we show the following theorem.

Theorem 2.2. Let (G, η) be an n-dimensional compact or semisimple Nambu-Lie group, and let η be of top order. Then $\eta = 0$.

Proof. By Proposition 2.1, there exists an element Λ of $\Lambda^n \mathfrak{g}$ such that $\eta = \bar{\Lambda} - \tilde{\Lambda}$. For all $g, h \in G$,

$$Ad_g\bar{\Lambda}_h=R_{g^{-1}_\bullet}L_{g_\bullet}\bar{\Lambda}_h=R_{g^{-1}_\bullet}\bar{\Lambda}_{gh}.$$

On the other hand, since G is a unimodular Lie group, we have

$$Ad_g\bar{\Lambda}_h = (\det Ad_g)\bar{\Lambda}_{ghg^{-1}} = \tilde{\Lambda}_{ghg^{-1}}.$$

Hence we obtain that $R_{g_{\bullet}^{-1}}\bar{\Lambda}_{gh}=\bar{\Lambda}_{ghg^{-1}}$. This means that a left invariant vector field $\bar{\Lambda}$ is also a right invariant vector field. *i.e.*, $R_{h_{\bullet}}\bar{\Lambda}_{g}=\bar{\Lambda}_{gh}$. This equation induces

$$R_{h_*}\bar{\Lambda}_g = R_{h_*}L_{g_*}\Lambda = L_{g_*}R_{h_*}\Lambda$$
$$= \bar{\Lambda}_{gh} = L_{g_*}L_{h_*}\Lambda.$$

Thus we have $R_{h_{\bullet}}\Lambda = L_{h_{\bullet}}\Lambda$ for all $h \in G$, and this means $\eta = \bar{\Lambda} - \tilde{\Lambda} = 0$.

Let η be a Nambu-Poisson tensor of order k on G. Then η defines a bundle mapping

$$\sharp_{\eta}: \underbrace{T^*G \times \cdots \times T^*G}_{k-1 \text{ times}} \longrightarrow TG$$

given by

$$<\beta, \sharp_{\eta}(\alpha_1, ..., \alpha_{k-1})>=\eta(\alpha_1, ..., \alpha_{k-1}, \beta),$$

where all the arguments are covectors.

For such a tensor η , I. Vaisman [5] defined a k-bracket of 1-forms by

$$\{\alpha_1,...,\alpha_k\} = d(\eta(\alpha_1,...,\alpha_k)) + \sum_{j=1}^k (-1)^{k+j} i(\sharp_{\eta}(\alpha_1,...,\widehat{\alpha_j},...,\alpha_k)) d\alpha_j,$$

where α_j (j = 1, ..., k) are 1-forms on G.

The following theorem proved by I.Vaisman [5] gives one of the characterizations of Nambu-Lie groups.

Theorem 2.3. If G is a connected Lie group endowed with a Nambu-Poisson tensor field η which vanishes at the unit e of G, then (G, η) is a Nambu-Lie group if and only if the k-bracket of any k left (right) invariant 1-forms of G is a left (right) invariant 1-form.

Using Theorem 2.3, we characterize a multiplicative tensor η of top order. Let \mathfrak{g} be a Lie algebra of G with a basis $X_1,...,X_n$. We also denote the extended left invariant vector fields induced from X_i by the same letter. Since η is of top order, η has an expression $\eta = fX_1 \wedge \cdots \wedge X_n$ for some $f \in \mathcal{F}$. Let ω_i (i = 1,...,n) be left invariant 1-forms dual to X_i . Under these notations we prove

Theorem 2.4. Let $\eta = fX_1 \wedge \cdots \wedge X_n$, $f \in \mathcal{F}$ be a tensor of top order on G. (Recall that such a tensor is always a Nambu-Poisson tensor.) Then η is multiplicative if and only if f(e) = 0 and

$$X_i f + \left(\sum_{k=1}^n C_{ik}^k\right) f = q_i, \ i = 1, ..., n,$$

where $\{C_{ij}^k\}$ are structure constants of \mathfrak{g} with respect to the basis $X_1, ..., X_n$, and q_i (i = 1, ..., n) are some constants.

Proof. By Theorem 2.3, we know that η is multiplicative if and only if $\eta_e=0$ and

$$\{\omega_1, ..., \omega_n\} = d(\eta(\omega_1, ..., \omega_n)) + \sum_{k=1}^n (-1)^{n+k} i(\sharp_{\eta}(\omega_1, ..., \widehat{\omega_k}, ..., \omega_n)) d\omega_k$$
$$= df + f \sum_{k=1}^n i(X_k) d\omega_k = df + f \left(\sum_{\alpha, k=1}^n C_{\alpha k}^k \omega_\alpha\right)$$

is a left invariant 1-form. Since $\langle X_i, \{\omega_1, ..., \omega_n\} \rangle$ is constant for any X_i , we have

$$\langle X_i, \{\omega_1, ..., \omega_n\} \rangle = X_i f + \left(\sum_{k=1}^n C_{ik}^k\right) f = q_i, \quad i = 1, ..., n.$$

3. EXAMPLES

In this section, as an application of Theorem 2.4, we calculate Nambu-Lie group structures (i.e., multiplicative Nambu-Poisson tensors) of order 3 on 3-dimensional simply connected Lie groups. Since such tensors are of top degree, we have only to see whether they are multiplicative or not.

Throughout this section, we denote by G the simply connected Lie groups corresponding to Lie algebras \mathfrak{g} . Linearly independent three left invariant vector fields are denoted by X,Y,Z. Then $\eta\in\Gamma(\Lambda^3TG)$ is written as $\eta=fX\wedge Y\wedge Z,\ f\in C^\infty(G)$. It is well-known that there are 9 types of 3-dimensional Lie algebras. If \mathfrak{g} is not a simple Lie algebra, its corresponding simply connected Lie group has global coordinates x,y,z. Hence a function f can be considered to be defined on $\mathbb{R}^3(x,y,z)$.

Type 1. $[\mathfrak{g},\mathfrak{g}]=0$. Namely \mathfrak{g} is an abelian Lie algebra. The corresponding Lie group G is given by

$$G = \left\{ \begin{pmatrix} e^x & 0 & 0 \\ 0 & e^y & 0 \\ 0 & 0 & e^z \end{pmatrix} \middle| \ x, y, z \in \mathbb{R} \right\}.$$

Using these coordinates x,y,z, left invariant vector fields are written as $X=\frac{\partial}{\partial x},\ Y=\frac{\partial}{\partial y},\ Z=\frac{\partial}{\partial z}.$ By Theorem 2.4, a function f(x,y,z) must satisfy f(0,0,0)=0, and $\frac{\partial f}{\partial x}=a,\ \frac{\partial f}{\partial y}=b,\ \frac{\partial f}{\partial z}=c,$ where a,b,c are some constants. Hence f=ax+by+cz, and

$$\eta = (ax + by + cz) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}$$

gives a Nambu-Lie group structure on G.

By the similar method, we can get the results for other types.

Type 2. $\dim[\mathfrak{g},\mathfrak{g}]=1$. There are 2 cases as follows.

Case (1). $\mathfrak{g}=$ Heisenberg Lie algebra. \mathfrak{g} is characterized by the condition $[\mathfrak{g},\mathfrak{g}]\subset 1$ -dimensional center. The corresponding Lie group G is given by

$$G = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\}.$$

A Nambu-Lie group structure on G is given by

$$\eta = (ax + by)\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}.$$

Case (2). A Lie algebra \mathfrak{g} endowed with a property $[\mathfrak{g},\mathfrak{g}] \not\subset$ the center of \mathfrak{g} . The corresponding Lie group G is given by

$$G = \left\{ \begin{pmatrix} e^{y+z} & 0 & xe^y \\ 0 & e^y & 0 \\ 0 & 0 & e^y \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\}.$$

$$\eta = \{ax + c(e^z - 1)\}\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}$$

gives a Nambu-Lie group structure on G.

Type 3. $\dim[\mathfrak{g},\mathfrak{g}]=2$. $\mathfrak{g}^{(2)}=0$. There are 4 cases as follows.

Case (1). Left invariant vector fields X, Y, Z satisfy [X, Y] = 0, [X, Z] = -X, [Y, Z] = -X - Y. The corresponding Lie group G is given by

$$G = \left\{ \begin{pmatrix} e^{-z} & ze^{-z} & xe^{-2z} \\ 0 & e^{-z} & ye^{-2z} \\ 0 & 0 & e^{-2z} \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\}.$$

We know that

$$\eta = c(e^{2x} - 1)\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}$$

gives a Nambu-Lie group structure on G.

Case(2). Left invariant vector fields X, Y, Z satisfy [X, Y] = 0, [X, Z] = -X, [Y, Z] = -Y. The corresponding Lie group G is given by

$$G = \left\{ \begin{pmatrix} e^{-z} & 0 & xe^{-2z} \\ 0 & e^{-z} & ye^{-2z} \\ 0 & 0 & e^{-2z} \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\}.$$

We have

$$\eta = c(e^{2x} - 1)\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}.$$

Case (3). Let $\mathfrak g$ be a Lie algebra endowed with the following bracket relations. $[X,Y]=0,\ [X,Z]=-X,\ [Y,Z]=-qY,\ (q\neq 0,1).$ The corresponding Lie group G is given by

$$G = \left\{ egin{pmatrix} e^{-qz} & 0 & xe^{-(q+1)z} \ 0 & e^{-z} & ye^{-(q+1)z} \ 0 & 0 & e^{-(q+1)z} \end{pmatrix} \middle| \ x,y,z \in \mathbb{R}
ight\}.$$

We have

$$\eta = c(e^{(q+1)x} - 1)\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}.$$

Case (4). Let \mathfrak{g} be a Lie algebra endowed with the following bracket relations. $[X,Y]=0, [X,Z]=-Y, [Y,Z]=X-qY, (q^2<4)$. The

corresponding Lie group G has rather complicated expression. Put k=q/2, $p=\sqrt{1-k^2}=\sqrt{4-q^2}/2$. Then G is given by

$$G = \left\{ \begin{pmatrix} \frac{1}{p}e^{-kz}(-k\sin(pz) + p\cos(pz)) & -\frac{1}{p}e^{-kz}\sin(pz) & xe^{-2kz} \\ \frac{1}{p}e^{-kz}\sin(pz) & \frac{1}{p}e^{-kz}(p\cos(pz) + k\sin(pz)) & ye^{-2kz} \\ 0 & 0 & e^{-2kz} \end{pmatrix} \middle| \begin{array}{c} x, y, z \in \mathbb{R} \\ \end{array} \right\}.$$

Then

$$\eta = \begin{cases} \frac{c}{q} (e^{qx} - 1) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}, & q \neq 0 \\ cx \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}, & q = 0 \end{cases}$$

gives a Nambu-Lie group structure on G.

Type 4. $\dim[\mathfrak{g},\mathfrak{g}]=3$. It is well-known that such Lie algebras are simple, and there are 2 cases. The corresponding simply connected Lie groups are $G_1=SU(2)$ and $G_2=\widetilde{SL(2,\mathbb{R})}$, where $\widetilde{SL(2,\mathbb{R})}/\mathbb{Z}\cong SL(2,\mathbb{R})$. Since G_1 is compact, and G_2 is semisimple, we have $\eta=0$ by Theorem 2.2.

REFERENCES

- [1] V. G. Drinfel'd, Quantum groups, Proc, ICM, Berkeley 1(1986)789-820.
- [2] J. Grabowski and G. Marmo, On Filippov algebroids and multiplicative Nambu-Poisson structures, *Diff. Geom. Appl.* 12(2000)35-50.
- [3] J-H. Lu, Multiplicative and affine Poisson structures on Lie groups, Thesis, Univ. of California, Berkeley, 1990.
- [4] N. Nakanishi, On Nambu-Poisson manifolds, Rev. Math. Phys. 10(1998)499-510.
- [5] I. Vaisman, Nambu-Lie groups, J. Lie Theory 10(2000)181-194.