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THE FIXED-POINT HOMOMORPHISM
IN EQUIVARIANT SURGERY
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SECTION 1. INTRODUCTION: THE EQUIVARIANT SURGERY EXACT SEQUENCE

Let G be a finite group. The classification of G-manifolds can be approached
through the equivariant surgery exact sequence. In the category of locally linear PL-
G-manifolds with a certain stability condition (“the gap hypothesis”), a surgery exact
sequence was set up by I. Madsen and M. Rothenberg in [MR 2], when the group G
is of odd order. One of its central feature is equivariant transversality, which holds
only in those circumstances.

Let X be a (locally linear PL) G-manifold with boundary. The main target
we wish to investigate is expressed, in this context, as the “structure set” gc;(X ,0),
which is the set of equivalence classes of G-simple homotopy equivalences h : M — X
with 8h a PL-homeomorphism, where two such objects are equivalent when they are
connected (in a commutative dia.gram) with a PL-G-homeomorphism of the domain
M.

When one wishes to analyze the surgery exact sequence, one needs to compute
the set Ng(X) of G-normal cobordism classes of G-normal maps. By virtue of G-
transversality, this set is interpreted in terms of bundle theories, and therefore is
classified by a G-space F//PL. (See [MR 2, §5].)

Madsen and Rothenberg set up the equivariant surgery exact sequence and
identified Ng (X) as a term in the sequence, in a suitable category of G-spaces when
G is a group of odd order. Here we cite their main results:
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The strong gap condition. [MR 2, Theorem 5.11] If G is a group of odd order and
X 18 a G-oriented PL-G-manifold which satisfies the gap conditions

10 <2dimX¥ <dimX¥  for K c H X" # XX,
then /Vg(X /0X) is in one-to-one correspondence with normal cobordism classes of

restricted G-normal maps over X, as defined in [MR 2, 5.9].

The equivariant surgery exact sequence. [MR 2, Theorem 5.12] If G, X are as
above and we assume that X is simply-connected for all H, then there is an ezact
sequence

— 86(D" x X,8) = Ng(D* x X,8) = Li1m — 86(X, 8) = No(X/8X) = Lm(G)

where
Ln(G) = Oy Lmuy(NeH/H)

with m(H) = dim X ¥, and the sum is over the conjugacy classes of subgroups of G.

Long time ago ([N 6]) the author have worked on the explicit structure of the
terms in the exact sequence, and, in particular, analyzed the equivariant homotopy
type of the classifying space F//PL. In this paper, we try to construct an example for
particular groups G to illustrate what kind of obstructions lie in determining those
homotopy type information. .

Madsen and Rothenberg ([MR 2]) had identified the terms of the exact sequence
in geometric and homotopy theoretic methods, and the author ([N 6]) had modified
their methods to interpret the terms in a homotopy theoretic way. B

Two of the terms in the equivariant surgery exact sequence, Ng(X/8X) and
L(G), are defined using homotopy-theoretic and algebraic methods, respectively.
Therefore they naturally inherit a Mackey functor structure over the system of sub-
groups of G. However, the remaining term, the structure set Sg(X,d), is concerned
with homeomorphisms, and so it does not provide a straightforward way to construct
a functorial (Mackey) structure with respect to the system of subgroups of G.

Ranicki ([R 1,2]) has identified the structure set term in the equivariant surgery
exact sequence with an “algebraically defined structure set,” in his terminology. He
used categorical constructions to identify the surgery exact sequence itself using al-
gebraically constructed objects, thus making it possible to apply various categorical
techniques. Making use of his methods, it is possible to interpret the equivariant
structure set Sg(X, d) in a categorical manner. However, that approach puts one in
a stabilization situation, and thus requires a very strong stability hypotheses.

In a series of papers [N 1, 2, 3] we used geometric methods, rather than alge-
braic, to directly construct a Mackey structure within the terms of the equivariant
surgery exact sequence, in the case where the manifolds X are very special ones. So,
at least in those situations, the Mackey functor structure is realized in the equivariant
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surgery exact sequence, without going through the stable homotopy category, thus
giving the result to the structure set of the manifold itself.

In this paper, we investigate an explicit example of groups, that is, non-abelian
metacyclic groups, for which the equivariant classifying space F//PL was not quite
determined in ([N 6]), to see if those methods can be expanded to more general set
of groups. If we can determine the structure of F/PL more precisely in those cases,
then we could expect to obtain clearer understanding of the Mackey structure in the
equivariant surgery exact sequence.

SECTION 2. DEFINITION: THE MACKEY FUNCTOR STRUCTURE

The Mackey functor structure over the system of subgroups of the finite group
G is defined as follows. For an RG—module V, let Iso(V) be the set of isotropy
subgroups of the G-module V.

Let M be an abelian group valued blfunctor over the category Iso(V), and
for the morphisms in Iso(V'), that is, inclusions of subgroups H < K, we use the
notation Res¥ : M(K) — M(H) and IndX : M(H) — M(K) for the corresponding
morphisms. Also we suppose there is a conjugation morphism ¢g : M(H) — M(H?Y)
for any H and and g € G.

The system M, ResZ K> Ind¥ HCq is called a Mackey functor if the following con-
ditions are satisfied for all H < K in Iso(V):

cg =idn) if g€ H; Cg10g92 = Cg; © Cg,
IndX& oc, = ¢; 0 Ind¥, Res}}; ocy = cg 0 Resl
-1
Res§ oInd% = Y Indff x, ocg o ResiH*
H\G/K

Let A(G : V) be the Grothendieck group of finite G-sets X such that Iso(X) C
Iso(V). Then a Mackey functor M over Iso(V') becomes a natural A(G : V')-module,
and thus traditional algebraic calculations are applicable to compute such terms. See
[MS] for example.

SECTION 3. THE FIXED-POINT HOMOMORPHISM
FOR NONABELIAN GROUP ACTIONS
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Let us consider the metacyclic group G = Gy =Z/7 X Z/3:
[

l1—H=Z/T—G—1Z/3—1

Here o : Z/3 — AutZ/7 is defined by multiplication by 2. The system RO of real

representation rings is well-known. We fix notation as follows. Let A be a_subgroup
of order 3. All such are conjugate to each other.
Here the system RO consists of

RO(e)=Z>1
ROH)=7*31,2,2,2
RO(A)=7%31,w
RO(G)=2Z2>51,w,P

where

Resf(1) = 1,Resf () =2,
Res? (1) = 1, Res? (w) = 2,
Res$(1) = 1, Res§ (w) = 2, Res$ (P) = 21 + 22 + 24,
Res§ (1) = 1, Res§ (w) = w, Res§ (P) = 2 + 2w.
Note that Res$ is not surjective but is onto the W H-invariant submodule of RO(H),

and therefore we cannot have a decomposition for this system.
We remark that any metacyclic group has a similar system RO.

In ([N 6]), we determined the term J\7g(X) of the equivariant surgery exact
sequence, that is, the set of equivariant normal maps, localized at 2. More precisely,
we have

N&(X) @) = [z, F/PL|® |
= (X", BJo, x @ H (X; Li(e)*) x D Hi (X;

126 122
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).

where A 5
Li(H)= @ L;(NuI/T)
(T)CH
is the system (that is, the Mackey functor structure, in the notation of [E]) of the
L-group term in the equivariant surgery exact sequence.
Thus we express ng(X )2) as the product of Bredon cohomology groups and

a certain group of homotopy classes of maps between systems, which in turn can be
calculated by a natural spectral sequence. '
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Together with Madsen-Rothenberg’s description of Ng (X) localized away from
2 as a product of equivariant K-theories, this gives us an algorithm of calculation of

the group A7G(X ).
We now consider the non-injectivity of the fixed-point homomorphism of:
*) Pres§ : HZ (X; M) — @H" (xT M(G/T))
(D) -

with M = 7,,(F/PL). This would in turn detect the equivariant k-invariant of F/PL,

as investigated in ([N 6]). Non-triviality of the k-invariant would imply the existence
of some new information hiding in the Mackey structure of the terms of the equivariant
surgery exact sequence that we are interested in.

Assumption. We assume that the homomorphism (*) is injective on the group
Hi? (F/PL(z’ -2); 1_r(F/PL))

in which the i-th equivariant k-invariant of F//PL lies, for i < n.

Under this assumption, the k-invariants in dimension less than n are all de-
tected by the nonequivariant k-invariants, and therefore produce a map

F/PL — € "I:[lzc (£i,4)
1=2

which is an (n — 1)-equivalence.
In particular, we identify the (n — 1)-st Postnikov component of F/PL as

n-1
X = F/PL(n~1) = & x K (£2,2) x K (£4,4) x [] £ (£0r4),
1=6
which we denote by X throughout this section.
The next k-invariant lies in the group

HE (X 1_r,,(F/PL)) with 7 (F/PL) = L.
Proposition. For the group G = Ga1 and X as above, the homomorphism
D Resf : Hz* (X La) — D H™ (XT3 La(D))
(r)
18 not injective for some chjoice of n.

Our tool of computation will be the Bredon spectral sequence ([Bre, 1.10.4]):
EPY = Extga (qu(X),J\;!) = -Hgﬂ (X;A__l) y

where H,(X) is the system G/T' — Hg(XT) and Cg is the category of systems (con-

travariant functors on Og). All homology is understood to be with Z3)-coefficients.
The proof of the Proposition will occupy the rest of this section.
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Lemma. For the group G = Ga1, the homomorphism
@D Resg : H (IC(R_O, m); R_o) — @D H* (K (RO(T), m); RO(T))
- - (T)
is not injective for some k withm +4 < k < 2m.

Proof. Let Y =K (R_O, m) and M = RO. Consider the Bredon spectral sequence
Ep? = Extf, (Ho(Y), M) = HE" (Y;M).

Since RO(T') is a free abelian group, YT is a product of K(Z, m)’s.
We construct a projective resolution of H, (Y) in the category Cg of systems.

Bredon [Bre] pointed out that Cg has enough projectives and a projective resolution
can be condtructed using the projective objects F:

Fs(G/T) = Z[S")

for finite G-sets S.

In the stable range m < ¢ < 2m, generators of Hy(K(Z, m);Z) are exphcltly
written down by H. Cartan in [C, 11.6., Théoréme 2]. Also in the stable range Kiinneth
theorem implies that generators of H, (Y Z(z)) are just images of Cartan’s elements.
More precisely,

Hy (YT) 2 RO(T) ),

Hpmit (YT) =0,
Hpmyz (YT) =2 ROT) ®Z/2,
Hmis (YT) =0,

Hpwd (YD) 2 ROT)®2Z/2,  ete.

If we let F and F4) respectively denote a projective resolution of RO in Cg,
and of RO ® Z/2 in Cg with shifted dimension starting from g, respectively, then a
projective resolution of H,(Y) can be obtained by F' or sum of Fi,’s, one for each

Cartan generator in dimension g, as long as we consider matters below dimension 2m.
Now RO being the system as in (5.2), its projective resolution F' can be given

as follows:
FO = '(Fc;/c;)3 ® Fo/m,
F' =Fg/g ®Fga,
F* =Fgp®Fg. (t22),
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where

Fg/a(G/-) =
Fo/u(Gle) = FG/H(G/H) 23, Fg/u(G/A) = Fg/u(G/G) =0,
Fg/a(Gle) =Z®ZL° Fg a(G/A) = Z,Fg/a(G/H) = Fg/4(G/G) =0
Fg;c(Gle) = 2%, Fg/6(G/H) = Fg/c(G/A) = Fg/6(G/G) =

where the nontrivial maps are the identity maps, except the Z — Z @ Z°, which is

the inclusion onto the first component.
The maps are given as follows:

¢° : F® — RO :(Fg/6)*(G/G) 3 a1,a2,a3 — 1,w, P
FG/H(G/H) 3 by, by, b3 — 21, 29,23
¢1 . F‘1 — FO :FG/H(G/H) 3 C1,C2,C3 — Qg — 20.1,(13 - bl - bg - b3,0
Fg/a(G/A) 3d - a3 — 2a; — 2a,
Fg/A(G/e) >dy,...,d7 — by — 2a3,by — 2a1,b3 — 2a4,0,0,0
¢*: F? — F! :Fo/u(G/H) 3 e1,ez,e3 — 0,0,c3

Fgie(G/e) 3 f1,..., fa1 = cg —d +dy + d3 + dg — 2¢1,d5,dg, d7,0,. ..

gl -l p2e-2 :Fg/u(G/H) 3 e1,e3,€3 — €1,€2,0

Fgie(G/e) 3 f1y. .+, f210,0,0,0, f5,..., fa
¢** : F?* — F2*=1 .Fg,u(G/H) 3 e1,€3,€3 — 0,0, €3

Fg/e(G/e) 3 fry..., fa = f1, fa, f3, f4,0,

where s > 2.
Next we consider the system RO® Z/2. It is

RO®Z/2=(Z/20R") ®2/2
=Z/20w® P,

where

Z/2(G/-) = 2/2
*@(G/e) = w(G/H) =0,
w(G/A) = w(G/G) = 22,
P(G/e) = P(G/A) =,
P(G/H) =2/2*, P(G/G) = 2/2,
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where the nontrivial maps are the identity maps, except the Z/2 — Z/22, which is
the diagonal map.
Therefore its projective resolution Figy can be given as follows:

Fig) = Fiz/2) ® Flw) ® Fip)
with dimension shifted, where

Fa 2 = Fo) = Foc,
Fizy =0 (t22);
F(ow) = FG/G,
Fiy = Fo/c ® Fgyn,
F{,y = Fg/m,
Fi,y=0 (t>3)
F(py = Fg/c ® Foyn,
Flpy = Fgjc ® (Fo/u)® @ Fg/a,
Flpy = Fg/e
Flpy=0 (t>4),

where the morphisms are easily computed by the explicit description of the maps ¢
in the above.
Now, a direct computation shows that

B} = Ext?, (Ho(Y), M)

HP (Homc, (F, 1\3)) ifg=m
- {HP (HomcG (F(z/z) ® Fly) © F(p),M))}A(q’m) ifm< q.< 2m,

where A(gq,m) is the number of Cartan generators on Hy(K(Z, m); Z), and

ZY ifp=0
HP (Homcg (F,M)) = 2% ifp=1
0 ifp>2,
0 ifp=0

HP (Homc,(F(z/z)J\;-’)) =4 (Z/2)® ifp=1
0 if p > 2,
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0 ifp=0
7./2 ifp=1
HP (Homcg (F(w),l\;f)) = (Z//2)2 =Z3/A + 273 ifz =2
0 ifp>3,

0 ifp=0

ge (Homc, (Fepy, Ag)) ={ (Z/2)® ifp=1

0 ifp>2.

The unique elements of homologlca,l degree 2 in H? (Homc (F(w), M )) are
produced by the relation

qb?w) (1) =a—2b; € FG/H(G/H)

in Fiy), and the map
Res§ (P) = 21 + z3 + 24 € RO(H)

in M = RO. Both of them refl;ect the fact that Res$; is not surjective in the system.

Let us turn to the image of the map @Resg. Given any Cg-resolution F, of
Hy(Y), if we restrict it to the values of G/T, it forms a module resolution F,(G/T)

of the module H Ho(Y) = Hq (YT). Also this corr%pondence gives a cochain map

Home, (F., M) — Hom (F.(G/T), M(G/T))
and hence a map of spectral sequences
B34 = Extf (Ho(Y), M) — ‘B§* = Bxt} (H, (Y7), M(G/T)) .

The right hand side forms the usual universal coefficient spectral sequence for the
space YT, and hence collapses since

VA ifg=m
™y
Hy (Y )'{ (Z/2)* if g > m.

Now that we know

EPM =0 ifp>3,
EN=0 ifg>m+1,
E21 = (z/2)*Alem)
‘EPl=0 ifp>2,
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and the differentials are
d, : BP9 — EPTa-T+L

we see that there is no room for nontrivial differentisls, so both of the spectral se-
quences collapse.

The nontrivial term E?9 is in the kernel of the spectral sequence morphism,
and hence is a nontrivial kernel in the E%9. But since E2? = 0 for p > 3, this kernel
lies in the highest (i.e., smallest) filtration term, thus produces a nontrivial kernel of

ResS : HZH (Y; 1\=/1) s HPHa (YF;I\;I(G’/I‘)) .
Since the same E3'? is in the kernel for any T, it produces a nontrivial kernel of
P Res; : B (y; A=4) — @ HPH (YF; A=4(G/r‘)) .
()

This completes the proof of the Lemma.

Remark. A(q,m) = %ra.nk Eg'q is non-zero if
g—m=246,810,12,14,16,17,... .

(See Cartan’s formula in [C].)

We also remark that similar proof works for

Y=K (R=O,m) or IC(Z/2€BI___2',m) ,

M=RO or Z/26R",

and an analogue of the Lemma holds.
We return to the proof of the Proposition, where

n-1
X=&Ex%xK <£2,2) x K (54,4) X gn (éiyi)’

and the coefficient system is Ly,.

If we take n to be a multiple of 4, we can choose m in such that m is also a
multiple of 4, m + 4 < n+ 1 < 2m and such that

An—-1,m)#0  for such m,

by the above remark.
Therefore it suffices to show that there is a natural homomorphism

P : H (Y; RO) — H (X; £a)

which is injective. This follows from the next Lemma, which implies that Y is a direct
factor of X as a G-space:
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Lemma. The system RO is included in the system Ly, as a direct summand of system,
ifn=0 mod 4.

Proof. Ln(G/T) = Ln(T) = @s)cr Ln (NrA/A) includes Ln(I'/e) = RO(T) as a
“top summand”. The system structure of L, splits this collection of RO(T')’s as

a direct summand of system, because the “top summand” and the complementary
summand are both preserved by the structure. Thus the proof of the Proposition is
complete.

Finally we remark that the same situation occurs for actions of general non-
abelian metacyclic group G of odd order. In the similar way as above, the non-
surjectivityof Res,G, in the system RO produces a nontrivial kernel of the fixed-point

homomorphism inside the Bredon cohomology group.

, The result of the Proposition implies that the Bredon cohomology group in
which the euqivariant k-invariant of F//PL lies is not detected by the nonequivariant
cohomology of the fixed-point setsm for the group G = G3;1, or more generally, by the
above remark, of any nonabelian metacyclic group G of odd order.

This fact suggests that there might be an exotic k-invariant of F//PL, in the
sense that it is nontrivial but vanishes after one maps it to nonequivariant data. We
hope to construct in future work a new geometric invariant which detects these exotic
elements.

REFERENCES

[Bre] G. E. Bredon, Eguivariant cohomology theories, Lecture Notes in Math., no. 34, Springer
Verlag, Berlin, 1967.

[Br] W. Browder, Isovariant vs. equivariant homotopy equivalences, Princeton preprint.

[BQ] W. Browder and F. Quinn, A surgery theory for G-manifolds and stratified sets (1975), Uni-
versity of Tokyo Press, 27-36.

[C] H. Cartan, Algébre d’'Eilenberg-MacLane et homotopie, no. 11, Détermination des algébres
H.(7,n;Z), Séminaire Henri Cartan (1955), Ecole Normale Supérieure..

[Co] M. M. Cohen, A Course in Simple-Homotopy Theory, Graduate Texts in Math., Springer, 1973.

[CMW] S. R. Costenoble, J. P. May and S. Waner, Equivarient orientation theory, Preprint (2001).

[CW 1] S. R. Costenoble and S. Waner, The equivariant Spivak normal bundle and equwanant
surgery, Michigan Math. J. 39 (1992), 415-424.

[CW 2] S. R. Costenoble and S. Waner, Equivariant Poincaré Duality, Michigan Math. J. 39 (1992),
325-351.

[tD] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., no.
766, Springer-Verlag, Berlin, 1979.

{Do] K. H. Dovermann, Almost isovariant normal maps, Amer. J. of Math. 111 (1989), 851-904.

[D] A. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann.
of Math. 102 (1975), 291-325.

[Du] E. J. Dubuc, Kan Extensions in enriched category theory, Lecture Notes in Math., no. 145,
Springer Verlag, Berlin, 1970.

54



MASATSUGU NAGATA

[E] A. D. Elmendorf, Systems of fized point sets, Trans. Amer. Math. Soc. 277 (1983), 275-284.

[K] G. M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Notes Series
64, Cambridge University Press, Cambridge, 1982.

[LM] W. Liick and I. Madsen, Equivariant L-groups: Definitions and calculations, Math. Z. 203
(1990), 503-526.

[M] J. P. May, et al., Equivariant homotopy and cohomology theory, NSF-CBMS Regional Conference
Series in Mathematics No. 91, Amer. Math. Soc., 1996. ,

[MM] 1. Madsen and R. J. Milgram, The classifying space for surgery and cobordism of manifolds,
Annals of Math. Studies, 92, Princeton University Press, Princeton, 1979.

[MR 1] I. Madsen and M. Rothenberg, On the classification of G spheres I: Equivariant transver-
sality, Acta Math. 160 (1988), 65-104.

[MR 2] I. Madsen and M. Rothenberg, On the classification of G spheres II: PL automorphism
groups, Math. Scand. 64 (1989), 161-218.

[MR 3] I. Madsen and M. Rothenberg, On the classification of G spheres III: Top automorphism
groups, Aarhus University Preprint Series (1987), Aarhus.

[MR 4] I. Madsen and M. Rothenberg, On the homotopy theory of equivariant automorphism groups,
Invent. Math. 94 (1988), 623-637.

[MS] I. Madsen and J.-A. Svensson, Induction in unstable equivariant homotopy theory and non-
invariance of Whitehead torsion, Contemporary Math. 37 (1985), 99-113.

[N 1] M. Nagata, Transfer in the equivariant surgery exzact sequence, New Evolution of Transfor-
mation Group Theory (2005), Kokyuroku 1449, RIMS, Kyoto University.

[N 2] M. Nagata, A transfer construction in the equivariant surgery exact sequence, Transformation
Group Theory and Surgery (2004), Kokyuroku 1393, RIMS, Kyoto University.

[N 3] M. Nagata, The transfer structure in equivariant surgery ezact sequences, Topological Trans-

‘ formation Groups and Related Topics (2003), Kokyuroku 1343, RIMS, Kyoto University.

[N 4] M. Nagata, On the Uniqueness of Equivariant Orientation Classes, Preprint (2002).

[N 5] M. Nagata, Equivariant suspension theorem and G-CW (V,v)-complezes, Preprint (2001).

[N 6] M. Nagata, The Equivariant Homotopy Type of the Classifying Space of Normal Maps, Disser-
tation, August 1987, The University of Chicago, Department of Mathematics, Chicago, Illinois,
U.S.A..

[R 1] A. A. Ranicki, The algebraic theory of surgery I, II, Proc. London Math. Soc. (3) 40 (1980),
87-192, 193-283.

[R 2] A. A. Ranicki, Algebraic L-Theory and Topological Manifolds, Cambridge Tracts in Math.,
102, Cambridge University Press, 1992.

[W] C. T. C. Wall, Surgery on Compact Manifolds, Second Edition, Amer. Math. Soc., 1999.

[Wa] S. Waner, Equivariant classifying spaces and fibrations, Trans. Amer. Math. Soc. 258 (1980),
385-405.

[We 1] S. Weinberger, The Topological Classification of Stratified Space, Chicago Lectures in Math-
ematics Series, the University of Chicago Press, 1994.

[We 2] S. Weinberger, On smooth surgery, Comm. Pure and Appl. Math. 43 (1990), 695-696.

[WY 1] S. Weinberger and M. Yan, Equivariant periodicity for abelian group actions, Advances in
Geometry (2001).

[WY 2] S. Weinberger and M. Yan, Equivariant periodicity for compact group actions, Preprint
(2003). _

[Y 1] M. Yan, The periodicity in stable equivariant surgery, Comm. Pure and Appl. Math. 46 (1993),
1013-1040.

[Y 2] M. Yan, Equivariant periodicity in surgery for actions of some nonabelian groups, AMS/IP
Studies in Advanced Mathematics 2 (1997), 478-508.

KITASHIRAKAWA, SAKYO-KU, KYOTO 606-8502, JAPAN

55



