goooboooobgon
1504 0 2006 O 150-159

An Intermediate Solution for Transferable Utility Games*

BRI AR SE  3AEME (Kensaku Kikuta)
School of Business Administration,
University of Hyogo

Abstract. We try to define the Shapley value alternatively by using averages
of excesses. We make a quantity (h-excess) after we combine usual excesses
with these averages of excesses. Then we define an intermediate solution
by using h-excesses. This solution exists for every game and consists of one
point.
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1. Introduction and Preliminaries

In a society, suppose that a project team must decide a distribution of profits among the
members of the team. Affected by social, economic and ethical situations, on one occasion
it may adopt one criterion for distribution, and on another occasion, it may adopt another.
In this society, on average, with some probability, each criterion is adopted. Translating this
situation into statements in cooperative games (transferable utility games, or TU games), on
one occasion, one solution is adopted and on another occasion, another solution is adopted.

In this note, we consider two solutions in TU games, that is, the Shapley value and the
(pre-)nucleolus. We imagine a society where with some probability (say, 1 - ), the Shapley
value is adopted as a distribution of profits and with the remaining probability (a), the
prenucleolus is adopted. A way for defining an intermediate solution is simply to make a
convex combination of the Shapley value with the prenucleolus. However, we do define in
another way.

In TU games, the excess of each coalition to some payoff vector is defined as an expression
of dissatisfaction of this coalition to that vector. The (pre-)nucleolus is defined by using
excesses for all coalitions. In this note, first we try to define the Shapley value alternatively
by using averages of excesses (Theorem 1). We make a quantity (h-excess) after we combine
usual excesses with these averages of excesses. Then we define an intermediate solution by
using h-excesses. This solution exists for every game and consists of one point (Theorem 2).

The purpose of this note is to give a bridge between two single-valued solutions, that is,
the Shapley value and the (pre-)nucleolus. In this note, we call this solution h—prenucleolus,
for the sake of convenience, because the definition of it is similar to that of the nucleolus.
Alternatively we could call this an extended Shapley value. It is a problem to define this
solution alternatively by using incremental contributions v(S) — v(S\ {¢}),S € N,i € §. Also
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we may define another intermediate solution (say, an extended Shapley value) by combining
the Shapley value with the (pre-)nucleolus, via incremental contributions.

A (cooperative) game (with side payments) is a pair (N,v), where N = {1,...,n} is a
finite set of players and v is a real-valued function defined on 2V with v(@) = 0, called the
characteristic-function of the game. An element of 2V is called a coalition. We let £° =
2¥\{0, N}. For any set Z, |z| denotes the cardinality of Z. For a coalition S, RS is the |S]-
dimensional product space R!S! with coordinates indexed by players in $. The i-th component
of z € RS is denoted by z;. For § CT C N and z € RT, z|S means the projection of z to RS.
For z € RN, we let 2(S) = ¥,z (if §#0), and z(@) = 0. A pre-imputation for a game v is a
vector z € RV that satisfies

z(N) = v(N). | (1)

~ X*(v) is the set of all pre-imputations. A function ¢ which associates a set ¢(v) € X*(v) to
every game v is called a solution. When ¢(v) consists of one element, we call the unique
element itself the solution (point). The Shapley value is a solution consisting of one element
o(v) defined by
ei(®) = Y 1(S){v(8) —v(S\ {ih},
S:ieS

where
(n = 1SD!(S) = 1)!

n! )

Y (S) =

For a game v, a pre-imputation =z € X*(v), and S € £° the quantity e(S,z) = e(S,z,v) =
v(S)—=z(S) is called the excess of S at z, which is considered as an expression of dissatisfaction
of S toz. Let X C RV, and let H = (h;);ep be a finite sequence of real-valued functions defined
on X. Let d =|D|. For z € X, let 6(z) = (6*(z),...,0%z)) be the vector in R* whose components
are the numbers (h;(z)):icp arranged in non-increasing order, that is,

8:X - R0 z) = maz minhi(z),Vt=1,...,d.
TCD,|T|=t i€T :

Let >, denote the lexicographical ordering of R?; that is, z >, y, Where z,y € RY, if either
z =y or there is 1 <t < d such that 2/ =4’ for 1 <j <t and z* > yt.

Definition. The nucleolus of H with respect to X is defined by

N(H, X) = {z € X|0(y) ez 0(z),Vy € X}.

Definition. Let (N,v) be a game, let X € RV, and let
H= (C(S,‘,V))saN-

N(H, X) is the nucleolus of (N,v) with respect to X and denoted by N(N,v,X). When X =
I(N,v), it is called the nucleolus of (N,v) and denoted by N(N,v). When X = X*(N,v), it is
called the prenucleolus of (V,v) and denoted by PN(N,v).

2. The Shapley Value

In this section we express the Shapley value as a solution of a linear programming problem.
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Theorem 1. Let v be a game. The Shapley value is the unique solution of the following
linear programming problem:

Minimize K
s.t.

(P) Y. ma(Se(Sz) <K, VieN,
$:eS,SEN

2(N) = v(N).
The minimum value of this problem (P) is

. Eil v(N) &
K* = n(SH(S) — —=
S;vn-m" Tn

5
n—s
Lemma 1A. A pre-imputation z € X*(v) is the Shapley value if and only if

Y m(S){e(S,2) - e(S\ {i},2)} =0,Vi € N. 2)

S:ies

Proof: If z € X*(v) is the Shapley value, by definition we have

zi= 3 WE{u(S) —v(S\ {ih},Vie N. (3)

S:ie8

For every T C N, v(T) = e(T,z) + z(T). From this and (3), we have

o= Y M(S){e(S, ) — e(S\ {i}, ) +x:}, Vi€ N. @
S:HES ‘
Noting 3 g.csm(S) =1,Vi € N, we have the relation (2).

Conversely if z € X*(v) satisfies (2), it satisfies (4), which implies z is the Shapley value.
O

Lemma 1B. For a game v, let z € X*(v). z is the Shapley value, that is, z = p(v) if and only
if
Y. ma®eSz)= Y mo1(S)e(S,2),Vi,j € N,i# . (5)
S:eS,j¢Ss S:j€8,i¢S -

Proof: Let z € X*(v) be the Shapley value. By Lemma 1A,

Y mS)e(S,z) = > m(S)e(S\ {i},z). (6)

S:ieS S:ieS

The left hand side of (6) becomes

Y m@®eSa)= T m®eSa)+ Y 1m(S)e(S,q). )

8:es : S:1€S,j¢S S:,j€S



The right hand side of (6) becomes
Y m(S)eS\{i}z) = > m(Su{i)e(S,z)

§:ie8 S:igS (8)
= Y wmBu{iheS,a)+ D, m(Su{ibe(S, ).
S:j€8,i¢S S:j¢8.i¢S
From (6) - (8),
Yo mSeSa)+ Y mO)eS )= Y wmSU{DeS,2)+ D>, Wm(SU{iPe(S, ). (9)
S:ieS,j¢S S:i,jeS S:jESigS S:5¢5,i¢S

Replacing i with j and j with i, we have

Y. wm®eSa)+ Y me(S) = Y mSU{De(S,2)+ Y, m(SU{i}e(S,2). (10)

5:j€8,igs S:i,j€S 5:4€8,j¢S $:i¢S.j¢s

Noting 7.(Su {i}) =1 (SU {j}), from (9) and (10),
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Yo mSeS2) - Y. wmBeSz)= Y wmSUu{iDeSz) - Y wm(SU{iDeS 2). |

5:4€8,j¢8 S:j€8,igS S:j€8,igS S:€S,j¢S
(11)
Noting 7. (S) + 7. (S U {i}) = va-1(S), we have the relation (5).

Conversely if the relation (5) holds, then the relation (11) holds, which implies

D mS)eS,z) = > m(S)e(S, 2)

S:es S:j€8
= Y wmSU{iNe(S,z) = Y Wm(SU{iNe(S, )
S¢S S:j¢Ss
=) e\ {iLz) - Y m(Se(S\ {i},2).
S:eS S:jeS
Hence
> W) {e(Sz) ~e(S\ {i},2)} = > m(S)e(S,z) — e(S\ {7} 2)}.
S:ieS . S:j€8
That is,

> WSS —v(S\{i}) —zi} = Y mH{(S) - v(S\ {i}) —z;}-

S:es S:jeS
This implies
‘pi(v) —I= ‘Pj(v) —I; = o, Vi, 5,1 '-Ié Je
Adding for all i € N, we have
no=Y {¢;(v) -2} = v(N) - v(N) =0.
iEN

Hence a = 0, which means z = p(v). O

Lemma 1C. For a game v,let z € X*(v). z is the Shapley value, that is, z = (v) if and only
if
> wme1®eSiz) = > Wm-1(8)e(S,2), Y, 4,1 # §. (12)

$:ES,S#EN S:jES,S#EN
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Proof: The relation (12) is obtained by adding

Z Tn-1(5)e(S, z)
1,J€S5, 54N
to both sides of the relation (5). O
Proof of the theorem:
Y WmalS)a(S) =z Ta(S)+D 2 Y Ya-i(S)
5:4€ES,S£EN $:ES,SEN J#i 84,jES,SEN
3 ‘n—l n— n-1 n—2
_E;s—; (S )’Yn—l(s)"";xj JZZ ( 2)'}’1,,_1(5)
n—1 ' n—-1 s—1
:xign_ +$(N\{l})§-(—_—1)(’;l—_—s—)
iy s—1
—z,{; Z (n=1)(n- }+v(N g (n-—l)(n—s)
-1

_z,+v(N)f\;2-——-——”1 T =3)

Hence

DD DRSO RTINS S RPN NE I T SFRTIY) It s S
iEN S:ES,SAN iEN S:HES,SEN ieN = (n=1)(n-3s)
= S - hnd
s;eZNI [Yn-1(S)v(S) — v(N) — nv(N) ; e 1)(n——s) . 13)

3 n|S| = s
—.s%] |Sl7n(s)v(s)_v(N)s=zln_s
=nK"*.

From this and the inequality constraint of the problem (P),

nK2) 3 t-i(S)e(S,z) = nK*".

i€EN S:e€8,S#N

Hence K > K*. If z is the Shapley value, by Lemma 1C, we can let
L= Y ez

5:i€8,S#N
for all i € N. From this and (13) we have nL =nK *, or L = K*, which means that the Shapley
value is an optimal solution for the problem (P). Next suppose y € X*(v) is an optimal
solution. Then

Y -i(SelS,y) S K*VieN.
SHES,SEN

Adding these together, we have nK* < nK* by (13). Hence

Y m-i(S)e(S,y) = K", Vie N.
‘8:€8,S¥N



From this and Lemma 1C, y is the Shapley value. [J

Example 1. When n = 3, the constraints in (P) become

v(1) + v(12) + v(13) — v(N)
2 3

v(2) +v(12) + v(23) — v(N)
2 k]

v(3) 4+ v(23) + v(13) — v(N)
2 )

7+ K >

T2+ K >

3+ K 2>

z1 + 22 + 23 = v(N).
Adding the first three inequalities and using the efficiency, we get

v(1) + v(2) + v(3) — 5v(N) + v(12) + v(13) + v(23) _

K>K*'= 5 3

When K = K*, we see z; > ¢;(v) for all i ¢ N. From this and the last equality constraint, we
have z; = ¢;(v) for an i€ N.

Remark. (Sobolev 1975, Peleg/Sudholter 2003,pp. 218—224) For a game v and = € X*(v),
define a game (N \ {n},w) by

(N \ {n}), if T=N\{n};
w(T) = 252400(T) + S {v(T U {n}) —za}, HT#N\{n},T#6; (14)
0, ifT=0.

For a game v and z € X*(v), let (N \ {n},w) be a game defined by (14) If z; = ps(w) for i # n,
then z; = p;(v) for all i € N, that is, z is the Shapley value.

Example 2. Let n =4. For a game v and z € X*(v), define a game ({1,2,3},w) by
w(123) = z(123),
w(is) = 30) + 2{054) — 2}, Yi, j € N\ {4 # 5,
w(i) = %v(i) + -;—{U(M) — z),Vi £ A
If 2; = pi(w) for i # 4, then z; = p;(v) for all i.

3. An Intermediate Solution
In this section we define a solution and examines its properties. For 0< a <1, z € RN and
S € N, define
h(S,z) = ae(S,2) + (1 - o) maz{ E Yn-1(T)e(T, z)}.
THET#N

We consider a variation of the prenucleolus for (N,v) where the excess is replaced by h(e,s).
We call this variation the A—prenucleolus.
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Interpretation. h(S,z) is a weighted sum of the usual excess and the maximum of averages
of excesses for all members in the coalition. If & = 1, the solution is the prenucleolus. If
a = 0, the solution is the Shapley value. The variation is an intermediate solution between
the prenucleolus and the Shapley value.

Theorem 2. For a fixed 0 < o < 1, the h—prenucleolus is nonempty and consists of one
point. If @ =0 it is the Shapley value, while if a = 1, it is the prenucleolus.

Lemma 2A. For every T C N, h(T,z) is continuous and convex with respect to z € X*(v).
Proof: Let

fi@= 3 m-i(DeT, ).

THET#N
Foro<r<i, ,
e(T,rz+ (1—-r)y) = re(T,z) + (1 — r)e(T, y).

So, we have f;(rz + (1 —r)y) = rfi(z) + (1 — r)fi(y). From this and definition,
rh(T,z) + (1 - r)h(T, y) =are(T,z) + a(l — r)e(T,y)
+(1- rmas{ (@)} + (1 - Q)rmaz{i(y)}

2ee(Tyrz+(1-ry)+(1—-a) maa:{rfi(:z:) + (-7 fi(y)}
=ae(Tyrz+(1-r)y)+ (1 -0) ma:v{f,(m +(1-r)y)}
=h(T,rz + (1 - r)y).

Hence h(T,z) is convex. It is continuous by definition. O

The next two lemmas are from [Peleg/Sudholter 2003, esp. pp.108-112).

Lemma 2B. If X # 0, compact and if 4;,i € D are continuous, then N(H, X) s 0.

Lemma 2C. Assume that X is convex and all k;,i € D are convex. Then NV(H, X) is convex.
Furthermore, if z,y € N(H, X), then h;(z) = hi(y) for all i € D.

Proof of the theorem: For z* = (¥ .. *M)y let ¢ = maz{h(T,z*) : T # 0}. There
exists K such that for every i € N, h({i},z) > ¢ if z; < K. So we need to consider points
inY ={yeX*(v):y% > K,Vi e N}. Hence by Lemma 2B, the h—pre-nucleolus is nonempty.
Furthermore, Y is convex, and so by Lemma 2C and Lemma 2A, we have that Y is convex
and, if z and y are in the h—pre-nucleolus, then r(S,z) = h(S,y) for all § € N. In particular,

h({i},x) = h({i},y) for all i € N. This implies z; =y; forallie N. [
Remark. For a game v, i € N and z € X*(v), by an elementary calculation, we see

Y M-i(De(T,z) = b(v) - =,

T:HeT#N

where

(v) = Z -1 (T)v(T v(N)Z

THETEN = ( -3)
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Foro<a<1l,ze€ RN and i e S C N, define

h(S,i,z,v) = ae(S, z) + (1 — a)(&(v) — ).
Definition. Let v be a game. For z ¢ X*(v) and 3, let

D(B,z,v) = {(5,i) : i € S, h(S,i,z,v) > B}.

A vector z € X*(v) has h—property I with respect to v if for all 8 such that D(8,z,v) # 0: If
y € RV satisfies y(V) = 0 and ay(8)+ (1 ~a)y; > 0 for all (S,) € D(B, z,v), then ay(S)+(1-a)y; =0
for all (8,1) € D(B,z,v).

Theorem 3. For a game v and z € X*(v), z is the h—prenucleolus if and only if = has
h—property 1.

Proof: Necessity. Assume z is the h—prenucleolus. Let g satisfy D(8,z,v) # @ and let y € RN
satisfy y(N) = 0 and ay(S) + (1 — @)y; > 0 for all (S,i) € D(B,z,v). Define 2. = z + ey for € > 0.
Then z. € X*(v). Choose ¢* > 0 such that, for all (8,i) € D(8,z,v) and all T € 2V \ D(8, z,v),

h(S,3, 2ex,v) > h(T, 1, 2ex, V). (15)
For every (S,i) € D(B, z,v),

R(S,%, 2ex,v) = (S, zer) + (1 — ) (€ (v) — 2¢v)
= o(e(S, z) — €'y(5)) + (1 — ) (li(v) — = — €°py)
= h(S,i,z,v) — e*(ay(S) + (1 — a)y;)
< h(S,i,z,v).

(16)

Assume, on the contrary, that there is (S,i) € D(8, z,v) such that ey(S) + (1 — @)y; > 0. By (15)
and (16), we obtain 6(z) >, 6(z.-), which is a contradiction.

Sufficiency. Let z € X*(v) have h—property I and let z be the h—prenucleolus. Denote
{h(S,i,z,v): (S,9)} = {B1,---, 5},

where 8 > --- > B,. Define y = 2 —lz. Then y(N) = 0. Also, since 6(z) >, 6(2), if (S,4) €
D(B1,z,v), then h(S,i,z,v) = B > h(S,i,z,v). Hence

h(S.i,z,v) - h(S,i,2,v) = ay(S) + (1 — a)y; > 0.

Therefore, by assumption, ay(S) + (1 — a)y; = 0 for all (S,i) € D(61,z,v). Assume now that
ay(S) + (1 — a)y; = 0 for all (S,i) € D(B:,z,v) for some 1 <t < p. Then, since 8(z) >z 6(2),

h'(S) iyx5'u) = ,Bt+1 2 h(S,’L, 2, U),V(S; Z) € D(ﬁt-{-l» z, ’U) \ D(,ma’v)‘

Hence ay(S)+(1—a)y; > 0 for all (S,i) € D(Bi41,z,v). Again, by assumption, ay(S)+(1~-a)y; =0
for all (S,i) € D(Bi41,z,v). We conclude that ay(S) + (1 — a)y; = 0 for all (S,i). Hence, y =0 and
=2z [

Example 3. Let n=3, and

(1) = v(2) = v(3) = 0,v(12) = 3,v(13) = 5,v(23) = 7,v(N) = 10.
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The prenucleolus for this game is

3 13 21
&7
The Shapley value for this game is
(71018
3’3’3
~r1+a-1, if §={1};
~3, if $=1{2};
hS,z)={ “W-a+-L if §={3}

a(3 — 71 — z2) + (1 — @) maz{-1 — 1, -z2}, if §={1,2};
a5 — o1 — z3) + (1 - @) maz{-~=z2,1 — 33}, if §={1,3};
a7 — z2 — z3) + (1 — a)maz{-z9,1 — 23}, if §={1,2}.

Both of the Shapley value and the prenucleolus satisfy
z32>z2+1, and z; > 21 + 1,z € X*(v). (17)
We will find the solution for the region in X*(v) which is defined by (‘17). First we see
h({2},3) = —z2 < —21 — 1 < h({1},2),

h({3}z) =—z3+1—-a < —z9 - 1+1-a < h({2},2) < h({1},2),
h({1,2},2) = h({1},2) + o(3 - 22),
h({1,3},2) = h({1},2) + (5 — z3),
h({2,3},z) = (7 — z3) — 2 £ a7 — z3) + h({1}, 2).

Case 1: 29 < 3.

This implies z, < 2 and ; + z3 > 7 and s0 z3 > 5. Hence h({1,2},z) > h({1},z) > h({1,3},z). So
we need to compare h({1,2},z) with h({2,3},z).

h({1,2},z) > h({2,3},z) <= (1 - @)z2 + az3 — 21 > 3a + 1.

The line A({1,2},z) > h({2,3},z) in X*(v) has common points

58 17

1 o
('3'; §s ?) a'nd (1 + _—73’5 + _)

1+« l1+a
with lines z; = z; + 1 and z, = 3 respectively. Since h({1,2},z) is a linear function and

5 8 17

MﬂﬂhgqrgD>MﬂﬂLﬂ+;%;&5+ *

m))s

we conclude that the point (1+ 5,3,5+ %) minimizes h({1,3}, ) in the segment connecting
these two points. Also in the segment connecting

8

1+a)’

' 1
(2,3,5) and (1+m,3,5+

we see that (1.+ 123,3,5+ ;) minimizes h({2,3},).

Case 2: x5 > 3,23 >5 and z3 > zo + 1.



We have h({1,2},z) < h({1},z) and h({1,3},z) < h({1},z). So we need to compare h({1},z) with
h({2,3}, ). '
h({1},z) > h({2,3},2) < 22 + az3 — 71 > 6 + 1.
The line z; + az3 — z; = 6 + 1 has common points
‘ 1 «a «a a

(1+ m,3,5+ m) and (2 - 5,3-!- 5,5)
with lines z, = 3 and z3 = 5 respectively. In the segment defined by these two points, the
latter minimizes h({1},e).
Case 3: z3 <5 and , 3 > zo + 1.
These imply z, > 3. We have h({1,3},z) with r({1},z) and h({1},z) > h({1,2},z). So we need
to compare h({1,3},z) with h({2,3},z).

h({1,3},z) > h({2,3},2) &= z2 2 1+ + 1.
The line z; = z; + o+ 1 has common points

d_210, e18 o nd@-23+25

3 3’3 33 3 2’ 2’
with lines x3 = z, +1 and z3 = 5 respectively. In the segment defined by these two points, the
latter minimizes h({1,3},e) if @ > } and the former minimizes if & < . When « = 4, all points
in the segment minimize h({1,3},9).

Summarizing the three cases, we see that the chosen point is

i G-%R+3BE), Hash

b:(2—%,3+%,5), ifa>3.
As a — 0, the point a converges to the Shapley value, while, as @ — 1, the point b converges
to (2,Z,5), which is not the prenucleolus. When o = 1, all points in the segment connecting

(8,%,5) and (£,3,4) are candidates, and the midpoint of this segment minimizes the third-
largest element of h(e,e)’s. This midpoint is the prenucleolus.

4. Concluding Remarks.

We defined a solution for TU games and showed that the proposed solution is nonempty
and consists of one point. It is a bridge between the Shapley value and the prenucleolus. It
remains to characterize it axiomatically.
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