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Weak high order stochastic Runge-Kutta methods
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Abstract

A new explicit stochastic Runge-Kutta (SRK) scheme of weak order 2 is proposed for non-
commutative Stratonovich-type stochastic differential equations (SDEs), which is derivative-free,
which attains order 4 for ordinary differential equations and which uses 2m — 1 random variables for
one step in the m-dimensional Wiener process case. It is compared with other derivative-free and
weak second order schemes in a numerical experiment. In addition, the weak third order conditions
are given as a preliminary to seeking higher weak order SRK schemes for multi-dimensional SDEs
with one-dimensional Wiener process.

1 Introduction

As the importance of stochastic differential equations (SDEs) increases, numerical methods for SDEs
get studied more by many researchers. Especially, many numerical methods in the weak sense have
been recently proposed for multi-dimensional SDEs with multiplicative noise in the multi-dimensional
Wiener process case, whereas counterparts in the strong sense have been enormously developed in the
last 10 years [3].

Among such weak methods, we are concerned with derivative-free methods. Let us introduce results
concerning such methods, which attain weak order 2 at least. Kloeden and Platen [6, 10] have proposed
derivative-free schemes by replacing necessary derivatives with finite differences. Tocino and Vigo-
Aguiar [16] have also proposed one of them as an example in their Runge-Kutta family. RoSler [11, 12]
has proposed other derivative-free schemes by assuming a commutativity condition [1, 14], which means

0 Wew) =9’ We;v)  (WER, 1<jl<m, j#])

in (1). Here, gg-]) or g,m denotes the derivative of g; or g;, respectively. On the other hand, Talay and
Tubaro [15] have proposed the extrapolation method for SDEs. This method also makes it possible to
obtain an approximate solution without using any derivative.

Komori [7] has also proposed a new stochastic Runge-Kutta (SRK) family and developed Butcher’s
rooted tree analysis [4, 5] (which is for ordinary differential equations (ODEs)) to derive weak order
conditions for the new family transparently. Then, utilizing the analysis, he [8] has proposed a new
explicit SRK scheme of weak order 2, which is derivative-free and which attains order 4 for ODEs,
under the commutativity condition.

In {7, 11, 13, 16], it has been shown that each SRK family includes the scheme proposed by Platen,
its counterpart or its derivations when the commutativity condition is not satisfied. It, however, still
remains to find a solution of the order conditions of an SRK family in order to obtain another new
scheme. Therefore, we aim at solving the order conditions of our SRK family and deriving a new
explicit SRK scheme of weak order 2 for non-commutative SDEs. The new scheme will become a piece
of evidence that our SRK family is sufficiently general to provide other new schemes.

The present paper is organized as follows. In the next section we will give a brief introduction of
our SRK family as well as the expression of its order conditions with rooted trees. In Section 3 we will
find a solution of them after giving simplifying assumptions, and give a numerical experiment in the
non-commutative case. In Section 4 we will give the summary. The weak third order conditions will be
shown in the appendix. '

2 SRK family

In this section we introduce an SRK family for SDEs with a multi-dimensional Wiener process. To
derive weak order conditions for the family, we utilize rooted tree analysis.



2.1 Weak order

First of all, we introduce the definition of weak (global) order. Let 7, be an equidistant grid point

nh (n = 0,1,..., M) with step size h def Tena/M < 1 (M is a natural number) and y,, a discrete
approximation to the solution y(7,) of the d-dimensional stochastic integral equation

y(t) = 2o + /0 ou(s)ds + 3 /0 0,u(s) 0 dWj(s), 0<t< Tona, 1)

Jj=1

where W;(s) is a scalar Wiener process and o means the Stratonovich formulation. The initial approxi-
mate random variable ¥y, is supposed to have the same probability law with all moments finite as that of
xo. In addition, let C5(R®, R) be the totality of L times continuously differentiable R-valued functions
on R4, all of whose partial derivatives of order less than or equal to L have polynomial growth. Then,
the definition of weak order is given as follows [2].

Definition 2.1 Suppose that o discrete approzimation y,, is given by a scheme. Then, we say that the
scheme is of weak (global) order q if for each G € C,z,(q“) (R%, R), C > 0 (independent of h) and § > 0
exist such that

|E[G(y(7am)] — E[G(ym))l < Ch?, ke (0,0).

In order to obtain an approximate solution y,, , ; of the solution y(¢»+1) when y,, is given, we consider
the SRK family given by

8 m
yn+1 = yn + Z Z Cs]nvjb)ngast)’
1=1 ja,fp=0
o) o s m o o
Yi:ay]b - ,’-75301.75) g]b (yn + Z Z asi:;Jb’Jc’]d)Y«(izc’Jd ) (2)
=1 jc,ja=0
(1) s m (. . . . ) (. . )
+g]b (yn)z Z ,'s,izggjbﬂc)]d Y‘.icy.’d
=1 jo,ja=0

(1 < ia < 8, 0 < ja,jb < m), where the constants c{’**7*), ag‘;;j"’j"j") and f';'g:b’j"’j“'j") are defined by

the Butcher tableau and where each ﬁﬁf“ %) is a random variable independent of y,, and satisfies
=(Ja,db) 2k _ K% (Jo = 0),
b [(” ) ] = { Kahk (3 #0)
for constants K;, Kz and k = 1,2,.... Note that this formulation includes stochastic Rosenbrock-
Wanner methods [9)].
2.2 Weak order conditions by multi-colored rooted trees

In this subsection we express weak order conditions by multi-colored rooted trees (MRTs). As prelimi-
naries, we introduce several notations and definitions.
First, we introduce the multi-colored rooted tree (MRT) and a function on its set.

Definition 2.2 (MRT) An MRT with a root @ (colored with a label j from 0 to m) is a tree recursively
defined in the following manner:

1) 74) is the primitive tree having only a vertez @
2) Ift1,...,tx are MRTs, then [ty,...,tx]?) is also an MRT with the root @
The totality of MRTs is denoted by T.
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Figure 1: Examples of MRT's

Definition 2.3 (Elementary weight ®(t) on T') An elementary weight of t € T is given recursively
as follows: '

8 8 k
B(r®; ) = / odW;(s1),  ®(t;s) = / T2t 51) 0 dWy(s1) for ¢ = [ta, .., 5],

Tn n§=1

where odWy(s1) def ds;.

For ease of notation we will denote ®(t; 7,+1) by ©(2). ’

Next, we introduce several matrices related to the formula parameters of (2), the multi-colored rooted
tree with labels (MRTL) and a function on its set. Let us adopt nominal symbols jjlaide) | oldadbideda)

Mot1 o Xsy1iy,
— Ciadordoni ierda) def  (jeri .
a‘nd 75.2{.’7:;.7-'.7(1) and deﬁne a(o’o’]""d) :'e. cf.‘:ch,d) for 1 2 1 and

s+1,4
[ ,(0,5,0,5") (m,5,0,5") (0,5,0,5") (m,4,0,5')
o Teeo0qy R e N R
0.5 m. i N 0,5.m.4" L
ag I.J,ma ) agv;m,m,a ) L. a£+71 ,"{‘;J ) L. agr:,lzl,lma )
AU def : : : : :
(0,4,0,5) (m.4,0,5") (0,5,0,5") (m.4.0.5")
Qi T O, ’ trr Ogils ERR < PH
(0,4,m,3") (m,j,m,ji") (0,5,m,§") (m.j,m,j')
Qs ' e g, trr Ot ’ Tt Olgyds ’
L 0 e 0 cee 0 ‘e 0 §
. s +f
for aﬁi‘;;”"” )| where 0 stands for an m + 1-dimensional column vector of 0’s. Similarly, define the

matrix D) for ﬁzgfzﬁj'jc"j’) and set AU»7") % AG.3) 4 F6Gn1), In addition, define the (m +1)(s+1) X
(m + 1)(s + 1) diagonal matrix DY) by

©def v (O Py (0.4 y
DW= dl&g(n{o”),...,nﬁm ’>,...,nﬁi{),...,ngrlj)).

In the sequel, let us use a label X @) e {AW), AU} for labels AY), AU) as well as a matrix XU7) €
{AGD), 4G},

Definition 2.4 (MRTL) An MRTL denoted by ty ) is one attached by labels according to the following
rules:

1) The label of the root is X1,

2) The label of the other vertices is decided by the number of branches and the color of the parent
vertezx:

o the label is A\ if the parent vertex has a single branch and it is colored with j,
o the label is AY) if the parent verter has more than one branch and it is colored with j.

The totality of MRTL’s whose roots are labeled with X, is denoted by Ty(;. For example, some
MRTL’s are listed in Fig. 2.
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Figure 2: Examples of trees in T4

Definition 2.5 (Elementary numerical weight ®(t) on Tx;) An elementary numerical weight of
t € Tx ) is given recursively as follows:

k
&(r{)) =1Dx6,  &(t) = [ 8t:)DYOXG) for t = [ta,..., 1) 50,

i=1

(0 <€ 3,7 £ m), where T)(g(,)) and [tl,...,tk]gg) ezpress MRTL’s whose roots are labeled by X9, In

addition, 1 stands for an (m + 1)(s + 1)-dimensional row. vector of 1’s, and Hle &(t;) means the
elementwise product of row vectors ®(t;).

Now, we can give weak order conditions. Let p(t) be the number of vertices of t € T and r(t) the
number of vertices of ¢ with the color 0, and suppose that any component of g; belongs to Cf,(‘”‘l) (R, R)
(0 < j < m) and the regularity of the time discrete approximation is satisfied [6, 7]. In addition, if the
following are satisfied, the time discrete approximation ¥,, converges to the y(7a) with weak (global)

order g as h — 0:
[H B(m+1)s+alts ] = [H ®(; ):I 3)

j=1

for any t1,...,tr € Ty (1 < L < 2q) satisfying Ej=1(p(£j) +7(£;)) < 2q and

E [§(m+l)a+l(t)] =0 (4)

for any t € Ty satisfying p(f) + r(£) = 2 + 1 [7], where ®(;m+1)s+1(t;) denotes the ((m + 1)s + 1)st
element of ®(t;) and £; denotes an MRT obtained by removing all labels from ¢;.

Remark 2.1 [7] The ezpectations of both sides of (8) or of the left-hand side of (4) can be obtained
directly from diagrams for MRTs or MRTL's. This will be much helpful to seek the order conditions
when the order becomes higher. As a result, we should note that even weak third order conditions in the
appendiz can be obtain transparently.

3 Solution of order conditions

In the previous section we have shown the order conditions with MRTL’s. In this section we will find a
solution of them for weak order 2 in the non-commutative case.

3.1 Simplifying assumption

As seen in (3) and (4), the conditions for weak order are generally given in the form of expectations.
By replacing expectations with monomials for trees which have only a few vertlces, however, we can

reduce the number of the order conditions to solve. In relation to 'r(’()o), ,(4%,, [r A(J)] Ao [T A(O)]S;)()O)’
[r © ](J) (r O] ](.7)

Tiiao [T aw and [7 f:(),)]ﬁ%o) j < 1), let us assume that the following equations hold (simplifying
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assumptions):
Z c(]p])nz(.lhy]) ij’ (5)
2
Z C(Jz,o)m(f:. 0) _ =h, z C(Jm)m(fl,a) 531;1,12,1)77‘(:271) (A‘;VJ) ’
(41,0) (41,0) ~ (11, \Ja1d) =(92,:3) _ hAW; (Jw) ~(j1.) = (31 10:32:0) =(52,0) _ hAWJ‘
doarlag ey gt = ==, g Gy g 5
9, 9, LAl |l ’l AW'(AWi + AWI) y
Zc(h J)ni(f1 J) ~ 5{:25 g2 ),,"(;72 ) __ J 5 (J < l), (6)
,l s‘ W72, 1 AW Am — AW -
Zc(h )n'(fz )~ 1(,:11:2 g2 J),ql(z'z 5 J( 5 l) (.7 < l), (7)

where AW;’s (j = 1,...,m) and AWys (I = 2,...,m) are mutually independent random variables
satisfying '

0 (k=1,3,5),

: 0 (k=1,3),
E[(awy)"] =4 (k= 1p+2 (k=2,4), E[(aW)*] =Sn (k=2 ®)
O(h%) (k2 6), O(h?) (k> 4),

~ 2Js, 1‘ e WJs 7 11 ~ i WJs i 1l . . . . .
and fi':kﬂ"“ ) det agi':-ki_f"“ o 72%13"“ ). Note that the expressions in the right-hand side of (6)

and (7) come from the approximation

AW, (AW, + AW)) G<l)

(G>10.

& ~ 2 -
AW(AW, - AW;)
2

Whereas the first five simplifying assumptions satisfy
hZ,

E :{5(;7;+1)s+1 (T,(qJ;%))) }2 {‘B(mﬂ)ﬂ-l (TX()OJ) }2}
h2

e NORY T DRIC

E | ®(m+1)s+1 ([T,%J&)]g()m) &(mt1)s+1 ([T,Eizn]E&M)] -1
[_ . N = 1 2 h2

B [Beminers (81%0) {Bimeners ()} ] -#

and the 11 order conditions of weak order 2 for t = r‘%), ‘E‘O(Z,), [r 23)]%)0), (&) Ao 540()0) (for details, see
the appendix), (6) and (7) satisfy

- AG) 2 h? - ADY - AW
E ‘I’(m+1)a+1 8,.(0) = "5" E ‘I’(m+1)a+1 8,.(0) ‘I’(m+1)s+1 %A(o) =0,
- Ad) h2
E ‘I)(m+1)a+1 8"(0) <I>(m+1)s+1 (®A(°)) Q(m-f-l)a+1 (®“(o)) = 7

for j # l. Since these cause difficulties in the construction of weak second order schemes for non-
commutative SDEs, it is remarkable that the virtue of the simplifying assumptions (6) and (7) ensures
that the 3 order conditions hold.

3.2 Explicit SRK methods

We consider explicit SRK methods and show how to solve the order conditions.
First of all, we set

00 _p  aled) - [ AWs (b > Ja > 0), 0
"h T { AWj,  (Ja 2 Jb > 0). ©
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Here, 7 (0”") (j5 > 0) does not need to be set since it is not used below. Next, let us set cgj‘“o) =0 if
ja # 0, afi;‘;”]“”) =0if j, # j or jo # j when j > 0, olJa0ded) _ o if Jo #0or j. #Jj when j > 0,

tath

afi‘;;”“o) =0if j, # j or jo # 0 when j > 0, af”‘:; 70 — g if ja # 0 or jo # 0, and aﬁﬁ;”’“‘l) =0if

Ja = Je OF jo # §,0 and jeo # j,l when [ > j > 0, or if j, # 4,1 or j. # | when j > [ > 0. These settings,
(5) and (8) imply that the following statement holds for MRTL’s related to weak order 2:

The expectation of the ((m + 1)s + 1)-st element of an elementary numerical weight or the
product of those is equal to 0 if the odd number of vertices are of the same color j(# 0).

As we have seen in Remark 2.1, the expectation of an elementary weight or the product of those vanishes

if the odd number of vertices are of the same color j(# 0). Consequently, the above statement ensures
that (3) holds for such MRTL’s and (4) holds.
Then, let us introduce

) def (41 ') def (3,3 5 ) def . y
) def () ofd) asiiaba i A(JJ) o Za&:b) G,j' = 0),
=1

-1 iq —

Ag:)jyjrl) d_ﬁ_f Z a(l:J,JJ)’ Asz»lyj’j) dg_f Z a(J’l’Jl:’) (l > j > 0)

talh talb
=1 =1

for ease of notation.
From (9) we obtain

Zc(hy.?)ngnﬂ) ZC(J)AW + Z C(Jn.?)ij + Z c(J:vJ)AW

i1 _11 . .1.1 .
>3 J1<d

Hence, if

Zc(”_1 Zc“ﬂ)—o G <), Zc“")—o G <),

then, (5) holds.

Since we also obtain

Z 0(311.1),'7‘({1‘3) (Jiyj»Javl)nS:ml) Z C(J) AW a(JJ)Am Z C("J)AW a(ldﬂ’z) AW

51’2 1112 1113
Cd1,i2 1,42

when j < I, (6) is equivalent to

ZC(J) 49 _ % oo gbiid L gy,

N

i1

Here, note that 5 "("’”"”““) =0 (Viq, ib, Ja Jb, Je, ja) since we consider explicit SRK methods. Similarly,
(7) is equwalent to

D (g 1 1) AGididid 1 )
ZCSI)AEIJ) = -2-, ZCS‘Z )AE‘Z 79 = —-2- (] < l)
i i

As we have seen, each of (5), (6) and (7) yields at least 2 algebraic equations as a sufficient or equiv-
alent condition. In analogy, each of the following 2 order conditions also yields 2 algebraic equations.

The order condition O () O O
E [‘I’(m+1)a+1 ({ A [T A](:) AW X(o))] =0 (@G#

yields

E c(J)A(J,l) (J,I)A(lﬂ) 0 (G#1), Z c(l,J)A(l,J,J,l) (4,3,3, l)A(] Lid) 0 (<),

1112 ‘ll i3
i y'? i1 1"2
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Table 1: The other order conditions for weak order 2

t Order condition’ t Order condition?
PRI BO-F | LBEE 5o-:
[[[ (x)] (z) ‘?l(,)]Am) Ea(t) =0 [[ (7)’TA(J) 4(5) A(U) Eﬂ(t) = 'hZ'
[[7' (G} A(t)] (,)]A(O) Eo(t) =0 (r A()m[ /‘(u]A(n](J()u) Eo(t) = "kg3
oD 0800, E () = b I Ty T )i Ba®) =%

lir ,gz,, 22,)1%) Eylt,yw) =% ur%lgz)}iﬁm Ef(t,Tyw) =0
A(,) g()t) A® Ei(t, TAI()O)) = hT [TA(J)’TA(J)]A(O) Ey(t, T,(qlm)) = h«;

"Ea(t) and E¢(t,t1) are defined in Appendix.

and the order condition

_ ) 2

E [§(m+1)a+1 ([Tg()y)ﬂ',(:():) 220)) <I>(m+1)s~t-1 (T,(;Jg)))] = h? (G # 1)
yields

ZC(J) (A(_y,l)) — % (J # l), Zc(l.J) (A(I,J,J,l)) =0 (.7 < l)

On the other hand the other order conditions shown in Table 1 and 12 order conditions of weak order
2 for the following MRTL’s yield just 1 algebraic equation, respectively: [ © ](0) [r © ](’) )

(0)14(0)? HIAG 1AW
@) 10 16) 1) @) 10 @) () @) @) G) G) 1) (:)Am Ao

(
[[TAm)]Am]A(on llr A(,)]Aw) 240 T4t Tam 4o [TA(O)’TA(O)]( (0 [[[ A(a>],4(n],4<:> AW

lr () (a) (]) (.7) [(.7) [(.7) ](.7) ](.7) [(J) ()t (J) (J) (J) (J) d () (J)
A(:)’ A(J) A(5) A(O)v A(:)’ A(J) AN A0 A(j)v A(:)v A(i) A(O) A(:) A(O) an [ Al A(J)]A(O)

Ultimately, in order to find a solution that satisfies the s1mpl1 mg conditions and the order con-

ditions, all we have to do is to solve the system of equations in Table 2. Here, note that af’ ’,jb) =0

(i < b, Vj,5') and '7,(’;‘;"’”"""’) = 0 (Viq, b, jas Jb, je» Jd) since we consider explicit SRK methods. In
the sequel, we suppose 7, # 0 and omit to write j # | as far as it does not cause a confusion. Moreover,
we omit all indices 4;,12,... in all summations for ease of notation.

Table 2: Simplifying or order conditions

No. Condition No. Condition . No. Condition
0 s ) ) PN 1,
1 S =1 12 Teageglag? =4 | 28 Tdlalfeglal? =0
9. 9, 91
9 ZC(J) =1 13 ZC(J) E.:IJQ) (A(J J)P _1;2_ 24 zc(f) 5{’? QA(J )? = %
3 EC(J)A(JJ) =1 14 ZC(J)A(JJ) 5{;12)143 jf) % 25 EC(J) 8’1?‘4 ll)A( 3 =0
4 > C(0) A(U,J) } 15 > c(J) g A(J,J)) =1 2% 3 c(J) A(M) g;lz) A(l D _ L
5 b C(J) A(J,O) 1 16 > (2) u;]g) A(mz) 1 277 C(J) A(J,l) 8;32) Aglz) =1
6 » c(o) A(O 0) _ =1 17 ) C(J) g A(J,J) =1 28 3 c(J) A(J,j) ( A(J,l) =1
7 e () (J,J) G0 11| 18 (J A(.v b _ 1 29 ZC(J) (4,4) (JJ) =1
SN W A(“m) _il 19 D AGD0D 40D — o | 30 ) Ad D_1
ZC Qyria =3 ZC Qs ZC Qglip =1
10 07 ’l ,l ’,
9 ZC(J) S.th)A( J) =0 20 E (.’l) (A(J )) 2 31 ECEZ)Q’SZ,)A( 5) =0
0 3 C(O) g A(O,J)) % 21 » c(:l) 53;32) g‘? A(l £ % 39 >3 c(J) A(m) A(J,) _ %
A f y i, W
11 EC(J)A J O)A(] J) _ 4 29 ZC(J) szl:) Saljs)A(J ) =0
No. Condition No. Condition
34 20(391) (j < l) 37 zc(l)J)A(l’Jﬂ’l) Si:’;Jrl)Az(Ji ?.71.7) — 0 (.7 < l)
35 Zc(lJ)A(‘stJ l) — _;_ (J < l) 38 Ec(l:.’) (A(ltJ:J l)) 0 (‘7 < l)
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Table 3: Additional conditions to attain order 4 for QODEs

No. Condition No. Condition
0 5, (00) (0,0 0 0 0 0 0

43 Z (0) (0 O)A(O 0) — %

1/112

u T (A09) =}

h iz 12

i YDAV 400

t112

0 3 c(O) (0,0) ( A(OO))

ooh-. slH 2[»—-

Table 4: Conditions equivalent to Conditions 18-32

No. Condition No. Condition No. Condition
45 g:) + C(J) A7 i:) ‘(11,1) 4 49 az(iJzJ) — a‘(‘szl)
46 (J) A(J,J) + c(J) A(Jy.?) 48 (J.l) A(l ).

The system of Conditions 2, 3, 12, 13, 14, 15, 16 and 17 has the same algebraic structure as that
of the order conditions for ordinary Runge-Kutta methods to attain order 4 for ODEs ([4], pp. 90-91).
Hence, since the stage number s has to be at least 4, let us suppose s = 4 in the sequel.

For SRK schemes, RoBler ([11], p. 99) has proposed taking account of not only weak order but
also order for ODEs. Now, for s = 4, we can let (2) attain order 4 for ODEs. For this, we add the 6
conditions in Table 3, which come from [[[7 22)) g)()o)]ff()o)]f:()o), ([ /(‘o&)’ 22,)]%)0)]?2()0), [T 51(2,),[ Igo(z))]g)()o)]ﬁ’()o),

[(0) (0) (0) ](0) Ir (0) 1(0) 1(0) (0) (0) (0)
TA©1 T2 T 4] 40009 A(o)} A0l & nd (701 T4 g0+ G0 )
L,J

To find a solution, we first simplify Conditions 18-32. By noting that we can suppose a3; ' = ags™’,

we have a(’ I)A(’ Y — 0 from Conditions 21 and 22. If A(J D~ p, by noting that we can suppose
AP — AEI’J ) for any i, we have oi}" = 0 from Conditions 29 and 31. Similarly, if o$4? =0, we have

A%P = 0 from Conditions 25 and 30. Hence, a$}? = A" = 0. Then, AJ" = A(J’l) 1 holds from
Conditions 24, 27 and 29. In summary, we have

By substituting these into Conditions 18-32 and rewriting them, we obtain the 5 conditions in Table 4.
The system of Conditions 1-17 and Conditions 39-49 has the same structure as that of all the order
conditions in the commutative case [8]. Hence, we can obtain a solution of them by carrying out the
calculation steps in [8].
Let us solve the system of Conditions 33-38. When we set

ng’l) = ng,l) — Cgl,j) — c‘(‘lﬂ) —_ A(szlevJ) _ 0 (.7 < l),
Condition 37 holds automatically, and we obtain

UCadd) _ _ aaad i) _ 1 ) : (L.:irh)
470 == ot = -y & S U< AT RO

from Conditions 33, 35 and 38 and

Gy _ 1 Gy _ 1 . CAR))
c2 - 2Agj7l|]v.7) ’ CS - 2A:(3],I,J,]) ('7 < l’ A3 # 0)

from Conditions 34 and 36. We finally obtain

(G:bidd) 0
Qi ’|l9 s j .sly i ')l: 5]
] g ”z.j,of)g’z 9 0‘%’2".]; i) G <),
(c(]vl))T a4.71! 2Jrd a4]29 sJsJ 043, WIhd
0 0

1 _ 1
ZA(S.‘IJJ,J') 2A§7vlv:i.3)

95



Lgdl
[a30] (szﬁgjj(;"n (L)
Talh — A3 Il (l_ 'a[j%éﬂs]v a:(;lzv.%.’vl) (l . j l) (j < l),
(c(z;J)) a411.7!.7) ‘ a421.7|.7’ a437.7» y
1 1
0 waln e 0
% - 2a(j10)
0 } ag” 0
0,0 ,0
Saﬂa)] [ si"b) 0 0 1 3 (J’O) 0 0
0, ) o
o501 | o] o] - o
9 9 1 1
(T ‘ CAN -3 & i i}
1 00 -1 2 3o
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as a solution of all the order conditions. Note that the set of coefficients for c{’’s, a(’ ; )’s and af’ ’,lb) s in
the right-hand side of the last equation is unique with respect to the five cases where a solution surely

exists for the system of Conditions 2, 3, 12, 13, 14, 15, 16 and 17 [8].

3.3 Numerical experiment

We show the results of a numerical experiment to confirm that the explicit scheme in the previous
subsection attains weak order 2 when a(”o) (’ bid) (l””’l) =0, A(” 59 = 1, A("””l) 1/2
and a(J’ 39 ‘(:,-f”’l) =0for j <l andip= 1,2,3, and to compare it with Platen’s scheme ([6], p

486) or w1th a scheme for commutative SDEs, which is obtained by setting all I (5 £ 1), ol

'gtb
and af",’;”l) ' (j < l) at O in our scheme. This scheme for commutative SDEs satisfies all the order

conditions except Conditions 35 and 36.
The following SDE is considered:

dy(t) = (R - = ZBZ) y(t)dt + ZB,y(t) odW;(t), y(0)=mo, 0<t<1. (10)

1—1 j=1

This is non-commutative if B;B; # BiB; (j # ).
In (10), we set m = 2,

0 1 L0 0
R= ’ B=[2 ]’ B=[
] oa-[ 5] el

[ JUN T

} y ®g= [ (1) ] (w.p.1).

Then, we sought y,, by means of the schemes, and calculated the arithmetic variance (yﬁ,_,’,-) — (ym,i)?
of the ith element of y,, and (yar,1ya,2) a8 approximate values of variances V{y;(1)] (i = 1,2) and
Ely1(1)y2(1)], respectively. The notation (-) stands for an arithmetic mean. On the other hand, their
exact values were sought from dE[y(t)]/dt = RE[y(t)] and

2{H0) o2 & Efi(t)
T Efyi(t)y2(t)} | = [ “13 -3 s; ] Ely1(t)y2(t)]
E[y3(t)] ® 6 -% E[y3(t)]
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Figure 3: Relative errors in (10)

In the experiment, 1 x 106 sets of independent trajectories were simulated for each step. The results
are indicated in Figure 3. The solid, dash or dotted line means our scheme, the scheme for commutative
SDEs or Platen’s scheme, respectively. The scheme for commutative SDEs is useful to see the influence
of non-commutativity of SDEs. The figures illustrate that our scheme is of weak order 2. We can see
the influence of non-commutativity in the relative error of the approximation to Efy; (1)y2(1)].

4 Summary

First, we have introduced our SRK family and the way of seeking order conditions for it with MRTL’s.
Second, after introducing the well-chosen simplifying conditions for the non-commutative case, we have
found a solution of all the order conditions. Third, we have performed the numerical experiment and
have shown that the explicit SRK scheme with 4 stages is of weak order 2. Although lack of space has
prevented us from showing other numerical experiments, it is remarkable that the author has obtained
similar results in other experiments.

The scheme has the following three features.

e When m > 2, it needs random variables less than Platen’s scheme does since it has only m — 1
random variables (AW;’s) except AW;’s for one step.

e Tt is of order 4 for ODEs. For this, it can be expected to show better performance in seeking an
approximation to the expectation of a solution for SDEs with small noise.

o It is directly applicable to non-commutative Stratonovich SDEs, whereas Platen’s scheme is for
non-commutative I1t6 SDEs.

Appendix
Weak third order conditions

Under the assumption that the statement in Subsection 3.2 holds, we show the order conditions for
our SRK family to be of weak third order for multi-dimensional SDEs with a one-dimensional Wiener
process. The following symbols are used for ease of notation:

81t) Y Bmrnyeri(t), Ea(t) € EB@)], Ebt) ¥ EB)S()),
def

E(t) ¥ BROS(rE, 50, Eat)  EROBD,),  Ee(t) ™ BRE{E()Y,

E;(t,t1,t2,...) ¥ BBE)B(t)B(t2) -], Eo(t,trsta,...) = B{O)}2D(t)B(t) - ).

Table 5: Weak third order conditions

Order conditions for weak order 1 at least

t Order condition t Order condition t Order condition
0
T3] 2t E.(t)=1 T4 Eqo(t) =h 0 Ey(t) =
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Table 5: Continued

Order conditions for weak order 2 at least

t Order condition t Order condition
(J;&’,) [l )io Bl = L3 e T o L Ea(n) = &
A(:) ’(0) AE;) A((:J))]A(O) a(t) = "hsj [TA(a) v( 54(:()()’)7'A(<:;] A0 Ea(t) =i
[[T (,)] (,)]A<0) Ea(t) = Tz [[ J(o) (4(,)]_,:(0) Ea(t =0
[[(; m] J(o>] © Eo(t) = E [["' ) (:) o Ey(t) = hz
{"' oy ‘E‘,‘”]z‘}m’ ga((:)) = ’;g' [y s T Lo E.(t)=%
T (:)’T (1400 b\t) =
: (0(2»;4(0()0:1 Ea(t) = % [ 9 ] ©) Eb(t) iy
24 2 A(a) A 2
[ A(o) A(O) Ey(t) = b’f
Order condition Order condition Order condition
[ 2&) ‘(j()o) Ec(t) = g’E"r Ed(t) = !';l Ee(t) = 32_’
T (2)) Ed(t) = h? Ee(t) =
T E[{$(t)}*] = 34*
Order conditions for weak order 3
t Order condition t Order condition
[[[[[ (J)](J()i)](J(f) ;()n]um]g?m Eq(t) = % H[[Tf;&),T,‘f(’,)]“?n](’m ;Bn ng» Eo(t) = %5
([ 1 ,? 3] 4 zq(g)] A Eit) =45 (s T a0 ) S 2t o Eo(t) =%
D ESETEE o=t | GRG0 no-%
[HTA:’(J)]A(J)’ [ (A)(J)]A(J)] (j)]A(O) Ea(t) = 'hs_ [[TX’()J)’TA(J)’ [T (,)]A(:i)] (j)]/f(o) Ea(t) = %?'
o e S e G S I R N s
A(J)’ TA(m 4(9) A(J) A)(:)] © Ea(t) = ’?s‘ [Tacs [T a7 (a)] (,)] o)A@ Eq(t) = %y
[ A<7)’ {[[ (j)]%(j)] ](1)]A<j)}A(0) (t) - ’4,18" (:l()j) .(Z()J)’ 61(1)] (,)]Auﬂ]g()m Ea(t) = %‘Ts
(%)) S()m A]m»TAu)] Am]g()m E,(t) = '@é; [ T 15t b7 (n]g()n](J()o) Eu(t) = ¥~
[A(m Am’[[T u)] J(:)h(a)h(ﬂ) Es(t) = %y [T,SJ()JN f,’(,),[rfi(’,), A(n] ol Eo(t) = §g_a
[T ,Ef()m f;]&)v A(J)’[ A(j)]A(J)]A(“) E,(t) = 54L3 [ A(J)’ A(J)’ ,;J(a)”",?()m ,Z(;)],Z()m Eq(t) = #
[mﬂfm%ﬁdﬂ> Ei(t) =% [WQNM%W@%> Ea(t) =0
185 1%, f? i o=k | GG B2 Eo-o
[[ [ %m] J<J) ,?Jm] J(O)]A(O) Eo(t) = ? ({36 Jm J(a)] J(:)]Eﬁo) Ey(t) = %z
(J)’TA(J) fm) <,)]A(0) E.(t) =% [[[TA(O)’ (0) (A(J)] m]Am) Ea(t) = %
[[[ A(J)’T (:) é(o) (1(:)],4(0) E,(t) -’g (J(a)’ A(J) J(n]i;(m]A(O) Eo(t) = ?—;
[ Am» Am] (W] (J)]A(O) Ey(t) = 4 [[TA(m[T (J)]A(J)] (n]A(m Eo(t) =45
[[ A(J)’[T (o) A(.‘I) (J)]A(D) Ea(t) = !1"7 [( _E;o()a)’[r (),)]ia(z)] (J)]A(U) Ea(t) = 11%
[[T,&’(Z!)’ (a) fi’?m é)(:) A(O) E (t) [[ A(J)’[ (j) A(J) G(j) A<0) Ea(t) = _};8_3
[["',(4’()1)’ (1) g():) (lm A(O) Ey(t) = sa Iy 5{(1)»7'51]0): “2) ?(,) A(o) Eo(t) = "“éa‘
[[TAww ,S,J(owT( ()o) u)]A(o) Eo(t) =0 ([~ fq]()m A<m /e]m G(o) (0) E,(t) = k:‘
([ f;j()m A’()w A(:) (1(:) A(O) Ey(t) = % [T ,E&):)a [[T (,)] (,) Q:)]QO) E,(t) = %i
[T ,5;]()1)7 (0) (,)]A(j)],(j()o) Eq(t) = 11“; [ A(J)’ [[T (,) (o)]AU)]A(O) Eo(t) = %‘2
[ 5:2)? [[T (]) ?J(,)]A(:)]A(u) Eu(t) = ’f_; {T,g()o)v [ %(,1)] J(j) ,?(0)]53()0) Ed(t) = ’%3'
[T(J&)»[[T (n] ‘{7 ]A(J)]A(O) Ey(t) = hTs ["'A(m (:)1TA(J) A(J) EZ?c» Eo(t) = %Ts
[”' u)’ ['r (u)v ,?(m](m)] (© Eq(t) = '11_3 %()()1)’[7 (O3 (J()n (m) (]<)o> E,(t) = hT:
[ A(O)v (1)’7'3(1) J(0> (0) E,(t) = hs—3 ,4(:)7 u)’ (4(5)] Jm jw) Ey(t) = h?
[(T i) A(J)’[ (,)]Am],q(n) E,(t) = %: ,(‘(,)}Au)»[" (0)]_4(1)] (0) Eq(t) = h—s
H A(J)]g()o)’[ A(J)]g()o)]A(") Ea(t) = %1_ A(;) A(J’)’[ A(,ﬂAU)] A0) Eb(t) = 3h3




99

Table 5:_Conti
t Jontinued
L) ) R O RTE) N6 Order conditlon t
[A(s)s Ama{T m A(J)]A(O) Eq(t) = ’g [T(J) o) (J) 1 €] Order condition
A(J)’TA(J)’ ?u) A(J)]A(O) Eq(t) =& Ir & A(’)’ '(‘“") A"’]A“’) Eo(t) =&
[A(J), A(J)’ "3(:) A(J)]A(u) Eb(t) ﬁ [TG()U),T/;()O)’[ (J)]A(O)]A(n) E, (t) hs
[ratons 70, 75 Pk 7l S Eo(t) = h3 AU),T?J()J)’ 7 A(’)]A(") E,(t) =
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A© o Ey(t) 0 “2 ’2
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TA(O)’ T T Taw, Am’ a4 E 2
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Table 5. Continued

t Order condition Order condition Order condition
Tiolao  EUEOYI=% BRG] =%

( j) 3 0
_ . Ey(t, [(6‘)](') EZ()O)’T,S(J(L) g_%_ Eg(t, T ,(“3»6 .Egjgn) —s T
TG EHEWP =B Bt Ty, ,‘8 o) =% Ey(t,\0,) = &

3
Ey¢ (t, "',(40(2»’7',(40(21)) = hz‘ E[@(t){Q(TA(O))}ﬂ 15h3 Eg(t 7'51()0),”',(4‘720)) = %’ﬁ

O BG@=F  BROEEAT=3E B ro i) <A
oo E[{®(t)}®] = 15R3
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