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1. INTRODUCTION

Let Z;; be a compact connected oriented surface of genus g > 0 with one boundary compo-
nent. A homology cylinder (over Z,,) consists of a2 homology cobordism from T, to itself with
markings of its boundary. We denote by C;, the set of all diffeomorphism classes of homol-
ogy cylinders. Stacking two homology cylinders gives a new one, and by this, we can endow
C,.1 With a monoid structure. A systematic study of C,; was initiated by Habiro in [4], where
C,.1 appeared as a nice collection of 3-manifolds to which his clasper surgery theory is applied.
Later Garoufalidis-Levine [3] and Levine [9] introduced a group H,, by taking a quotient of
Cg,1 With respect to homology cobordant of homology cylinders. A feature of the monoid Cg;
and the group H,, is that they contain the mapping class group Mg, which is the group of
isotopy classes of orientation-preserving diffeomorphisms of Z;;. Moreover some tools for
studying M, can be also used for C,,; and H, after appropriate generalizations. From these
facts, we can consider C,,; and H,; to be enlargements of M, ;.

Now we consider an application of higher-order Alexander invariants, which are numeri-
cal invariants of finitely presentable groups, to homology cylinders. Higher-order Alexander
invariants were first defined by Cochran in [1] for knot groups, and then generalized for arbi-
trary finitely presentable groups by Harvey in [5, 6]. They are interpreted as degrees of “non-
commutative Alexander polynomials”, which have some unclear ambiguity except their degrees
in difficulties of non-commutative rings. Using them, Harvey obtained various sharper results
than those given by the ordinary Alexander invariants — lower bounds on the Thurston norm,
necessary conditions for realizing a given group as the fundamental group of some compact
oriented 3-manifold, and so on..

In the process of applying higher-order Alexander invariants to homology cylinders, we can
see that the Magnus representation for homology cylinders [15] plays an important role. This
representation generalizes not only the Magnus representation for Mg, defined by Morita [11],
but the Gassner representation for string links given by Le Dimet [8] and Kirk-Livingston-
Wang [7]. In this paper, we begin by reviewing the definition and fundamental properties of the
Magnus representation, and then study some relationships to higher-order Alexander invariants.
Note that the paper [16] treats the same topics and complements the contents of this paper.



2. HOMOLOGY COBORDISMS OF SURFACES

We proceed all our discussion in PL or smooth category.

Let Z,; be a compact connected oriented surface of genus g > 0 with one boundary com-
ponent. We take a base point p on the boundary of X, and take 2g loops ¥1,...,¥2 of Z;
as shown in Figure 1. We consider them to be an embedded bouquet Ry, of 2g-circles tied at
the base point p € 8%;;. Then R,, and the boundary loop ¢ of I, together with one 2-cell
make up a standard CW-decomposition of Z,;. It is well-known that the fundamental group
mZg, of Xy is isomorphic to the free group F,, of rank 2g generated by 71, .. ., 72, in which
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Figure 1

A homology cylinder (M, i,,i.) (over I,,), which has its origin in Habiro [4], Garoufalidis-
Levine [3] and Levine [9], consists of a compact oriented 3-manifold M and two embeddings
iy,i- : g1 — OM satisfying that

(1) i, is orientation-preserving and i_ is orientation-reversing,

(2) OM = i,(Zg1) U i(Zg1) and i, (Zga) O i-(Tga) = 14(04) = i-(9Zg1),
3 ’+Iaz,,|= "Iaz,_l’

4) i,,i- : H.(Z;,) — H,(M) are isomorphisms.

We denote i, (p) = i_(p) by p € 6M again and consider it to be the base point of M. We write a
homology cylinder by (M, i,,i.) or simply by M.

Two homology cylinders are said to be isomorphic if there exists an orientation-preserving
diffeomorphism between the underlying 3-manifolds which is compatible with the markings.
We denote the set of isomorphism classes of homology cylinders by C,,;. Given two homology

-cylinders M = (M, i,,i_) and N = (N, j,, j-), we can define a new homology cylinder M - N by

M-N= (MU;_°U+)-I N, i...,j.).

. Then G, becomes a monoid with the identity element 1, := (g X 1,id X1,id X0).

From the monoid Cy,;, we can construct the homology cobordism group Hg, of homology
cylinders as in the following way. Two homology cylinders M = (M, i,,i-) and N = (N, j., j-)
are homology cobordant if there exists a compact oriented 4-manifold # such that

(1) W = MU (-N)/(i+(x) = jo(x), i-(x) = j-(x)) x€Zg,,
(2) the inclusions M < W, N — W induce isomorphisms on the homology,
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where —N is N with opposite orientation. We denote by H,; the quotient set of C,,; with respect
to the equivalence relation of homology cobordism. The monoid structure of C,,; induces a
group structure of Hy,. In the group H, 1, the inverse of (M, i,, i) is given by (=M, i., i,).

Example 2.1. For each element ¢ of the mapping class group M, of Z, ;, we can construct a
homology cylinder M, € Cg; defined by

- M, = (Zg x1,idx1,9 % 0),

where collars of #,(Z,,1) and i_(Z;,) are stretched half-way along 0Zg % I. This glves injective
homomorphisms M, < C,, and Mg, < H,,.

Let Ni(G) := G/(I*G) be the k-th nilpotent quotient of a group G, where we define I'G = G
and I'™!G = [I"G, G] for i 2 1. For simplicity, we write Ni(X) for Ni(m,.X) where X is a CW-
complex, and write Nj for Ni(Fa,) = Ni(Z,,). It is known that N is a torsion-free nilpotent
group for each k > 2.

Let (M,i,,i_) be a homology cylinder. By definition, i,,i. : mZ;; — mM are both
2-connected, namely they induce isomorphisms on H; and epimorphisms on H;. Then, by
Stallings’ theorem [17], i,,i- : N} 5 Ni(M) are 1somorph1sms for each & > 2. Using them, we
obtain a monoid homomorphism

or:Cor — AutNy  (Mi,,i2) > (i) o).

It can be easily checked that o induces a group homomorphism o : H; — AutN;. We define
filtrations of Cg, and H,,; by

Ceilll :=Cg1,  Cgulk] := Ker (Cg,l 2, AutN,,) fork > 2,
Hoa[1] = Hyy, Hoalk] = \er('}(g,l =, AutN,,) fork > 2.

3. MAGNUS REPRESENTATIONS FOR HOMOLOGY CYLINDERS

We first summarize our notation. For a matrix 4 with entries in a ring R, and a homomorphism
¢ : R — R, we denote by ¥4 the matrix obtained from 4 by applying ¢ to each entry. AT
denotes the transpose of 4. When R = ZG for a group G or its right field of fractions (if
exists), we denote by 4 the matrix obtained from 4 by applying the involution induced from
(x » x7!, x € G) to each entry. For a module M, we write M" (resp M,) for the module of
column (resp. row) vectors with »n entries.

For a finite CW-complex X and its regular covering Xr thh respect to a homomorphism
mX — T, T acts on Xt from the right through its deck transformation group. Therefore we
regard the ZI'-cellular chain complex C,(Xr) of Xr as a collection of free right ZI'-modules
consisting of column vectors together with differentials given by left multiplications of matrices.
For each ZT'-bimodule 4, the twisted chain complex C.(X; 4) is given by the tensor product of
the right ZI'-module C.(Xr) and the left ZI'-module 4, so that C,(X; 4) and H,(X; A) are right
ZI’-modules.

Now we define and study the Magnus representation for homology cylinders. The following
construction is based on Kirk-Livingston-Wang’s paper [7].
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Let (M,i,,i.) € Cgz; be a homology cylinder. By Stallings’ theorem, Ny and Ni(M) are
isomorphic. Since N is a finitely generated torsion-free nilpotent group for each k > 2, we can
embed ZN; into the right field of fractions Ky, := ZN,(ZN; —{0))". (See Section 5.) Similarly,
we obtain ZN(M) — K, := ZNi(M)(ZN(M) - {0})~!. We consider Ky, (resp. Kna) to
be a local coefficient system on Z,; (resp. M).

By a standard argument using covering spaces, we have the following.

Lemma 3.1. i, : H.(Z;1, p; i2 Ky = Ho(M, p; K, my) are isomorphisms as right Ky, -
vector spaces.

Since Ry, C L, is a deformation retract, we have
H\(Zg1, 3 i:Kwon) = Hi(Rog, p3 12 Kivan) = Cr(Rag) @y 2 Kivinn = Kok
with a basis
Fi®L,....7% ® 1) € CilRag) Oy, 2 Kivican _

as a right Ky, m)-vector space, where ¥; is a lift of y; on the universal covering Rj,.
Definition 3.2. (1) For each M = (M, i,,i_) € C,,;, we denote by r,(M) € GL(2g, K,() the
representation matrix of the right Ky, a-isomorphism :

Kk = HiEg1, 15 i Kuan) 'E’ H\(M, p; Knian) ? Hi (St 23 12 Kvn) = Kok o
(2) The Magnus representation for Cg, is the map r¢ : Cpy — GL(2g, Kn,) which assigns to
M = (M, i,,i_) € Cy, the matrix ' rj(M).
. While we call r,(M) the Magnus “representation”, it is actually a crossed homomorphisxh.
Theorem 3.3 ([14, Theorem 7.12]). For M, = (M, i,,i.), My = (M, j., j-) € Cg,1, we have

(M, - My) = re(My) - “Mry(My).

Moreover, we can show the following.
Theorem 3.4 ([14, Theorem 7.13}). ri : C,1 — GL(2g, K,) factors through Hg,.

Consequently, we obtain the Magnus representation 7, : H,; — GL(2g,Ky,), which is a
crossed homomorphism. Note that if we restrict 7; to C,i[k] (and Hg,1[k]), it becomes a ho-
momorphism.

Example 3.5. For ¢ € Mg, < AutF,,, we can obtain

LT vy
o= [58),

where p; : ZF5; — ZN; C Ky, is the natural map and 8/8y, are free differentials. From this,
we see that 7, generalizes the original Magnus representation for Mg, in [11].

In general, the Magnus matrix 7,(M) of a homology cylinder M can be obtained from a finite
presentation of the form ‘

i._(‘)/l), seey i—(yzg)v
)'(IM.:E ( Zyyens ,22g+h
B (71)s- - is(2)

Fly... 171

i-(v1)si,. .. 7i.(7zg)szg, )
i+(71)ul sesey i+(’)'2g)u23 ’
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where sy, ; and u; are words in zy, . .., Z,, by a purely algebraic calculation. Note that such a
presentation does exist for each homology cylinder.

As in the case of Mg, (see [11] and [18]), the Magnus representation for H,; satisfies the
following “symplectic” property.

Theorem 3.6. For any homology cylinder M, we have the equality
r(M)T T ry(M) = "0 T,

where J = ( v 2 ) € GL(2g, ZN;) is defined by

A A
| ¢! —;2)_(171 ) -y 0
J=| A=7)1-7) A-y)1=-7") 1-7 ,
\(l—vg)(:l—%“) (1‘73)(:1“72_1) ’ 1-7
-1
((1 - yngil Ygu1) Y2Yza2 0 |

Bl Q=m-70) Q=-wi-vh) »ris |,

LA =70 =%1) A=yl =-71) - VeVar )
( 1- 7;1 = Ye+l
[ (R C T G o N BV 0
L= A=%a8)0 -7 (=7a3)1 -7 -9 =y ,
Q=71 -71) (=721 =73") . =7 =y
( 1- 7;41-1 O )
a- Yer2)(1 - 7;.,1.1) 1- 7;2

Jy = a- 'Yg+3)(1 - 7;.,1.1) - Yg+3)(1 _7;2) 1- '}';41.3

Q=71 -7) A-7d-7,) - 1~y )
Note that the matrix J appeared in Papakyrirakopoulos’ paper [12], and that it is mapped to the
ordinary symplectic matrix by the augmentation map ZN; — Z.

Sketch of Proof. First we define a natural pairing

() s Hi(Zgs 3 K) X Hi (g1, 3 Kinvy) — Ky,
satisfying
(@f.b) = f@,b), (a,bf)=(ab)f |
for all f € Ky,. This generalizes Suzuki’s higher intersection form in [18]. To construct it,

we use the following type of the Poincaré-Lefschetz duality: Let X be a compact oriented n-
manifold whose boundary M is decomposed as the union of two compact manifolds A and B
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with 34 = 8B = AN B, and let M be a local coefficient system on X. Then the cap product with
a fundamental class gives isomorphisms H*(X, A; M) 5 H,«(X,B; M) for all k.
The naturality of the Poincaré-Lefschetz duality shows the equality

(ri(M)a, ri{ M)b) = M (g b)

for each homology cylinder M. By writing down this equality with respect to the basis {y; ®

1,...,%7% ® 1} of Hi(Z,,1, p; Kn,), where we use Papakyrirakopoulos’ argument in [12], we
obtain the desired equality. a

4. ExamMpLE: RELATIONSHIP TO THE GASSNER REPRESENTATION FOR STRING LINKS

In [9], Levine gave a method for constructing homology cylinders from pure string links. By
this, we can obtain many homology cylinders not belonging to the subgroup M,,,. Also, we can
see a relationship between the Gassner representation for string links and our representation.
~ For a g-component pure string link L ¢ D? x I, we now construct a homology cylinder

M, € C,, as follows. Consider a closed tubular neighborhood of the 100ps Yg.1, Vg+2, ..., ¥2¢ in
Figure 1 to be the image of an embedding « : D, «— X, of a g-holed disk D, as in Figure 2.

Dy

Figure 2

Let C be the complement of an open tubular neighborhood of L in D? x I. For each choice

a framing of L, a homeomorphism 4 : 6C 35 A((Dg) x I) is fixed. Then the manifold M,
given from Z,; x I by removing «(D,) X I and regluing C by / becomes a homology cylinder.
This construction gives an injective monoid homomorphism £; — Cg, from the monoid .,
of (framed) pure string links to C,,;. Moreover it also induces an injective homomorphism
Sg — H,,1 from the concordance group of (framed) pure string links to H,,;. In particular, the
(smooth) knot concordance group, which coincides with S, is embedded in Hy,,. If we restrict
these embeddings to the pure braid group, which is a subgroup of ., and S,, their images are
contained in Mg ;.

We fix an integer k > 2. By the Gassner representation, we mean the crossed homomorphism
rex : Lg = GL(g, Knyp,) or rex : Sg = GL(g, Kw,p,)) given by a construction similar to that
in the previous section. (In [8] and [7], only rg is treated.) Comparing methods for calculating
the Gassner and the Magnus representations, we obtain the following.

- 0
Theorem 4.1 ([14, Theorem 7.18]). For any pure string link L € Ly, ri(M,) = ( : rﬁz 1) )
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We mention two remarks about this theorem. First we identify F, = 7;D, with the subgroup
of Fag = m; Ty, generated by Ygu1,...,Y2g. Then the maps Fy = (Ygu1,...,Y2g) < Fag =» Fy,
where the second map sends y1, ..., ¥, to 1, show that Ny(Fy) € Ny and Knr,) € K, Second,
the embeddings L; — C, and S; — Hj,, have ambiguity with respect to framings. However
we can check that the lower right part of r«(M,) does not depend on the choice of framings.

Corollary 4.2. M, is not a normal subgroup of Hg,, for g 2 3.

Proof. In [7], they gave 3-component pure string links denoted by Ls and Ls having the condi-
tion that Ls is a pure braid, while the conjugate LsLsL;' is not. To show that LgLsL;' is not a
pure braid, they use the fact that rc,z(LsLsL;‘) has an entry not belonging to ZN,(D;). Then our
claim follows from Theorem 4.1 with respect to this example. ]

Example 4.3. Let L be a 2-component pure string link as depicted in Figure 3.

L) Qi)

@,

i-(r)( 9) i-(y4)

Figure 3
Then the presentation of 7; M;, is given by

. . L )i-r) N rai-(n) 1,
mMy = ( - z =0 Ly, i r))in (y2)zi— () - (y3), - (1), )
1L . ()i (s)in(ra)127Y, i (ya)in(ys) lis(ys) 7z,
‘+(71)| ey i+(74) i..(')’4)2—ll'+(’)‘4)'12, . .

where we use the blackboard framing. We identify N, and N,(M,) by using i,. Using the

presentation, we have z = i_(y3) = 73, i-(va) = ¥4, i-(y2) = v273 and i_(71) = 7173 ys in Ns.
Then we obtain A

( 1 0 0 0 }
0 1 0 0
r(Mp) = dmlml am - e
2( L) _.yl-l 721.’31.',‘|_7,4l,,,1 .hl hl('hl'l)
.,;1”;1_1 .y;‘ml_l ,y;l+.y;-1_l 7;14")’:1—1
k iy (=nY%5'n'-in-D) n'-l 73173 473 +2rg -1
75 g =1 R A 75 -t 75475 -1 J
+y;4~1
Note that detr (M) = Ys TV

yaya(y;' +y3 - 1)
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5. HIGHER-ORDER ALEXANDER INVARIANTS AND TORSION-DEGREE FUNCTIONS

Here we summarize the theory of higher-order Alexander invariants along the lines of Har-
vey’s papers [5, 6]. For our use, we generalize them to functions of matrices called forsion-
degree functions.

A group I is poly-torsion-free-abelian (PTFA, for short) if I' has a normal series of finite
length whose successive quotients are all torsion-free abelian. In particular, free nilpotent quo-
tients Nj are PTFA for all k£ 2 2. Note that any subgroup of a PTFA group is also PTFA.

For each PTFA group T, the group ring ZI" is known to be an Ore domain, so that it can be
embedded in the right field of fractions Kr := ZI'(ZT - {0})~!, which is a skew field. We refer
to [2], [13] for localizations of non-commutative rings.

We will also use the following localizations of ZI" placed between ZI' and Kr. Letyy € H l(I")
be a primitive element. This means the corresponding homomorphism, which is denoted by y
again, under H'(I')  Hom(T\, Z) is onto. Then we have an exact sequence

1-—>(r¢:=Ker¢)-->r—"»z—-» 1.

We take a splitting £ : Z — T of this sequence and put # := £(1) € I'. Since I'V is again a PTFA
group, ZI'¥ can be embedded in its right field of fractions Kiv = ZI¥(ZI'¥-{0})~!. Moreover, we
can construct a right quotient ring ZI'(ZI'¥ — {0})~!. Then the splitting & gives an isomorphism
between ZI'(ZI'¥ — {0})~' and the skew Laurent polynomial ring Kr+[f*], in which at = #(r"'af)
holds for each a € I'. Kr¢[r*] is known to be a non-commutative right and left principal ideal
domain. By definition, we have inclusions

T > Kp[*] — %K.

Kre[r*] and Kr are known to be flat ZI-modules. On K+[f*], we have a map deg¥ : K [£] —
Z,y U {co} assigning to each polynomial its degree. We put deg¥(0) := co. Note that the
composite ZI'(ZI'¥ - {0})~! 5 Kre[*] d—egi» Z,o U {0} does not depend on the choice of the
splitting £.

Harvey’s higher-order Alexander invariants [6] are defined as follows. Let G be a finitely pre-
sentable group, and let ¢ : G -» Z be an epimorphism. For a PTFA group I and an epimorphism
¢r : G -» T, (¢r, ) is called an admissible pair for G if there exists an epimorphism ¢ : T » Z
satisfying ¢ = Yopr. For each admissible pair (¢r, ) for G, we regard Kpv[1*] = ZI'(ZT¥-{0})™!
as a ZG-module, and we define the higher-order Alexander invariant for (¢r, ) by

3H(G) = dimy, (H1(G; Kiv [F*])) € Zoo U {o0)

3‘,{'(6) is also called the I'-degree'. Note that the right K [*]-module H;(G; Krv[r*]) are de-
composed into

H(G K] = (Ko [P @ [Gb —ﬁ‘i’—l—]
: D 50Kl

10ur definition is slightly different from that in [6).
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for some r € Z, and p;(¢) € Kre[r*], and then

< _ | S deg? @) (r=0),
5(®) = {ool (r>0)

For a space X and an admissible pair for 7 X, we define 3‘:(X) = Eﬁ(mX).

For a finitely presentable group G and an admissible pair (¢r, ) for G. The I'-degree can be
computed from any presentation matrix of the right K+ [*]-module H;(G; K [#%]). Therefore
we can consider it to be a Zo-valued function on the set M(Kt[#*]) of all matrices with entries
in Kpv[£*]. In [14] (see also [16]), we extended this function to

dr s M%) = ZU (o0}

called the (truncated) torsion-degree function by using Reidemeister torsions and the Dieudonné
determinant det : GL(Kr) — (K7 )w, Where (KX)a is the abelianization of the multiplicative
group K = Kt — {0}. The torsion-degree function is defined for each pair of a PTFA group
I" and an epimorphism ¢ : I' -» Z. It can be regarded as a generalization of the extension of
~ deg’ : Kv[1*] = Z,oU {00} to deg? : Kt — Z U {oo) by setting deg?(fg™") = deg”(f) — deg“(g)
for f € ZI', g € ZI" — {0} (see Proposition 9.1.1 in [2], for example). It induces a group homo-
morphism deg” : (%) — Z.

Torsion-degree functions have the following properties.

Proposition 5.1. (1) For A € GL(Kr), we have 7,{(.4) = deg”(det A). In particular, 7:(.4) =0
for any A € GL(Kpv[t*)).

(2) Let M be a finitely generated right Kre[t*]-module presented by a matrix A € M(K+[#2)).
Then :

2= dimg, (T, 21 M)  (rankg, 11(F, (1 M) < 1) '
00 (otherwise)
where Ty, ()M (resp. Fx,1+1M) is the Kre[t*]-torsion (resp. Krv[*]-free) part of M.

Let G be a finitely presentable group and we take a presentati?}rl (Xtyee s X1 71500, ) Of G,
or 'j
presentation matrix of H,(G, {1}; Krv[#*]). Then the I'-degree is given by

31(G) = dimyc, (H(G; Ko [4]) = Fr(4),
where the second equality follows from the direct sum decomposition
Hy(G, (1}, Ko [£]) = Hi(G; Kiv[£°]) © Ko [ 7]

given by Harvey in [5].

For each admissible pair (¢r, ¢) for G, the Jacobi matrix 4 := at Kpv[r*] gives a

6. APPLICATIONS OF TORSION-DEGREE FUNCTIONS TO HOMOLOGY CYLINDERS

In this section, we study some invariants of homology cylinders arising from the Magnus
representation, twisted homology groups of related manifolds and torsion-degree functions. In
[14], we can see other applications.



6.1. Torsion-degrees of Magnus matrices. First, we consider torsion-degree functions asso-
ciated to nilpotent quotients N; of m,Z, 1, and apply them to Magnus matrices. Since H;(Ny) =
H\(N>) = H{(Zg,1) and H'(N;) = H'(V,) = H'(Z,,1), taking an epimorphism N; -» Z, which is
needed in the definition of a torsion-degree function, is done by choosing a primitive element
of H ! (Zg,l).

Theorem 6.1. Let M be a homology cylinder. For any k > 2 and any primitive element €
H\(Z;,1), the torsion-degree z;k(rk(M)) is always zero.

Proof. Proposition 5.1 (1) shows that torsion-degrees are additive for products of invertible ma-
trices and vanish for those in GL(ZN;). It can be also checked that they are invariant under
taking the transpose and operating the involution. Hence, by applying the torsion-degree func-

tion to the equality r,(M)T Jry(M) = “*™J in Theorem 3.6, we obtain 22{,,(rk(m) = 0. This
completes the proof. m)

Example 6.2. Consider the homology cylinder M; in Example 4.3. zv,(rz(ML)) is given by the

degree of detro(M;) = E’&_;(:T-;l’-_l) with respect to . It can be easily checked that it is zero.

Remark 6.3. In [14], we defined the Magnus representation r : AutF,,” — GL(n, Ky,r,)) for
AutF,”, where F,” is a completion of F, in a certain sense and is called the acyclic closure
of F,. The natural map F, — F’ is known to be injective and 2-connected. In particular,
Ni(F,) = Ni(F;?). AutF,” can be regarded as an enlargement of AutF,, and we have the
enlarged Dehn-Nielsen homomorphism *% : H,; — AutF;:y extending the classical one o :
Mg — AutFy,. (Note that o* is not injective.) That is, we have the following commutative
diagram.
AutFp, — AutF';:y
I 4 Ta"‘"
Mg =  Hg

. o
The Magnus representation for homology cylinders is nothing other than the composite H,,; —
AutFy” 2 GL(2g,Kx,). We can easily check that 2:,‘ org : AutFy” 2, GL(2g,%,) is non-

trivial. Therefore 3:,,‘ or; gives an invariant of AutF,” which vanishes on Mg, AutF, and H;,
for each k > 2 and each primitive element ¥ € H'(Ny).

6.2. Factorization formula of N, r-degree for the mapping torus of a homology cylinder.
For each homology cylinder M = (M, i,,i.), we can construct a closed 3-manifold T’y as fol-
lows. First we attach a 2-handle /X D? along I X i (9Z,), so that we obtain a homology cylinder
(M, 7,,i) over a closed surface X, which corresponds to the embedding Zg; < Z;. Then we
put

Ty:=M[{F(x)=i(x), xeZ,

We call T the mapping torus of M. Indeed, for M, € M, c C,, the resulting manifold T,
is nothing other than the usual mapping torus of ¢ extended naturally to the mapping class of
X, If M € C,,1[k], we have natural isomorphisms Ni(Z,) = Ni(M') and Ni(Tar) & Ni(Zg) X (A).
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Note that these groups are torsion-free nilpotent (hence PTFA). We consider Ni(Z;) to be a
subgroup of Ni(T ). For simplicity, we denote Ni(T'y) by N;.r.

By an argument similar to that in Lemma 3.1, we can show that H,(M, i,(Z,,); Kn,,) = 0.
Hence we can define the Reidemeister torsion

TN (M) := T(Cu(M, i(Zg,1); K, 1)) € Ki(K, )/ (£ Nk ).

(See [10], [19] for generalities of Reidemeister torsions) Then we obtain the following factor-
ization formula of Ny r-degree for the mapping torus of a homology cylinder.

Theorem 6.4 ([14, Theorem 11.6]). Let M be a homology cylinder belonging to Cg,[k].

(1) For each primitive element y € H'(Nyr) = H'(Ty), the N, r-degree %,',(TM) is finite,
(2) We have the equality

gﬁu (Tv) = 2f(r,,J(m._r(M)) + 71'1’&,,, (AL = rer(M)T) - 2|./,(/1)|',

where ryr : Hg 1 — GL(2g, K, ) is defined similarly to the Magnus representation r;.

Remark 6.5 (The case of k = 2). Since ZN, r = ZN(T)) and Ki,, = Kiy(r,,) are commutative,
we can use the ordinary determinant to calculate the invariants seen above. For M € Cg,[2], we
write Ar,, for the Alexander polynomial of T, By a straightforward computation, we have

Aty = Topr () - det (Ayg = 77 (M)7) - (1 - )2,

where = means that these equalities hold in Kiy,(r,,) up to £N,(T).
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