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Grobner bases on projective bimodules
and the Hochschild cohomology *

Part I. Rewriting on vector spaces

YuJ1 KOBAYASHI

Department of Information Science, Toho University
Funabashi 274-8510, Japan

In this paper we consider an algebra F based on a suitable well-ordered semigroup
over a commutative ring K. We develop the theory of Grobner bases on the algebra
F as well as Grobner bases on projective F-(bi)modules. We generalize the meth-
ods developed in [3] and [4] to construct projective bimodule resolutions of algebras
and (bi)modules. It gives an effective way to compute the Hochschild cohomology of
algebras and modules.

To discuss the three types of Grébner bases above in a uniform way, we consider
rewriting systems on free K-modules generated by a well-ordered set in Section 1. The
results are applied to algebras based on well-ordered reflexive semigroups in Section
2, projective left modules in Section 3 and projective bimodules in Section 4.

1 Rewriting on K-spaces

Let K be a commutative ring with 1 and let (X, >) be a well ordered set. Let
K . X be the free K-module generated by X. An element f of K- X is uniquely
written as a finite sum ‘

f=) ki (2.1)

with k; € K\ {0} and z; € X, where &; are different. For this f, if z; > z; for all
J # 1, kiz; is the leading term of f and is denoted by 1t(f). Set rt(f) = f—1t(f).
We extend the order > on X to a partial order > on K - X denoted by the
same symbol > as follows: First, f > 0 for any f # 0. Let f and g be nonzero
elements in K - X with the leading terms k- z and £ -y with k,£ € K and
z,y € X respectively. If z > y then f > g. If x = y, then f > g if and only if
rt(f) > rt(g). Since > is a well-order on X, > is well-founded on K - X, that
is, there is no infinite sequence

frmfor oo fum e

inK-X.

*This is a preliminary report and the details will appear elsewhere.




Let R be a set of mappings r : X — 2(8'X) such that r(z) is a finite subset
of K- X and z > t for any z € X and ¢t € r(z). The couple (X,R) is called
a set with rewriting structure and an element r € R is called a rewriting rule
on K-X. Letr € R,z € X and t € r(z). We say that r is applied to z to
get ¢t and we write as z — t € A(r). More generally, for an element f of K - X
written as (2.1) with z; = z, we have an element

g=k1-t+2kiwi=f—~k1(m—t)
i#l

of K - X, which is called the element obtained from f by the apphcatlon z—t.
In this situation we write

f—rg
A rewriting system on K - X is a subset of R. For f,ge€ K- X if f —, g for
some r € R, we write as ‘

f-rg
The relation — g is called a one-step reduction by R. Let —% and +% denote

the reflexive transitive closure and the reflexive symmetric transitive closure of
— R, respectively.

Proposition 1.1. Let R be a rewriting system on K-X. For any f, g9, f', ¢’ € X
and k,£€ K, if f &% f' and g &% ¢, then

kf +£g <% kf +49'.

Set
LO(R)={fEK-X|fH‘§O}.

Corollary 1.2. Ly(R) is a K-submodule of K - X and <} is equal to the
congruence modulo Lo(R).

Since Lo(R) is a K-submodule of K - X, we have the quotient module

M(R) =K - X/Lo(R). Let ng : K - X — M(R) be the canonical surjection.

An element x € X is R-irreducible, if r(z) = 0 for every r € R, and the set
of R-irreducible elements in X is denoted by Irr(R). An element f of K - X is
R-irreducible, if no rule from R is applicable to f, that is, every element z; in
(2.1) is irreducible. An element which is not R-irreducible is R-reducible.

If f >R g, then we can see from the compatibility of > that f > g. Hence
the relation —g is noetherian, that is, there is no infinite sequence

fi=rfo=R"—=Rfa>R"".
Therefore we have

Proposition 1.3. The one-step reduction — g is noetherian, and for any f €
K - X there is an R-irreducible element g € K - X such that f =% g.
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For f,g € K- X if thereis h € K - X such that f -} h and g =% h, we say
f 4r g holds. A system R is confluent, if f g g holds for any f,g,h € K- X
such that h =% f and h =% g. A noetherian and confluent system is called
complete (see [1]), but a confluent system is complete in this paper because any
system we consider is noetherian.

‘We state the fundamental results on complete systems.

Theorem 1.4. Let R be a complete rewriting system on K - X. Then, for any
f € K- X, there is a unique R-irreducible element f € K- X such that f —7% f.
For f,g € K - X we have

f=6 ©flrg ©fehg © f=g (mod Ly(R)).

In particular, . .
f=0& for0 & feLy(R).

The element f in Theorem 1.4 is called the normal form of f.

Corollary 1.5. If R is a complete rewriting system, then the surjection nx

is bijective on Irr(R), and the K-module M(R) = K - X /Lo(R) is a free K-

module with base nr(Irr(X)). Any element of M(R) is uniquely represented by
the normal form in K - X with respect to R.

Lemma 1.6. For a rewriting system R on K-X,f—g—%0implies flrg
forany f,ge K- X.

Proposition 1.7. For a rewriting system R on K - X, the following conditions
are equivalent.

(1) R is complete

(2) For anyr,v’ € R, z € X, t € r(z) and t’ er'(z), t lr t' holds.

(3) f =% 0 forall f € Lo(R) :

(4) Any nonzero element in Lo(R) is R-reducible.

For a rewriting rule r, we set
Dom(r) = {z € X | r(z) # 0}.

A rule r € R is contained in <% if z &% t for any z — t € A(r). For r,7’ € R,
r! scoops r, if for any z — t € A(r) thereis z — t' € A(r') such that t = ¢/. A
system R is reduced if

(i) For r,7’ € R, Dom(r) C Dom(r’) implies r = ', and

(ii) No rule r € R is scooped by any rule r’ € R contained in -}.

Two systems R and R’ on K - X are equivalent if they induce the same
quotient, that is, <+ =%

Pr0pos1t10n 1.8. For any complete rewriting system R there zs a reduced com-
plete system R’ equivalent to R. If R is finite, so is R'.
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2 Rewriting on K-algebras

Let S = B U {0} be a semigroup with zero element 0. S is called reflezive if for
all a € B there are elements e, f € B such that a = eaf. Of course, if S has the
identity element, it is reflexive. S is well-ordered, if B has a well-order > which
is compatible in the following sense:

(i) a > b,ca #0,eb#0 = ca > cb, and

(ii) @ > b,ac #0,bc #0 = ac > be,
for any a,b,¢,d € B.

Example 2.1. Let T’ be a quiver. Let B be the set of all paths in I'. Then,
S = B U {0} is a reflexive semigroup with zero with the following operation
o: For two paths p and g, p o ¢ is the path obtained by concatenating them at
the end point v of p, if v coincides with the initial vertex of ¢, and pog =0
otherwise. We can define a compatible well-order > on B as follows for example.
Let p,g € B. If |p| > |g|, then p > ¢, where |p| and |g| are the lengths of p
and g respectively. If |p| = |q|, then p > ¢ if and only if p is greater than ¢
in lexicographic order with respect to a linear order given beforehand on the
vertices and the edges of T.

Example 2.2. Let n > 2and let N = {1 = a > a® = --- = a""1,a™ = 0}.
Then, N is a well-ordered reflexive semigroup with 0.

In the rest of this section S = B U {0} is a well-ordered reflexive semigroup
with 0. Let E(B) denote the set of idempotents in B. The following lemmas
are given in [2].

Lemma 2.3. For any a € B there is a unique pair (e,e’) € E(B) x E(B) such
that a = eae’.

Lemma 2.4. Fore,e € E(BI), if e # ¢, then ee’ = 0.

For a unique (e,e’) € E(B) x E(B) in Lemma 2.3, e and e’ are called the
source and the terminal of a and denoted by o(a) and 7(a), respectively. For
e,e’ € E(B), set

eB={a€ Bl|o(a)=¢}=e-B\ {0},
Be ={a€ B|1(a) =€’} =B-¢'\ {0}

and
eBe ={a € B|o(a)=¢,7(a) =€} =e-B-¢€\ {0}

The semigroup S is normally ordered if a = b and cad = 0 imply cbd = 0 for
any e, e’ € E(B), a,b€ ¢Ber, c€ Be d € o+B. S is coherent if for any a,b € B,
T(a) = o(b) implies ab # 0. If S is coherent, it is normal. The semigroup S in
Example 2.1 is coherent, but the semigroup N in Example 2.2 is not coherent
though it is normal.
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Let K be a commutative ring and F' = K - B be the free K-module generated
by B. Then, F has an algebra structure with the product induced from the
semigroup operation of S. An element f of F' is uniquely written as a finite sum

= i kiz; ‘ (2.1)
=1

with k; € K \ {0} and z; are different elements in B. The element f is uniform
if o(2;) = o(z;) and 7(z;) = 7(z;) for all 4, j, and for this uniform f we define
the source o(f) = o(x;) and the terminal 7(f) = 7(z;). Two uniform elements
f and g are parallel and written as f||g, if o(f) = o(g) and 7(f) = 7(g).

For e,e’ € E(B), eF, Fe' and eFe’ are the subalgebras of F' spanned by B,
B and B over K, respectively. We have

F = @ eF = @ Fe' = @ eFe'.

ecE(B) e'€E(B) e,e’€E(B)

The well-order on B is extended to a well-founded partial order > on F, and
we can- define the leading term It(f) of f € F and the rest rt(f) = f — lt(f) as
we did in Section 1.

A rewriting rule on F is a pair r = (u,v) with 4 € B and v € F such that
u > v and u||v. If £ = zyuz2 in B, the rule r is applied to € £* to get z1vzs.
The rule r is written v — v. Since > is compatible, we have ¢ > zjvzs. Let
R be the set of all rewriting rules on F, then the couple (B, R) 1s a set with
rewriting structure in the sense of Section 1.

Aruler=u—visnormalif z-u-y = 0 implies z-v-y = 0 for any z,y € B.
If S is normally ordered, any rule is normal. A rewriting system R on F is a
(not necessarily finite) set of rewriting rules on F. R is normal if every rule in
R is normal. If f has a nonzero term k- ¢ and z = zuzy with z,,z2 € B and
u — v € R, then

f —=r kzi(v—u)zg + f.

Set
I(R)={f € F | f &30}
and
Gr={u—v|u—veR} |
By Corollary 1.2, Ip(R) is a K-submodule of F, but, in general, Io(R) is not
an ideal of F' and +} is not the congruence modulo an ideal. To fill this gap,

define
Z(R) = {zvy|z,y € B,u = v € R,zuy = 0}.

Let I(R) denote the (two-sided) ideal generated by Gg.

Proposition 2.5. Let R be a rewriting system on F. If Z(R) C Iy(R), then
In(R) = I(R), and <}, coincides with the congruence modulo I(R).
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When R is normal, Z(R) = {0}, and the condition in Proposition 2.5 is
satisfied. When Iy(R) = I(R), we have the quotient algebra

A=F/ % =F/I(R).
The set Irr(R) of R-irreducible elements in B is given by
Irr(R) = B\ B - Left(R) - B,

where Left(R) = {u { u — v € R}, and f € F is irreducible if and only if f is a
K-linear combination of irreducible elements.

Let I be an ideal of F' and let A = F/I be the quotient algebra. For
e,e’ € E(B), eA, Ae’ and eAe’ are the set of elements of A coming from elements
of eF, Fe' and eFe/, and are isomorphic to eF/(I NeF), Fe'/(I N Fe') and
eFe'/(INeFe') as K-modules, respectively. We have

A= @ eA = @ Ae = @ eAe’.

e€E(B) e’'€ E(B) e,e’€E(B)

A set G of monic uniform elements of F is called a Gréobner basis, if the
system
Rg = {lt(g9) = —rt(9) | g € G}
associated with G is a complete rewriting system on F' and Z(Rg) C Io(Rg).
If G is a Grobner basis, then Iy(Rg) is equal to the ideal I(G) of F' generated
by G by Proposition 2.5, so G is called a Grébner basis of the ideal I(G).

Proposition 2.6. A set of monic uniform elements of an ideal I of F is a
Grobner basis of I if and only if f —%_, 0 for all f € I.

We confuse a Grobner basis G with the associated rewriting system Rg.
We write g = u — v € G, implicitly assuming that u = lt(g) and v = —rt(g),
and we just write —¢ for the relation —»g,. We say f € F is G-irreducible
if it is Rg-irreducible, and Left(G) and Irr(G) denote Left(Rg) and Irr(Rg)
" respectively.

In this situation Theorem 1.4 becomes

Theorem 2.7. Let G be a Grobner basis of an ideal I of F. Let A = F/I be
the quotient algebra of F by I and let p : F — A be the canonical surjection.
Then, p is injective on Irr(G) and p(Irr(G)) forms a free K-base of A = F/I.
Any f has the unigue normal form f, and we have

f=g o flge forg e f-g-50 & o(f)=n9)
for any f,g € F. In particular, we have
I={feF|f=0}={feF|f%0}

It is easy to see that a complete rewriting system R is reduced in the sense
in Section 1, if for any r = u — v € R, u and v are both (R \ {r}) irreducible.
By Proposition 1.7 we see that for a complete rewriting system R on F there is
a reduced complete system R’ equivalent to R. Moreover, this R’ is unique.
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3 Rewriting on projective left modules

In this section, G is a reduced Grobner basis of an ideal I of the algebra F = KB
based on a well-ordered reflexive semigroup B U {0} over a commutative ring
K, A = F/I is the quotient algebra and p: F — A is the natural surjection.

A left edged set is a (possibly infinite) set X of elements ¢ such that the
source o(§) € F(B) is assigned. For a nonempty left edged set X we set

F.-X=)Fo(®).
feX
and
A-X =P Ao(¢).
éex

Clearly, F - X is a left F-module and A - X is a left A-module. Moreover,

Proposition 3.1. F - X is a projective F-module and A - X is a projective
A-module. ‘

‘We call F- F and A - X the projective left F-module and the projective left
A-module generated by X, respectively. F - X is the free K-module generated
by the set B - X = g x Bo(¢) (disjoint union) with left F-action. An element
T € € By(g) with £ € X and z € B, is written as x[€]. Then, an element f

of F'- X is expressed as
F=) kimifi] o (3.1)

with k; € K \ {0}, z; € By(¢,) and &; € X. If (z;,&;) are different for 4 in (3.1),
this expression is unique.

Let > be a well-order on the set B X. We assume that it is left compatible,
that is, for any f = z[¢] € B,(¢) and f' = 2'[¢] € B,y and for any a,b € B,

f>=f,af #0and af’ # 0 imply af > af’,and a > bin B, af # 0 and bf # 0
imply af > bf. The order > on B - X can be extended to a partial order >
on F - X, and we can define the leading term 1t(f) of f € F - X and the rest
it(f) = f — It(f) as before. An element f written as (3.1) is (left) uniform if
o(z;) = o(z;) = e for all 4, j. For this uniform f we define o(f) =e.

A rewriting rule on F - X is a pair (8,t) with s € B- X andt € F-X
such that s > t and s — ¢ is uniform. Let s = u[¢] with £ € X and u € B. If
f € F.X has a term k- z[¢] such that z = 2'u,z’ € B, then we have a reduction
f = f—k-z'(u[€] —t) by an application of the rule r = s — ¢. Let T is the
set of all rewriting rules on F - X. '

Aruler =u — v € R on F is applied also to an element f of F- X, if f
has a term k - z[¢] such that z = z’uz” with 2/,2” € B. In this situation r is
applied to f to get g = f — kx'(u —v)z"[£] and we write f —, g. Thus, we have
a couple (B - X, R U T), which is a set of rewriting structure we discuss in this
section.

Recall that a reduced Grobner basis G on F is given and fixed. We write
f 2¢ g if f = g for some r € Rg. The relation -G on F - X is complete,



because —¢ is complete on F. So, any f € F' - X has the unique normal form
f with respect to —g. An element f expressed as (3.1) is G-irreducible, if and
only if every z; is G-irreducible. Thus, we have

f=3 kil

Let T be a rewriting system on F - X, that is, T is a subset of 7. Let
—71,¢ = =7 U =g be the union of one-step reductions by T and G. Because
f —71,c g implies f > g by the compatibility of >, =7, is a noetherian relation
on F-X . Let =7, 5 and &7, o be the reflexive transitive closure and the reflexive
symmetric transitive closure of —1 g, respectively. Let

H=Hr={s-t|s—teT},
and let L*(T,G) be the submodule of F - X generated-by H UG- B - X. Set
L§T,G)={feF -X|f e5s0}

and -
ZYT) = {at |z € B,s =+ t € T,zs = 0}.

A rule (s,t) € T is normal if - s = 0 implies z - ¢t = 0, and T is normal if
every rule in it is normal. If Z¢(T) c Lo(T,QG), in particular, if T is normal,
then L§(T, G) coincides with L#(T, G) and the relation <}, ;; is equal to the left

F-module congruence on F' - X modulo LY(T, G);
foreg © f=g (mod LXT,G)).

The quotient M = M(T,G) = F- X/ <p o= F-X /LY(T, G) is a left F-module,
and actually, it is a left A-module in a natural way. Let nap : F- X — M be
the natural surjection.

Considering the case T = ), the module M (0, G) is isomorphic to A- X, and
we have a natural surjection px = na.x : F- X = A-X; px(z[€]) = p(x)[¢]
for ¢ € By and £ € X. For the quotient M = M(T,G) above, we have
a surjection 7y, : A- X — M such that 7y = s 0 px. Hence, Ker(7y) =

px (LY(T, @)), which is denoted by L% (H), is the A-submodule of A-X generated

by px (H) and we have
M= A-X/LI4(H).

If the system T U Rg is complete (resp. reduced) on F - X in the sense
of Section 2, we say T is complete (resp. reduced) modulo G. An element
f € F- X is (T, G)-irreducible, if no rule from T'U Rg is applied to f, otherwise
f is (T, G)-reducible. '

Let L be a left F-submodule of F- X. A set H of monic (i.e. the coefficient
of the leading term is 1) and left uniform elements in F' - X is a Gréobner basis
(modulo G) of L, if the associated system

Ty = {It(f) = —1t(f) | f € H}
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is a complete rewriting system on F - X modulo G and L = Ly(T, G). 1t is also
called a Grébner basis for the A-submodule px (L) of A-X. We write — ¢ and
—h.¢ for =1, and =7, 5 respectively. A (—g,G)-(ir)reducible element is
called (H, G)- (1r)reduc1ble Similar to Theorem 2.7, we have

Theorem 3.2. Let H be a Grébner basis on F - X of a left F-submodule L of
F-X. Then, for any f € F - X, there is a unique (H,G)-irreducible element
(the normal form of f) f € F- X such that f -4 f, and for any f,ge F- X,

f=£7®f“*’},cg¢>f“9—>§*,(;0®f§9(mOdL)'

If H is a Grobner basis on F - X of L, then the quotient F - X/L is a left
- A-module, which is said to be defined by a pair (G, H) of Grébner bases.

As easily seen, a complete rewriting system T is reduced modulo G if for
any s >t €T, s and t are (H \ {8 — t}, G)-irreducible. As before, if a left F-
submodule of F' - X has a Grobner basis H modulo G, it has a unique reduced
Grébner basis H modulo G on F - X,

4 Rewriting on projective bimodules

In this section we treat bimodules over the algebra A. An A-bimodule is consid-
ered to be a left module over the enveloping algebra A®* = A®yx A°, where A° is
the opposite algebra of A, and we may apply the results in Section 3. However,
if A is a quotient of an algebra F' based on a well-ordered reflexive semigroup
defined by a Grobner basis G, then A® is a quotient of an algebra based a larger
semigroup and a Grébner basis for A must be much larger than G. So, here we
treat A-bimodules as they are.

An edged set is a set X of an element ¢ such that the source 0(5) € E(B)
and the terminal 7(§) € E(B) of ¢ are assigned. For a nonempty edged set X
we consider the F-bimodule

F-X-F=DFo&) xr(&)F

fex

and the A-bimodule
A-X-A=P Ac(€) x T(O)A

£EX
The bimodule F' - X - F is the free K-module generated by
B-X-B= U eex Bo(g) X r(¢yB (disjoint union)

with two-sided F-action. An element (z,y) in By(¢) X ,(¢)B with z € Bg(¢) and
Y € r(¢)B is written as z[{]y. In particular, if z = o(£) (resp. y = 7(¢)), this
element is simply written [}y (resp. z[£]). An element f of F- X - F is uniquely

written as
F=Y_ kzil&lys, | (4.1)
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with k; € K \ {0}, : € Bog;), ¥i € r(¢;)B and § € X, where (x:,&:,y:) are
different. :

Proposition 4.1. F-X-F is a projective F-bimodule and A-X - A is a projective
A-bimodule.

Let > be a well-order on the set B - X - B. We assume that it is compatible,
that is, for any f = z[€]y € By(¢) X r(e)B, f' = #'[§'ly’ € Bo(gr) X (¢7)B and for
any a,b€ B, f > f', afb# 0 and af’b # 0 imply afb > af'b,and a > a’ in B,
af # 0 and bf # 0 imply af > a’f, and b > b’ in B, fb # 0 and fV/ # 0 imply
fb > fb'. This order > can be extended to a partial order > on F'- X - F and
the leading term It(f) of f € F - X - F and the rest rt(f) are defined.

The element f in (5.1) is monic if the coefficient k; of the leading term
kiz;[¢:)y: is 1. If moreover z; = o(&;) (resp. yi = 7(&:)), [ is called left (resp.
' right) very monic. f is uniform if o(z;) = o(z;) = e and 7(y;) = 7(y;) = €' for
all 4,j. For this uniform f we define o(f) =e and 7(f) =¢€'.

A rewriting rule on F- X - F is a pair (s,t) withs € B-X-Bandt€ F-X-F
such that s = t and s —t is uniform. If f € F. X - F has a term k-z[€]y, z = 2'u,
y = vy’ and s = u[¢]v, then f —, f — k- z'(u[¢]v — )y by an application of
the rule r = s — t. Let 7 be the set of rewriting rules on F - X - F. A rule
r =u — v € Ron F is applied also to an element f € F-X-F with a term k-z[¢]y
such that z or y are G-reducible, that is, £ = z'uz” or y = y’uy”. In the former
case, f = f —k-z'(u—v)z"[¢]y, and in the latter, f —, f—k-z[€]y'(u—v)y".
Again, (B- X - B,RUT) forms a set with rewriting structure. A normal rule
and a normal rewriting system are defined in a similar way to Section 3.

G is continued to be a reduced Grébner basis of an ideal I of F, and A = F/I
is the quotient algebra. The relation —g on F - X - F is complete, and any
f € F. X -F has the unique normal form f with respect to —¢. An element f

written as (5.1) is G-irreducible, if and only if every z; and y; are G-irreducible,

and we have N
F=Y"ki&il&ld

An element f of the projective A-bimodule A - X - A generated by X is written
as a finite sum f = Y z;[&]y: with £ € X, z; € Ay(¢) and y; € Ar(¢). We have
a morphism px : F- X+ F — A- X - A of K-modules defined by

- px(z[€ly) = p(z)[€]p(y)

for £ € Bo(g), y € r(¢)B and £ € X. In fact, px is a morphism of F-bimodules.

Let T be a subset of 7, which we call a rewriting systemon F - X - F. Let
—r1,6=—1 U =g, then =7 ¢ is a noetherian relation on F-X-F. Let =1 and
<7 ¢ be the reflexive transitive closure and the reflexive symmetric transitive
closure of —7 g, respectively. If the relation —r,¢ is complete on F - X - F', we
say T is complete modulo G. An element f € F - X - F is (T, G)-irreducible, if
no rule from T U Rg is applied to f, otherwise, f is (T, G)-reducible.

Let

Lo(T,G) = {f € F-X -F | f % O}
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and
Z(T) = {:cty | r,y€e B,s > tc T,a:sy=0}.

A set H of monic uniform elements of F - X - F' is a Grébner basis (modulo
G) of a F-subbimodule L of F'- X - F, if the associated system Ty = {lt( f)—
—rt(f) I f € H} is a complete rewriting system on F - X - F' modulo G and
L = Lo(T,G). It is also called a Grdbner basis for the A-subbimodule px (L)
‘of A- X - A. We write —p,¢ and =} ¢ for 91,,6 and =7, o respectively. A
(=g, G)-(ir)reducible element is called (H, G)-(ir)reducible.

Theorem 4.2. If H is a Grobner basis of L on F - X - F modulo G, then for
any f € F-X - F, there is a unique (H,G)- irreducible element (the normal
formof f) f€ F-X - F such that f =} g - For any f,g € F- X - F we have

f~=§@fﬁ?r,(;9@f—g—>*g,c0@fsg(modL).

If H is a Grobner basis of L modulo G, the quotient M = M(H,G) =
(F-X-F)/Lis an A-bimodule and is called the A-bimodule defined by a pair
(G, H) of Grébner bases. Let n: F- X - F — M be the natural surjection. Since
M is an A-bimodule, we have a surjection7: A- X - A - M with n =7 o px.
Hence, Ker(7) = px (L), which is denoted by La(H), is the A-subbimodule of
A-X - A generated by px(H), and we have M = (A- X - A)/L4(H).

A rewriting system T on F - X - F (and H = Hr) is left (resp. right) very
monic if the left-hand side of each rule of T is left (resp. right) very monic,
that is, every rule of T' is of the form [¢]z — ¢ (resp. z[¢] — t) with £ € X,
z € .,-(5)2 and t € F. T is unifoliate if every rule in T is left or right very
monic. T (and H) is reduced modulo G if for any s - ¢t € T, s and ¢ are
(H \ {s — t}, G)-irreducible. We have

Proposition 4.3. If an F-subimodule L has a Gribner basis H on F'- X - F
modulo G, it has a unique reduced Griobner basis H' on F - X - F modulo G.
If H is left very monic (resp. unifoliate, finite), H' is left very monic (resp.
unifoliate, finite).
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