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Hankel determinants and substitutions — some results and problems
Jun-ichi TAMURA

3-3-7-307 Azamino Aoba-ku Yokohama 225-0011 Japan

1. Introduction. Let A* be a free monoid generated by a non-empty set
A, i.e., A* is the set of finite words over A with the empty word i. We put
A*:=A*U A", where N is the set of non-negative integers, so that A" is the set
of infinite words over A. Any monoid morphism ¢:A*—A* can be extended to a map
0:A*—A* by 6(aca,a, - ):=0(ac)s(a:)e(az) - (a.€A), which is a so-called

substitution (over A). We say that ¢ is of constant length k iff o(x) is a

finite word of length k for all x€A. A fixed pbint of a substitution ¢ is an
infinite word ¢€A¥ satisfying o(p)=9.

The fixed point of a substitution ¢ over {a,b} defined by

| ¢(a)=ab, os(b)=ba (resp., ¢(a)=ab, d(b)=a)

prefixed by a is referred to as the Thue-Morse word (resp., the Fibnacci word).

Let @)l be an integer. We denote by ord.(n) the largest integer e20 such that

n is divisile by q°. We say a word w=w;w.ws... is a g-adic Toeplitz word iff

Wa=W. holds for any positive integers m, n satisfying ord.(m)=ord.(n). Let ¢ be
a substitution over an infinite élphabet A-:={a,,a:,a2,...} defined by
6(as)=aoan+: (n=0, 1, 2, ...).
For some of the symbols a,, a:, @z, ..., we also write ao,=a, a.=b, a.=c, etc.
The substitution ¢ has a unique fixed point
o=abacabadabacabaeabacabadabacabaf. ..,
which is a 2-adic Toeplitz word. Any 2-adic Toeplitz word over a finite or an
infinite alphabet B can be written by
()=t (e )t (o)1 (0a). ..,

where 1 is a map from A- to B, and e=:6,0:0s...(9:€A=). In this sense the word o
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is a universal 2-adic Toeplitz word.
Our objective is to get something interesting related to determinants

Ho ™ =H, ™[9] :=det (pm+1+1)osicn-1.0555n-1,

Ha=Ha [¢] :=H. ) [o]
for a given infinite word ¢=909:9.... (¢:€A) over a finite, or an infinite
alphabet A, where H, ™ is considered to be an element of Z[A], i.e., a
polynomial in independent variables€A with integer coefficients. H. ‘™ [¢] can be
extended to (m,n)eZxN by setting H,‘®’:=1, ¢a:=0 (m<0), where N denotes the
set of non-negative integers. In the following two sections, we give a very
rough survey on the results related to H. ™. In Section 2, we give some results
on H. ‘™ [¢] for a general word ¢, cf. [K-T-W], [T2]. In Section 3, we give some
of the results related to H. ™ [¢] when ¢ is the Thue-Morse word, the Fibonacci
word, and a Fibonaci-type word, cf. [A-P-ZXW-ZYW], [K-T-W], [T2]. In Section 4,
we give a new characterization of the 2-adic Toeplitz words ¢ by an algebraic
property (completely reducibility) of H.[e], cf. [M-T-Tn]. We shall give no

proofs, but state only results with minimum definition.

2. General propeties of H.[w]. The set A* becomes a complete metric

space with respect to the metric defined by

d(¢,1):=exp(-inf{n; £.#1a}) (§=€ofibz -, A=Nonu72 - -EA* ({a,7.€A)).
As usual, K ((Z)) denotes the set of formal Laurent series of one variable Z
over a field K. We put

K:=Q (A) (DA4).
The set K((z~!)) becomes a metric space induced by a non-Archimedean norm
defined by
I 9" | :=exp(-no+h), no:=inf{nEN; ¢.#0} (101} :=0)
for
9 M= =% 9.z "EK ((271)) (1)

with h€Z :={0,%1,%2,...}. Note that } ¢‘" | =exp h holds if ¢=900.:9. - €EAR(C
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K*. If ¢ is a finite word of length k, then ¢.:=0 for n2k.) For any given
9=009.19, - EK ¥, we say that (P,Q)€EK [z]? is an h-Padé pair of order m for ¢
iff

| Qo ™ -P ) <exp(-m), Q#0, deg Q:=deg. Qim (2)
holds. The usual Padé pair (for a formal Laurent series) agrees with the h-Padé
pair with h=-1 (fof a word), cf. [N-S]. It is known that an h-Padé pair (P,Q) of
order m for ¢ always exists for any h€Z, m20, ¢€K*, cf. Lemma 1, [T2]. For
h-Padé pairs (P,Q) of order m for ¢, a rational function P/QEK (z) is uniquely
determined for any given h€Z, m20, ¢€K*. The element P/QEK (z) for an h-Padé
pair (P,Q) of order m for pEK * is referred to as the h-Padé approximant of
order m for ¢. A number méN is called a normal h-index for ¢€K* if (2) implies
deg Q=n. A normal h-Padé pair, i.e., deg Q is a normal h-index, is said to be
normalized if the leading coefficient of Q equals one. Normal (-1)-indices
(resp. (-1)-Padé pairs, (-1)-Padé approximants) will be simply referred to as
normal indices (resp. Padé pairs, Padé approximants). The set of all the normal
h-indices for ¢ will be denoted by

Aw(p):={m€N; m is normal h-indices for ¢},

A(o):=A-(9).

We can consider the series (1) over K=Q (a,b,...) with a, b, ...€C. In such

a case, 9™ defined by (1) turns out to be not only an element of C ((z7')),
but also an analytic function on {z€C; |z|>1}, and the h-Padé approximant of
order m for ¢‘™’ pointwise converges to ¢‘"’ with respect to the usual topology

on C for each z€C, |z|>]1 as m tends to infinity.

Proposition 1 (cf. [T1]). Let ¢€K* be a word over K=Q (A) with an

alphabet A possibly consisting of infinite letters.
(m) ={(- m/ 2
Hovo ™ [o]=(-1) =720 TT P(z) (h,m€Z, m20),
where (P,Q) is a normalized h-Padé pair of degree m for ¢, x| denotes the

largest integer not exceeding a real number x, and TT_ . indicates a product
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taken over all the zeros z of Q with their multiplicity in any field K

containing an algebraic closure of K.

Remark 1. We can take K=C in Proposition 1 in the case where A is a

subset (possibly empty) of C.

Remark 2. If m is not a normal h-index of ¢, then P, Q€K [z] have common
zeros. Hence, it follows from Proposition 1 that m# A .{¢) implies Hn+: ‘™ =0. The

converse of this fact is valid, cf. Lemma 2, [T2].

In particular, Proposition 1 holds for all the fixed point 9€AN(CK *) of a
substitution over any alphabet A. The following remark is usefull, while it is

valid only for a word ¢ consising of at most two symbols.

Remark 3. Let M be a matrix of size nxn witﬁ entries consisting of two
variables a, b (symbols). Then
det M=(a-b)"~'(pa+qb)€Z [a,b],
where p, q are integers defined by

p=det M | (x.51=¢1.0>, q=det M | (a.b)=¢0.1).

3. Thue-Morse, and Fibonacci cases.

J.-P. Allouche, J. Peyriére, Z.-X. Wen and Z.-Y. Wen considered H...({) for
the Thue-Morse sequence {=abbabaab--- with (a,b)=(1,0), and showed that the
2-dimensional word H, ™ ({) (mod 2) of (n,m)éN? is 2-dimensionally automatic;
it is remarkable that A ({)=N is known, cf. [A-P-ZXW-ZYW].

In general, it is very difficult to give an explicit formula of H. ‘™ (9) for
a given infinite word ¢ that is not periodic, while explcit formulae of H, ‘™ (1)
are completely given for the Fibonacci word g=abaabab..., cf. Theorems 1-5 in

[K-T-W]. By f. we denote the n-th Fibonacci number (f-,=fo=1, fa=fa-.+f.-2). Let
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n = §i(m)fe (8:(n)€f{0,1}, 8,+:(n)8:(n)=0 for all i20)

i20

be the reperesentation of n in the Fibonacci base due to Zeckendorf. We write

m k N
iff 8;(m)=5;(n) holds for all 0¢i<k. We put
1(k,8) := -1 if k=s (mod B8) for an s€S,

1 otherwise,

for a subset S of {0,1,2,3,4,5}. Then we have, for instance,

Proposition 2 (Theorem 3, [K-T-W]). For any k, m, i20 integers satisfying

m =wer 1, 08i8fusi-1.
the following formulae hold:
ka('")[ﬂ]|(a.b)=n.0) =1(k;2)1(k;1,4) fu-s,
if either §x+:(m)=0 and 0%ilf«-.,
or S¢+1(m)=1 and 0¢i<f.,
=1(k:1.2,4)f-2.
if either 8v+:(m)=0 and i=fi-.,
or i=fu+i-1,
=0 otherwise,
ka ™ 3] a.or=c0. 1y =2(k;1,2,4)1(k;1,4) fu—s,
if either 8«+1(m)=0 and 0%ilf.-.,
or dx+1(m)=1 and 0¢i<fy,
=1(k:2)f-a.
if either 3u+:(m)=0 and i=f.-.,
or i=fy+:-1,

=0 otherwise.

Notice that Proposition 2 together with Remark 3 gives a part of the explicit
formulae for H. ‘™ [2]. In comparison with the automayicity result for the

2-dimensional word (H. ‘™’ (%) (mod 2))(n 1)EN 2 for the Thue-Morse sequence
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{=10010110- -+ given in [A-P-ZXW-ZYW], we gave an explicit expression of the
2-dimensional word H, ‘™ (1) (n,m)eN 2 for the Fibonacci word p=abaabab..., which
is rather complicated, cf. Theorem 5 in [K-T-W].

In [T2], we developped a theory of analysis on words, especially for words of
Fibonacci type, i.e. the fixed points of substitutions of the form

6(a):=a*b, o(b):=a (k>0). (3)

We denote by e=t(a,b;k) the fixed point of the substitution defined by (3), and
by |w!K:=the number of occurences of an identical symbol x appearing in a word
w. In Sections 2, 3 in [T2], we gave explicit formulae for the continued
fraction expansion with partial denominators€K [z] (K=Q (a,b)) and normalized
Padé pairs for the Laurent series ¢ !’ (z)=¢t(z;a,b;k) defined by (1) with e¢=e¢,

cf. Theorems 1-12, [T2]. For instance, we have

Proposition 3 (Theorem 8, [T2]). Let k22. The continued fraction expansion

of the Laurent series ¢ "'’ (z)€EK ((z7!)) for ¢=¢(a,b;k)€{a,b}"® is given by
£ -1 (z)=[0;a"*(z-1), (-1)(a-b) " 'ha?ba-1*, (-1)™(a-b)ha"'has. "' (z-1)]axo.,
where
ho:=l¢"(a)|.a+| 0" (a) | sb(=g.a+g.-1bEZ [a,b]), fu=f.. . :=|0"(a)l,

: fn : (.j_l)fn+l
b.*=b,*(z:k):=2 > zi- = (k-j)z +k =, z'€Z [z].
08isfns1-1 1£J¢k-1 J 0<isfa-1 2]

A

If (a,b)eC ?, then Proposition 3 is valid under the condition
a*b, h,(=g.a+g.-.:b)#0 for all n20. (4)
We can give explicit formulae for the continued fraction expansion for ¢ !’ (z)=

¢(z:a,b:k)EC ((z~')) with (a,b)EC %, which does not satisfy (4). For example,

Proposition 4 (Theorem 9, [T2]). Let (a.b)eC? with h.=0. a#0. t20. Then

eV (z)=¢ "V (z;a,-8¢-17'g12)
=[O;al:d—l’C°ld°r- -0Jct—Z'd"ZJel)ezlil'\jm]:‘o
holds with partial denominatorse€C [z] given by

a,=a"!'(z-1),

Cm=(_1 )m(a-b)hm— lhn*' 1 -t (Z‘l),
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dm=(-1)""'(a-b) ‘hm+2ban*,
e1=(-1)*"'(a-b)ht-i " ?(z-1)bi -4,
e:=(-1)'"'(a-b) 'hy-,?b:*,
in=(-1)"**""(a-b)hi-17%8n"'8u+1 "' (z-1),

Jm=(—1)m+' (a_b)‘lht—lzgm+lzbm+t+l*-

Concerning such continued fractions, we studied uniform convergence in
Section 5, [T2]. Related to the product formula (Proposition 1), we studied the
distribution, and the simplicity of the zero points of Q(z) for the Padé pairs
(P,Q) for ¢(z;a,b;k) in Section 4, [T2].

It is an interesting problem which asks whether we can do the same for the
Thue-Morse word {. The fact A ({)=N (cf. [A-P-ZXW-ZYW]), we mentioned, says
that all the denominators of the continued fraction for {‘~!’(z) are of degree
1. It is of special interest to find the the continued fraction expansion for
{-Y(z) in a closed form.

We could not give a completely explicit formula for H. ™ [¢(z;a,b;k)] when

k22; we gave the following

Proposition 5 (cf. Corollary 6, [T2]).

an‘°’[E(Z;a.b;k)])=rn(gna+gn-|b)(a-b)f“_1,

He +1—1(°’[6(Z:a.b;k)]=sn(gna+gn-1b)(a-b)f“*‘—2 (n20);
and Ho‘®? =0 for all m#f. and m#f,.,-1 (n20), where r,#0, s.#0 are integers

independent of a, b.

4. Toeplitz cases. In this section, we consider Hankel determinants for

2-adic Toeplitz words
W=WiWzWs... (WiEA).
Note that the numbering of the symbols starts from 1 (not from 0), cf. Sections

2, 3. Recall that a word w=w,w.ws... (w;€EA) is a 2-adic Toeplitz word iff
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ord.(m)=ord:(n) ==> wWn=Wa.
Without loss of generality, we may suppose A={a,,a;,a:,...}. In some cases, we
use symbols a, b, ¢, ... instead of a,, a., a», ... as before. Recall also the
universal 2-adic Toeplitz word
w=abacabadabacabaeabacabadabacabaf. . .
and the notation
Holo] :=H. ° [a]

defined in Section 1. For example, by direct calculation, we have

H:[e] = | a b a ¢ a b a
b a ¢c a b a d
a ¢ a b a d a
c a b ad a b
a b a d a b a
b a d a b a ¢
a d a b a ¢ a

= -4ab2c*+abc®-ac®+16ab?c®d-12abc*d+2ac®d-24ab?c?d?
+8abc®d?+ac*d?+16ab2cd®+8abc?d®-4ac®d®-4ab?d*~-12abcd*

+ac?d*+4abd®+2acd®-ad®
= -a(2b-c-d)2(c-d)*.

We say that a form (i.e, a homogeneous polynomial) PEZ [A] is completely

reducible iff P=0, or P can be factorized into linear forms€Z [A], i.e.,
P=P\P, - Py (deg P:=1 for all 1£igk).

One can check that H.[w] are non-zero completely reducible forms for small n

(for n¢30 or so) by using the soft “Mathematica”. This is a curious phenomenon,

since, for instance, H:[w] (resp., Hi[w], etc.) is not completely reducible for

any word w having abc (resp., abacd, etc.) as its prefix of w. Related to such a

phenomenon, we can show the following

Proposition 6 (Main Theorem in [M-T-Tn]). Let w be a fixed point of a

substitution of constant length 2. Suppose w is a word strictly over an alphabet



187

consisting of at least 3 symbols. Then H,{w] is completely reducible for all n2l

if and only if w is a 2-adic Toeplitz word.

The proof of this proposition together with something more interesting

(probably) will appear in the forthcoming paper [M-T-Tn].
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