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Estimating a common slope of multiple
strata in the Tweedie distribution using a
conjugate prior
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Abstract

The logarithmic link regression model with multiple strata based on the Tweedie distribution is
investigated. Assuming a conjugate prior density only on the intercept parameters, we derive the
optimum estimating function of the common slope parameter and discuss the conjugate analysis as to
the intercept parameter vector. An interesting relation between the optimum estimating function and
the optimum estimator of the intercept is observed.
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1. Introduction

Let us consider an exponential family whose variance function is proportional to a power of
the mean parameter. The exponential family is called the Tweedie distribution in Jgrgensen
(1997). For details see Chapter 4 of his monograph. Its density function is expressed as

p(z; p, o) = exp[ro{c(p)z — M(1)}] a(z; 70) (z >0, p €RY), (1.1)
é.nd the variance function is of the form
1 ué
== 1.2
Toc' (1) 7o (1.2)

where u is the mean parameter, 7oc(u) is the canonical parameter as a function of u, To M (i)
is the cumulant as a function of p, and a(z; 7p) is the supporting measure. Here 7y > 0 and
€ € [1, 2] are assumed to be known. ‘

When § = 1 with 79 = 1, the density (1.1) is the probability function of the Poisson
distribution Po(y) with mean . In the case of £ = 2 the density (1.1) is the probability
density function of the gamma distribution Ga(u, 79) with density

B2 ey (2
T(r) wo P\7% )
When 1 < £ < 2, the density (1.1) is that of the compound Poisson distribution which Zfil Y;

follows where N, Y7,Y,... are mutually independent, and N and Y; are distributed according
to Po(m) and Ga(8, \), respectively, with
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It should be noted that the Tweedie distribution with 1 < ¢ < 2 has a positive probability
in zero:

. p2-é
Pr(z =0) =exp (—ng — E) .

The Tweedie distribution with 1 < £ < 2 has a probability density function for z > 0 which

is given by
ug 1 ,J 2-¢
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0o 2-¢t\£-1
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Figure 1 draws the graphs of the density function when £ = 3/2. Each bar at the origin
indicates the probability Pr(z = 0).
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Figure 1: The graphs of the Tweedie density function for £ = 3/2.

The Tweedie distribution is applied to analyze the dataset including the following three
examples: (1) Compound Poisson distributions have been used for modeling the loss paid
in the actuarial science; (2) Shono (2006) applied the Tweedie distribution to the CPUE
(catch per unit effort) standardization of by-catch data including many observations with
zero-catch; (3) Dr. Peter Dunn states that April total rainfall in Melbourne can be modeled
with a Tweedie distribution with £ = 1.58 in his website:

http://www.sci.usq.edu.au/staff/dunn/Datasets/tech~glms.html#Tueedie

We investigate a logarithmic link regression model p(z; a, 8) = H;:{:I p(xk; ak, 8), which
is based on the Tweedie distribution (1.1), where

N
p(ek; ok, B) = [ [ pari; e+ 4%, 7o),
i=1

In the above & = (z1,...,2x) with &k = (zg1,...,Zkn, ), @ = (01,...,ax) is the incidental
intercept parameter vector, § is the common slope parameter of interest, and z; is the
covariate. Although an extension to the vector slope parameter is straightforward, we focus
“on the scalar case for simplicity.
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The aim of this paper is to propose an estimation procedure of 8 through a unified dis-
cussion. First, the conjugate analysis as to « is discussed. Secondly, the optimum estimating
function of 3 is derived. Finally, an interesting relation between the optimum estimator of a
and the optimum estimating function of 3 is observed.

2. Hybrid Bayesian approach

This section introduces an approach to the estimation of (e, §). This is a result of the
joint work with Professor Takemi Yanagimoto. Only on @ we assume a prior density of the
form 7(a; ag, §) = [] m(ok; ao, dng) where

7(ak; a0, dng) o exp{—dnkd(co, ax) }b(ak).

Here d(s, t) is appropriately chosen function satisfying the condition d(s, t) > 0 and d(s, t) = 0
iff s = t, b(ay) is a non-negative function, and the hyper-parameters ag and § are assumed
to be known. Note that no prior density is assumed on 8. Thus this may be called a hybrid
Bayesian approach.

We propose an estimation procedure which consists of the following two steps:

Step 1. Estimate 3 by the solution 3 to the estimating function

Epost [ I5(2; @, B)] =0, (2.1)

where Epost| - | stands for the posterior expectation, and [ s(x; o, B) is the score function
of 5.
Step 2. Estimate oy by d4(3) where

& (B) = Argmax | p(zx; ax, B) exp {—onyd(eo, ar)}] (2.2)

ay

fork=1,...,K.

Another expression of the estimating function (2.1) in Step 1 is given in the following
proposition. -

Proposition 2.1. It holds that

7]

3_,6' logpmarg(‘m B) = Epost [lﬁ(a’; o, 8)],
where prarg(x; B) is the marginal density.
Proof. Differentiating pmarg(2; 8) = [ p(z; @, 8) 7(a; ag, ) da, we have

0
aPmas(@ 0) = [ lo(a; @, B)p(e @, B)w(es ao, 6) do
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Since the posterior density is p(x; a, 8) n(a; «g, 6)/Pmarg(2; 3), the required result is ob-
tained. O

An optimality of the estimating function (2.1) is shown in the following theorem. Let
E,[-] and E,[-] denote the expectations with respect to the sampling and the prior densities,
respectively. The criterion function in the following theorem is an extended version of the one
in Godambe and Kale (1991) to the Bayesian framework.

Theorem 2.2. The posterior mean Epog [lg(2; o, B)] of the score function of B is optimum
with respect to the criterion function

Er[Eplg%(x; 8)]]

Mlg(=z; B)] = (2.3)
7 {Ex[Eplon(a; 8)]]}
among the estimating functions unbiased in the sense that
E.[Eplg(z; B)]] =0. (2.4)

Proof. The criterion function (2.3) and the unbiasedness condition (2.4) can be rewritten as
Emarg[gz(w§ B)]
2
{Emarg [b%g(z; B)] }

M(g(z; 8)] = (2.5)

and

Ema.rg[g(w; B)] =0, (2.6)

respectively, where Eparg| - | denotes the marginal expectation. Set ga(@; 8) = Epost [{a(2; a, 8) ].
It follows from Proposition 2.1 that gz (x; 3) = (0/083) log Pmarg(x; B). Differentiation of both
sides of (2.6) gives

Emmar [g(w; 5) ga(; B) + é%g(w; ﬁ)] ~o. (2.7)

It follows from Schwarz’s inequality that

{Emarg 9(; B) 955 8)1}” < Emarg| 9°(®; 8)] Emargl 2 (x; 6) .
This, together with (2.5) and (2.7), yields that

 E—
- Emaré[g% (x; B)] .

Setting g(x; B) = ga(x; B) in (2.7), we have

Mlg(z; 8

Emargl 92 (%; 8)] = —Emarg [é%gn (< ﬁ)] : (2.9)



The inequality M[g(z; 8)] > M|[gs(x; 8)] follows from (2.5), (2.8) and (2.9). O

Theorem 2.2 is valid in more general setting. Consider a sampling density p(z; 6, ¥)
with a parameter § of interest and an incidental parameter 1. Assume a prior density only
on 9. Then, the posterior mean of the score function for @ is optimum. Thus a Bayesian
analysis which assumes a prior density on the incidental parameter works well. Recall that the
optimum estimating function is obtained as a combination of the Bayesian and the likelihood
approaches.

Next, we derive an optimality of the estimator (2.2) of o4 for a known 3 in Step 2, which
is associated with the optimality of the posterior mode.

Proposition 2.3. Set vy = B(ox) with B(:) being the primitive function of b(-). Then,

4k(B) = B(ax(B)) is the posterior mode. Therefore the minimizer &x(B) in (2.2) is equivalent
to the posterior mode.

Proof. Note that

&4(8) = Argmax {p(zk; o, )

Qaj

Tr(ak; Qag, 6”16)}
b(ak) .

The prior density on v which is proportional to 7(ax; o, dnk)/b(cx) is equivalent to the prior
density 7(a; ag, 0nk) on ax. Thus, the above equality shows that 4 (5) is the posterior mode
when (3 is known. 0

The estimator &i(8) was called the standardized posterior mode in Yanagimoto and
Ohnishi (2005). Since the Jacobian factor b(ay) is discarded, the estimation procedure has
invariance with respect to the parameter transformation.

3. Conjugate analysis as to the intercept
We assume on oy the prior density

(k= a0 Ing) = ez exp [ome{ule® ™% 2 - ) w5 1- )], (31

which is in the location family, where : -

u(z; k) =4¢ zF -1

{ logz for k=0,

otherwise.

In the expression (3.1) of the prior density oy and 6 > 0 are hyper-parameters which are
assumed to be known, and K(ény) is the normalizing constant. When £ = 1 or £ = 2, the
density (3.1) is a transformed gamma density.

The Tweedie density (1.1) has the following representation

p(z; u, 70) = exp[—To{ulw; 2 - &) — zu(y; 1 - £)}] a(=; 7o),

where a(x; 70) = exp[70{c(1)z — M(1)}] a(z; 79). This is shown as follows. Solving the
differential equation ¢/(p) = mop~¢ in (1.2), we have c(u) = u(pu; 1 — €) + ¢(1). Noting that
M (p) = pc () = Top’ ¢, we get M(n) = u(p; 2 — £) + M(1).

171
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Properties of the function u(z; k) are shown in the following lemma, which play an essential
role in the proof of conjugacy. The proof is a straightforward calculation, and is omitted.

Lemma 3.1. (i) It holds for any z, y and k that
u(zy; &) = y*u(z; K) +u(y; k).
(ii) Suppose that k and v are positive. Then, it holds for any a > 0 and b > 0 that

au(z; k) — bu(z; —v)
= 8" {u(z/z0; &) — u(z/z0; —v) — u(1/z0; £) + u(l/z0; —v)},

where . .
zo = (b/a)*+ and & = ax+ b+,

Using this lemma, we get conjugacy of the assume prior 'density (3.1).

Proposition 3.1. The posterior density corresponding to the prior density m(cy, — ag; 6ny)
under the sampling density p(zk; ok, B) is expressed as w(ay ~ é(B); 6pni), where

T0 z:zzkl mkie(l_f)ﬁzki + 5rnke_(1_§)a0

Gk (B) = log 0 Yok, e2=EBz%i 4 §nye—(2-§ao
1 Ng 2= T 1
5t = - {To Z 2168 4 g, e~ (1-E)ao } {7.0 Z e(2=OBzki Sngxe~ (380 } .
i=1 =1

Therefore, the prior density m(ay — ag; dny) is conjugate.

The family of distributions to which the conjugate prior density (3.1) belongs is derived
through the following requisition:

A density p(z — ) in a location family should have a conjugate prior density of the
form (p —m; 6) o< {p(m ~ p)}°.

This requisition also yields the normal and the von Mises distributions.
Now we discuss the conjugate analysis as to oy for a known 3, adopting the loss function

L(ax(8) — o) = u(exp{on ~ ax(8)}; 2 - €) ~ u(exp{ox ~ & (8)}; 1 - &).

This is a Kullback-Leibler loss function, which follows from Lemma 3.2(ii). Note that the
prior density (3.1) is proportional to exp{—énL(ap — a)}.
Properties of the assumed prior density (3.1) is given in the following lemma.

Lemma 3.2. Set p(r) =1 — (2 - €)(¢ — 1)K'(r)/K (7).
(i) It holds that

E [ e(2—8)au

ﬂ(ak — Qy, 6nk)] = p(énk)e@‘f)“",

E [ e(l—é)aklﬂ.(ak — ap, 5"%)] = p(5nk)e(1‘£)°‘°.
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(ii) The Kullback-Leibler separator from m(cy — ap1; 0ng) to m(ox — aog; Ong) is ezpressed
as
KL (7 (o — 15 dng), m(ak — ciog; dnk)) = dngp(dnk)L(aoz — o).

The conjugate analysis of oy for a known £ is summarized in the following proposition.

Proposition 3.2. A modified Pythagorean relationship
Epost [L(dk(ﬁ) — ax(B)) = L(a(B) — ax(B)) — p(65nk) L(6x(8) — é&x(B)) ] =0

holds for any estimator é&x(B). Therefore, the estimator Gx(3) is optimum under the loss
Junction L{éx(8) — ax).

Proof. Since 7(ay — ao, 0ng) x exp{—0nyL(cg — ak)}, we have

KL("T(ak — Gx(8); 0in), m(o — ok (B); Gpn) )
= 5anE[L(0'tk(ﬁ) — o) — L(ax(8) — o) ! m(ax — ax(B); Gink) ]

Recall Proposition 3.1 and apply Lemma 3.2(ii) to the left-hand side of this equality. a

4. Optimum estimating function of the slope
The score function of 3 is expressed as ig(x; a, 8) = 3 lkg(xk; ax, B) where

ng ng
leg(zp; ax, B) = —1g {6(2-—5)% Z zkie@"f)ﬁz‘“' — l1=8) Z wkizkie(l_f)ﬂz’“} . (4.1)

=1 =1
This is shown by noting that
N
logp(;ck; o, /3) = —79 Z{u (eak+132ki; 92— g) — Tkl (eak+ﬂzki; 1-— {)} +C,
=1 N

where C is the term constant in 3.

The optimum estimating function of 3 is expressed in terms of the optimum estimator
() which is derived through the conjugate analysis in the previous section. This interesting
relation is given in the following proposition.

Proposition 4.1. It holds for any k € {1,...,K} that

Epost [lks(@k; ak, B)] = p(Sgnk) lkg (xk; & (8), B).

Therefore, the optimum estimating function is

K
Epost [lﬁ(mi «, ﬁ)] = Zp(a;c'"k) kg (mld ax(6), ﬁ)

k=1
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Proof. Proposition 3.1 and Lemma 3.2 yield that
Epost [e(2~§)ak } = p(5an)e(2“§)‘5‘k(ﬂ))
Epost [e(l_f)ak ] = P((sznk)e(l"f)d"(ﬂ).

This, together with (4.1), complete the proof. O

5. Numerical example
Let us consider a Poisson logarithmic link regression model where

Tii ~ Po(pki) with  log ki = o + Bzki.

This is a special case of the Tweedie logarithmic link regression model where £ = 1 and
70 = 1. For simplicity we deal with the following binary covariate case where ny = 2my and
the covariates are given by

Zp = 1 (1—<—?‘Smk),
=10 (me+1<i < 2mg).

It follows from Propositions 3.1 and 4.1 that the estimator is given by (&(8), 8) where

&y (B) = log { (Z Tki + 5nk)/ (Z ePerei 5nke—ao) } ’
i=1 i=1

. K my K 2my.
B =1log{ (1+ 2de™%) Z Z Thi Z Z Thi +20my | ).
k=1 =1 k=1 \i=my+1

Note that the estimator (d(fi), ,5’) approaches to the maximum likelihood estimator (MLE)
when § — +0.

We run a simulation in the case where K = 20, ny = --- = ngg = 10, and the true value
of the parameters are

a = (1.10353, 1.00058, 0.700968, 0.963605, 0.784342, 0.960677, 1.18908,

0.923425, 0.581723, 0.910598, 1.35572, 0.872309, 1.03158, 0.948453,
1.33564,0.473799, 1.11999, 0.931665, 1.01157, 1.44858),

and 8 = 0.2. The following two Kullback-Leibler loss functions are adopted:
K nyg

L(B, 3 a)= z ZKL(eak+ﬁzki, e“k'i‘ﬁZki)’
k=11=1
K ng .
L((&, B), (a, B)) = ) _ ) KL(eHhemi, gorthansy,
k=1 ¢=1
The former is for estimation of 3 and the latter for that of (a, 5).
The graphs of the estimated risks are drawn by 5,000 iterations for selected values of the
hyperparameter ¢ in Figure 2. Here the other hyperparameter ¢ is set as zero. Figure 2
indicates a superior performance of the proposed estimators over the MLEs.
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Figure 2: Estimated risks of the proposed estimation procedure for selected values of 4.

Let us examine the behavior of the proposed estimation procedure of 3. It follows from
Propositions 3.1 and 4.1 that

def K my 66 K 2my
e
s(z; B) E E Thi = T B 1 2ge—a0 E (E :ck,-+26rnk) .

k=11i=1 k=1 \i=1

Taking the limit § — 40, we set

def K wmy K 2my
DI BN
k=11=1 k=1 1=1

The performance of the two estimating functions gs(z; 8) and gy (x; 3) is evaluated from
Frequentists’ point of view in the following proposition, which is consistent with the Figure 2

(a).

Proposition 5.1. Assume that e Ele my = Zfﬂ mge®. Then, it holds that

Molgs(z; B)] 1 ef
Mo[gu(z; B)]  1+¢€P {1 + (1 +26e—°‘0)2}’

where
Ep[gz(m; B)] '
(B, [ o 8)])

Therefore, the estimating function gz(x; B) with § > 0 is superior to the estimating function
gulx; B) with respect to the criterion function (5.1).

Molg(z; B)] = (5.1)
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