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1 Introduction

When we discuss zeros of the Riemann zeta function $\zeta(s)$ , the Euler product expression

and the functional equation play fundamental roles. That is, the region ${\rm Re}(s)>1$ is zero-

free because the Euler product converges absolutely in Re(s) $>1$ , and $\mathrm{h}\mathrm{o}\mathrm{m}$ the functional

equation the set of zeros of $\zeta(s)$ in ${\rm Re}(s)<0$ coincides with $\{-2n : n\in \mathbb{Z}_{>0}\}$ . But in

general it is difficult to analyze zeros of $\zeta(s)$ in $0<{\rm Re}(s)<1$ .

In 1992 Kurokawa [K] introduced the absolute tensor product to break this difficulty.

Roughly speaking, it constructs the new zeta function $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ from ordinary

zeta functions $Z_{1}(s),$
$\ldots,$

$Z_{r}(s)$ such that zeros and poles of $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ are located

at $\rho_{1}+\cdots+\rho_{r}$ , where $Z_{j}(\rho_{j})=0$ or $\infty$ . If $Z_{1}(s),$
$\ldots,$

$Z_{r}(s)$ have Euler product expressions

and functional equations, we expect that $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ also has (the generalization

of) Euler product expressions and functional equations. If these expectations are true,

new informations about zeros and poles of $Z_{j}(s)$ may be obtained by the same manner

as $\zeta(s)$ . But in general, from our present knowledge we need enormous calculations to

obtain the Euler product expressions of $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ (See [KK2] for the case of

$(\zeta\otimes\zeta)(s))$ . Then, it is also expected that there are somewhat relations between the Euler

factor of $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ and the absolute tensor product of Euler factors of $Z_{j}(s)$ . In

this survey we mainly treat the latter and we call it the multiple Euler factor. From the
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recent investigations [$\mathrm{K}$ , KKI, Al, $\mathrm{K}\mathrm{W}$ , A3, A4] we know that the multiple Euler factors

are essentially expressed by the exponential of the polylogarithm. From [KK2, A2] we also

know that the multiple Euler factors have functional equations.

The purpose of this survey is to explain the construction and expectations of the absolute

tensor products and to introduce the recent developments about the multiple Euler factors.

For the background of this theory we refer to an excellent survey [M] by Manin.

This survey is organized as follows. In Section 2 we recall the construction of the absolute

tensor product. In Section 3 we explain its expectations and their reasons. In Section 4

we introduce the recent results for the multiple Euler factors.

2 Construction of the absolute tensor product

Definition 2.1 (regularized product). Let $m$ : $\mathbb{C}arrow \mathbb{Z}$ express the order of zeros of a

meromorphic function. Put

$\zeta_{m}(w, s):=\sum_{\rho\in \mathbb{C}}\frac{m(\rho)}{(s-\rho)^{w}}$ , (2.1)

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}-\pi\leq\arg(s-\rho)<\pi$ . We assume the following conditions (i) and (ii):

(i) The right hand side of (2.1) converges absolutely for sufficiently large ${\rm Re}(w)$ .

(ii) $\zeta_{m}(w, s)$ has a meromorphic continuation to Re(w) $>-\mathcal{E}$ for some $\epsilon>0$ and $\zeta_{m}(w, s)$

is holomorphic at $w=0$ .

Then, the regularized product is defined by

$\prod_{\rho\in \mathbb{C}}((s-\rho))^{m(\rho)}:=\exp[-\frac{\partial}{\partial w}\zeta_{m}(w, s)|_{w=0}]$ . (2.2)

Remark 2.2. Under suitable (not strong) assumptions for $m$ , we can prove that the order

of zeros of (2.2) at $s=\rho$ equals $m(\rho)$ . When $m(\rho)<0$ , at $s=\rho(2.2)$ is a pole with order

$|m(\rho)|$ . See [JL, Section 2 in Part I] for detail.
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Remark 2.3. The regularized product was extended by Illies [I] under weaker assumptions.

See also [HKW] for needed regularized products.

Definition 2.4 (absolute tensor product). Let

$Z_{j}(s) \cong\prod_{\rho\in \mathbb{C}}((s-\rho))^{m_{j}(\rho)}$ $(j=1, \ldots, r)$
,

where $f(s)\cong g(s)$ means that there exists $Q(s)\in \mathbb{C}[s]$ satisfying $g(s)=e^{Q(s)}f(s)$ . We

assume that $m_{j}(\rho)=0$ for sufficiently large ${\rm Re}(\rho)$ . Then, their absolute tensor product is

defined by

$(Z_{1}\otimes\cdots\otimes Z_{r})(s):=,.\coprod_{\beta 1\cdot.,\rho_{r}\in \mathbb{C}}((s-\rho_{1}-\cdots-\rho_{r}))^{m(\rho_{1},\ldots,\rho_{\mathrm{r}})}$
,

where

$m(\rho_{1}, \ldots, \rho_{r}):=m_{1}(\rho_{1})\cdots m_{r}(\rho_{r})\cross\{$

1 if ${\rm Im}(\rho_{1}),$
$\ldots$ , ${\rm Im}(\rho_{r})\geq 0$ ,

$(-1)^{r-1}$ if ${\rm Im}(\rho_{1}),$
$\ldots$ , ${\rm Im}(\mathrm{p}_{r})<0$ ,

$0$ otherwise.

(2.3)

Remark 2.5. Roughly speaking, from Remark 2.2, zeros and poles of $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$

are located at $\rho_{1}+\cdots+\rho_{r}$ , where $Z_{j}(\rho_{j})=0$ or $\infty$ . Strictly, under suitable assumptions

the order of zeros of $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ at $s=\rho$ is given by

$\sum_{\rho 1+\cdots+\rho_{r}=\rho}m(\rho_{1}, \ldots, \rho_{r})$
.

Here, we remark that under the assumption $\rho_{1}+\cdots+\rho_{r}=\rho,$ $m(\rho_{1}, \ldots, \rho_{r})=0$ except for

finitely many $(\rho_{1}, \ldots, \rho_{r})\in \mathbb{C}^{r}$ because of the assumption of $m_{j}$ and the definition of $m$ .

3 Expectations of the absolute tensor product

In this section we explain expectations for the absolute tensor product of zeta functions

and their reasons. To put it simply, when $Z_{1}(s),$
$\ldots,$

$Z_{r}(s)$ are zeta functions, we expect
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that $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ has the properties similar to those of zeta functions. We formalize

this below.

Expectation 3.1. Assume that $Z_{1}(s),$
$\ldots,$

$Z_{r}(s)$ are meromorphic functions offinite order

and satisfy the following conditions (i) and (ii):

(i) (Euler product)

$Z_{j}(s)= \prod_{\mathrm{p}\in P_{j}}H_{p}^{j}(N_{i}(p)^{-s})$

$({\rm Re}(s)>\sigma_{j})$ ,

where $P_{j}$ are at most countable sets of generalized primes, $H_{\mathrm{p}}^{J}(T)\in 1+T\mathbb{C}[[T]]$ and

$N_{j}$ : $P_{j}arrow \mathbb{R}_{>1}$ .

(ii) (functional equation)

$\hat{Z}_{j}(\sigma_{j}-s)=\hat{Z}_{J}(s)$ ,

where $\hat{Z}_{j}(s):=F_{j}(s)Z_{j}(s)$ and $F_{j}(s)$ is expressed in terms of multiple gamma functions.
Then, we expect that

(1) (Euler product)

$(z_{\iota\otimes\cdots\otimes Z_{f})(s)\cong\prod_{(p_{1},\ldots,p’)\in P_{1}\mathrm{x}\cdot \mathrm{x}P,}H_{(_{\mathrm{P}1p,)(N_{1}(p_{1})^{-s},\ldots,N_{r}(p_{r})^{-s})}}}‘.’\ldots,$
,

where $H_{(p_{1},\ldots,p_{f})}(T_{1}, \ldots, T_{r})$ are $r$ -variable formal series with constant term 1 if $N_{1}(p_{1}),$
$\ldots,$

$N_{r}(p_{r})$

are distinct and $H_{(\mathrm{P}1,\ldots,p_{\mathrm{r}})}$ have their degenerate forms otherwise.

(2) (functional equation)

$\hat{Z}(\sigma_{1}+\cdots+\sigma_{r}-s)=\hat{Z}(s)^{(-1)^{r-1}}$

Here $Z(s):=F(s)(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ and $F(s)$ is expressed in terms of $(G_{1}\otimes\cdots\otimes G_{r})(s)$ ,

where $G_{j}(s)=F_{j}(s)$ or $Z_{j}(s)$ and $(G_{1}, \ldots, G_{r})\neq(Z_{1}, \ldots, Z_{r})$ .

(3) There are somewhat relations between $H_{(p_{1},\ldots,p_{r})}$ and $H_{p_{1}}^{1}\otimes\cdots\otimes H_{p_{f}}^{r}$ . (We call the latter

the multiple Euler factor.)
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The reason for (2) is that zeros and poles of $(Z_{1}\otimes\cdots\otimes Z_{r})(s)$ distribute almost sym-

metrically. But we remark that real zeros and poles of $Z_{j}(s)$ break this symmetry (see

(2.3) $)$ .

Next we explain the reason for (1). For this purpose we first recall the relation between

Euler products with functional equations and Weil’s explicit formula [W] (see also [H]).

For simplicity we consider the Riemann zeta function $\zeta(s)$ . The Euler product expression

for the Riemann zeta function is given by

$\zeta(s)=\prod_{p:\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{a}}(1-p^{-\epsilon})^{-1}$

$({\rm Re}(s)>1)$ (3.1)

and the functional equation is given by $\xi(s)=\xi(1-s)$ , where $\xi(s):=s(s-1)\pi^{-(e/2\rangle}\Gamma(\frac{s}{2})\zeta(s)$ .

On the other hand, Weil’s explicit formula is given as follows:

Proposition 3.2. 2 Let $h(t)$ be a holomorphic even function on the $st$rip $|{\rm Im}(t)| \leq\frac{1}{2}+\delta$

such that $|h(t)|\ll(1+|t|)^{-1-\delta}$ on the above strip. Then, we have

$\sum$ $h(\gamma)$ $=$ $- \frac{1}{2\pi}\sum_{p:\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}}\sum_{n=1}^{\infty}\frac{\log p}{p^{n/2}}\hat{h}(\frac{n\log p}{2\pi})+\frac{1}{4\pi}\int_{-\infty}^{\infty}h(u)\frac{\Gamma’}{\Gamma}(\frac{1}{4}+\frac{iu}{2})du$

$\xi(\frac{\ 1}{2}+ \mathfrak{i}\gamma\rangle=0(\gamma)>0$

,

$+ \frac{1}{2}h(\frac{i}{2})-\frac{\log\pi}{4\pi}\hat{h}(0)$ , (3.2)

where

$\hat{h}(x):=\int_{-\infty}^{\infty}h(u)e(-ux)du$ $(e(x):=e^{2\pi ix})$ .

For the proof of Proposition 3.2, we consider the integral

$\frac{1}{2\pi i}\int_{\partial D_{T}}H(t)\frac{\xi’}{\xi}(t+\frac{1}{2})dt$ , (3.3)

where $H(t):=h(t/i)$ and $D_{T}:= \{x+iy:|x|<\frac{1}{2}+\delta, 0<y<T\}$ . We calculate (3.2) by

two methods and take the limit $Tarrow\infty$ . First we calculate (3.3) by the residue formula

2Usually (3.2) with $h(t)=f(t)+f(-t)$ for suitable $f$ is called Weil’s explicit formula.
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and $Tarrow\infty$ . Then, we obtain the left hand side of (3.2). Second we calculate (3.3) by the

Euler product and the functional equation and take the limit $Tarrow\infty$ . Then, we obtain

the right hand side of (3.2). Hence we get Proposition 3.2.

On the other hand, we recover the Euler product expression (3.1) from Proposition 3.2

by specializing

$h(t)= \frac{1}{(t+(s-\frac{1}{2})i)^{2}}+\frac{1}{(t-(s-\frac{1}{2})i)^{2}}$

for fixed ${\rm Re}(s)>1$ .

We return to the reason for (1). For simplicity we consider the case $Z_{j}(s)=\zeta(s)$ for

any $j$ . From the above discussion it would be sufficient to obtain the explicit formula for

$\zeta^{@r}(s)$ when we want the Euler product for $\zeta^{\mathfrak{H}r}(s)$ . For this purpose we consider

$\frac{1}{(2\pi i)^{r}}\int_{\partial D_{T}}\cdots\int_{\theta D_{T}}G(t_{1}+\cdots+t_{r})\frac{\xi’}{\xi}(t_{1}+\frac{1}{2})’\cdots\frac{\xi’}{\xi}(t_{r}+\frac{1}{2})dt_{f}\cdots dt_{1}$, (3.4)

where $G(t):=g(t/i)$ and $g(t)$ is a holomorphic function on the strip $|{\rm Im}(t)| \leq\frac{r}{2}+\delta$

satisfying $g(-t)=(-1)^{r-1}g(t)$ and $|g(t)|\ll(1+|t|)^{-r(1+\delta)}$ on the above strip. Calculating

(3.4) by the same manner as (3.3), we would obtain the explicit formula for $\zeta^{\theta r}(s)$ . In

particular, from the Euler product for $\zeta(s)$ we expect that a summation through $(p_{1}, \ldots,p_{r})$

with prime numbers $p_{j}$ appears in the explicit formula. We remark that Koyama-Kurokawa

[KK2] calculated the Euler product expression for $(\zeta\otimes\zeta)(s)$ by the above method.

The reason for (3) is the same as (1). We remark that the explicit formula for $(H_{\mathrm{p}_{1}}^{1}\otimes$

. . . $\otimes H_{Pr}^{r}$ ) $(s)$ would be obtained by the same manner as $\zeta^{\theta r}(s)$ and we expect that the

explicit formula for $(Z_{1}\otimes\cdots\otimes Z_{r})(\mathrm{s})$ is related to that for $(H_{p_{1}}^{1}\otimes\cdots\otimes H_{p,}^{r})(s)$ . But most

parts for (3) remain mysterious.
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4 Multiple Euler factors

In this section we introduce the recent results for multiple Euler factor of the Riemann

zeta function. That is, we consider $(\zeta_{p_{1}}\otimes\cdots\otimes\zeta_{p_{f}})(s)$ , where $\zeta_{p}(s):=(1-p^{-\epsilon})^{-1}$ for prime

numbers $p$ .

First we introduce the polylogarithm type expression for $(\zeta_{p_{1}}\otimes\cdots\otimes\zeta_{\mathrm{P}r})(s)$ as follows:

Theorem 1 $(_{\backslash }[\mathrm{A}4])$ . Let $p_{1},$ $\ldots,p_{k}$ be distinct prime numbers and $r_{1},$ $\ldots,$
$r_{k}$ be positive

integers. Then, in ${\rm Re}(s)>0$ we have

$((_{p1}^{\emptyset r_{1}}\otimes\cdots\otimes(_{\mathrm{P}k}^{\otimes \mathrm{r}}k)(s)$

$\cong$ $\exp[\sum_{i=1}^{k}\sum_{n=1}^{\infty}\frac{1}{n}[g_{r_{j}}(\frac{1}{2\pi in}\frac{\partial}{\partial \mathrm{u}})(\frac{p_{j}^{-nsu}}{u\prod_{l\neq j}(e(n\frac{1\mathrm{o}g\mathrm{p}_{\mathrm{j}}}{\log p\iota}u)-1)^{r_{l}}})]_{\mathrm{u}=1}]$ , (4.1)

where

$g_{N}(z):=\{$

$\frac{(z-1)(z-2)\cdots(z-(N-1))}{(N-1)!}$ if $N\geq 2$ ,

1 if $N=1$ .

Remark 4.1. Following special cases of Theorem 1 had been proved when we obtained

Theorem 1:

(1) when $k=1([\mathrm{K}])$ ,

(2) when $r_{1}=\cdots=r_{k}=1$ ( $[\mathrm{K}\mathrm{K}1,$ $k=2]$ , [Al, $k=3],$ $[\mathrm{K}\mathrm{W},$ $k\geq 4]$ ),

(3) when $k=2([\mathrm{A}3])$ .

Remark 4.2. Theorem 1 is the generalization of the formula $\zeta_{p}(s)=\exp[\sum_{n=1}^{\infty}n^{-1}p^{-n\epsilon}]$

for ${\rm Re}(s)>0$ .

Remark 4.3. The absolute convergence of (4.1) depends on the consequence of Baker’s

result [$\mathrm{B}$ , Theorem 3.1] about diophantine approximations. That is, for distinct prime

numbers $p$ and $q$ there exists $c=c(p, q)>0$ such that

$|1-e(n \frac{\log q}{\log p})|=O(n^{c})$ as $narrow\infty$ .
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Remark 4.4. When $r_{1}=\cdots=r_{k}=1$ , Theorem 1 says

$(\zeta_{\mathrm{P}1}\otimes\cdots\otimes\zeta_{p,})(s)$ $\cong\exp[\sum_{k=1}^{r}\sum_{n=1}^{\infty}(\frac{p_{k}^{-ns}}{n\prod_{j\neq k}(e(n\frac{10}{10}u\ )\mathrm{g}p_{j}-1)})]$

$\in$ $1+(p_{1}^{-s}, \ldots,p_{r}^{-s})\mathbb{C}[[p_{1}^{-s}, \ldots,p_{r}^{-s}]]$ .

This implies that Expectation 3.1 (1) holds for $Z_{j}(s)=\zeta_{p_{j}}(s)$ .

Suppose that $p_{1},$ $\ldots,p_{r}$ are distinct or same prime numbers and we define $\zeta_{p_{1},\ldots,p,}(s)$ by

$\zeta_{p_{1},\ldots,p_{f}}(s)=\{$

$\exp[\sum_{k=1}^{r}\frac{1}{(-2\pi i)^{k-1}}g_{r}^{(k-1)}(-\frac{s\log p}{2\pi i})\mathrm{L}\mathrm{i}_{k}(p^{-s})]$ if $p_{1}=\cdots=p_{r}=:p$,

$\exp[\sum_{k=1}^{r}\sum_{n=1}^{\infty}\frac{p_{k}^{-n\epsilon}}{n\prod_{i\neq k}(e(n_{\log p_{j}}^{10}AR\mathrm{h})-1)}]$ if $p_{1},$ $\ldots,p_{r}$ are distinct,

where

$\mathrm{L}\mathrm{i}_{k}(x):=\sum_{n=1}^{\infty}\frac{x^{n}}{n^{k}}$ $(|x|<1)$ .

This is the right hand side of (4.1) when $k=1$ and when $r_{1}=\cdots=r_{k}=1$ . (We need

a little calculation to lead it in the $c$ase $p_{1}=\cdots=p_{r}$ . See [A3, (5.3)].) From Theorem

1 $\zeta_{p_{1},\ldots,p_{f}}(s)$ is originally defined in ${\rm Re}(s)>0$ and has a meromorphic continuation to all

$s\in \mathbb{C}$ . We introduce a functional equation for $\zeta_{p_{1},\ldots,p_{f}}(s)$ as follows:

Theorem 2 $([\mathrm{A}2])$ . Let $p_{1},$ $\ldots,p_{r}$ be distinct or same prime numbers. Then, we have

$\zeta_{p_{1},\ldots,p_{f}}(-s)$

$=$ $\{\zeta_{p_{1},\ldots,p_{f}}(s)(\prod_{k=1}^{r-1}Z_{r,k}(s, (p_{1}, \ldots,p_{r})))\exp[2\pi i\zeta_{r}(0, s, (\frac{2\pi i}{\log p_{1}}, \ldots\frac{2\pi i}{\log p_{r}}))]\}^{(-1)^{f-1}}$ ,

where

$Z_{r,k}(s, (p_{1}, \ldots,p_{r}))$
$:=$

$\prod_{1\leq j_{1}<\cdots<j_{k}\leq r}\zeta_{p_{j_{1}},\ldots,p_{j_{k}}}(s)$
,

$\zeta_{r}(w, s, (\omega_{1}, \ldots, \omega_{r}))$
$:=$

$\sum_{n_{1)}\ldots,n_{\Gamma}\succeq 0}(n_{1}\omega_{1}+\cdots+n_{r}\omega_{r}+s)^{-w}$
.
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Remark 4.5. Koyama-Kurokawa [KK2] obtained Theorem 2 in the case $r=2$ .

Remark 4.6. The asymmetric term

$\prod_{k=1}^{r-1}Z_{r,k}(s, (p_{1}, \ldots,p_{r}))$

arises from the real pole $s=0$ of $\zeta_{p}(s)$ . See Expectation 3.1 (2) and its reason.

Remark 4.7. $\zeta_{r}(0, s, (\omega_{1}, \ldots,\omega_{r}))$ is a polynomial with respect to $s$ . In fact, we have

$\zeta_{r}(0, s, (\omega_{1}, \ldots,\omega_{r}))={\rm Res}_{t=0}\frac{e^{-\epsilon t}}{t\prod_{k=1}^{r}(1-e^{-(v_{k}t})}$ .
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