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Fiber spaces with solv-geometry: Preliminary report

Z Y 8— NF A (Oliver Baues)
and
B E (Yoshinobu Kamishima)

1. Introduction

The theory of singular fiber bundles with typical fiber a k-torus T* has been
systematically studied by Conner and Raymond in the 1970’s [6]. It provides a
topological generalization of 3-dimensional Seifert manifolds, and it is called the
injective Seifert fiber space construction. This article concerns the structure theory
of singular fiber bundles with typical fiber a manifold with a geometry which is
locally modelled on a solvable Lie group.

As is the casc for Seifert fiber spaces, the structure of a fiber space with solv-geo-
metry, facilitates the construction of diffeomorphisms with prescribed homotopical
properties, by starting the construction on the base and subsequent lifting along the
fibers. Along these lines we provide rigidity results which reduce the diffeomorphism
classification of fiber spaces with solv-geometry to the smooth rigidity properties
of their base spaces.

Our main application concerns the smooth rigidity of compact aspherical homo-
gencous manifolds. We show that these manifolds carry the structure of a singular
fiber space with solv-geometry, over a base space which is a non-positively curved
locally symmetric orbifold.
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2. Manifolds with solv-geometry

Let R be a connected, simply connected solvable Lie group. The semidirect
product Aff(R) = R x Aut(R), where Aut(R) is the group of automorphisms of R,
is said to be the affine group of R. The projection homomorphism hol : Aff (R) —
Aut(R) with respect to the above splitting is called the holonomny homomorphism.
By letting R act on itself by left-multiplication, we identify the affine group A(R)
with a group of transformations on R.

2.1. Definition. We say that a smooth manifold has a solv-geometry of type
R if it can be presented in the form H\R, where H is a torsion-free virtually
solvable subgroup of Aff (R) which acts properly on R. Since R is diffeomorphic to
Euclidean space, manifolds with solv-geometry are topologically, smooth aspherical
manifolds with universal covering space R". Moreover, they are endowed with an
affine geometry modelled on R. The particular features of the geometry on H \R
are determined by the restriction of the holonomy homomorphism to H.

2.2. Infra-solvmanifolds. A manifold H\R is called an infra-solumanifold
if the closure of the holonomy hol(H) in Aut(R) is compact. Infra-solvmanifolds
are manifolds with solv-geometry, in particular, H is virtually solvable. Moreover, :
infra-solvmanifolds carry a natural Riemannian geometry, see [4, 7, 16, 24, 27]
for further reference.

If R is isomorphic to the vector space R™, a simply connected nilpotent Lie
group N, respectively, and H is discrete, the infra-solv manifold A \R is customarily
called an Euclidean space form, or an infra-nilmanifold, respectively. By classical
results of Killing and Hopf, Bieberbach for the Euclidean case (see [28]), and results
of Gromov [12] for the infra-nil case, these smooth manifolds may be characterised
in terms of curvature properties of their Riemannian connections, as well.

The geometric structure of compact Euclidean space forms, and infra-nil man-
ifolds, has been determined by Bieberbach (5], and Auslander [1]. In particular,
compact Euclidean space forms are finitely and affinely covered by the n-torus, and
infra-nilmanifolds H\N are finitely affinely covered by an n-dimensional nilmani-
fold N/(H NN). As a matter of fact, the holonomy hol (H) of the presentation
H\N is a finite group, in these cases.

For a general infra-solv manifold, the situation is more complicated than in the
infra-nil case. It is known, however, that every infra-solvmanifold is finitely covered
by a solvmanifold. That is, it is covered by a homogeneous space of a solvable Lie
group. A geometric characterisation of infra-solvmanifolds up to homeomorphism
is described in [24].

Note furthermore, that, as is proved in [4], any manifold with solv-geometry
H\R is diffeomorphic to an infra-solvmanifold if hol(H) is contained in a reductive
subgroup of Aut(R), or if R is nilpotent.

2.3. Smooth Rigidity properties. As implied by a result of Bieberbach [5]
in 1912, any two homotopic compact Euclidean space forms are affinely diffeomor-
phic. Now, a corresponding strong rigidity result also holds for infra-nilmanifolds,
see [2, 14]. Namely, homotopic infra-nil manifolds H\N and H' \N’, where H and
I’ are discrete, are affinely diffeomorphic with respect to the canonical bi-invariant
affine connections determined by N and A”. Note, in particular, that in the context
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of infra-nilmanifolds, the fandamental group H already determines the Lie group
N.

One can not expect, in general, to have structure preserving affine diffeomor-
phisms for homotopic manifolds with solv-geometry. However, weaker analogies
of these results survive. In fact, every homotopy cquivalence of compact mani-
folds with solv-geometry H\R and H’\R' is induced by a diffeomorphism, pro-
vided hol(IT) is contained in a reductive subgroup of Aut(R), or if R is nilpotent,
see [4]. In the case of infra-solv manifolds with discrete presentations, the corre-
sponding diffeomorphism may be chosen to be an isometry with respect to suitable
left-invariant Riemannian metrics on R and R’, see {27]. Note that the smooth
rigidity of infra-solv manifolds, and the (more general) rigidity of manifolds with
solv-geometry, provide an extension of Mostow’s rigidity result for solvmanifolds
[19].

3. Fiber structures

3.1. Fiber spaces with R-geometry. Let R be a simply connected solvable
Lie group. Let X be a manifold on which R acts freely and properly with quotient
manifold

W=R\X.

We let p : X — W denote the projection map of the corresponding principal
R-bundle. Moreover, we let Diff(X,R) denote the normaliser of R in Diff(X)
and Diff*(X,R) the kernel of the Diff (X, R)-action on the quotient W. Given a
compatible trivialisation X = R x W, Aff(R) acts on X by extending from the first
factor, and, in this way, embeds as a subgroup of Diff' (X, R). We put Aff(R x W)
for this subgroup of Diff}(X,R), and call it the affinc group of R x W.

‘We introduce now our main concept.

3.1.1. Definition. Let p: X — W be a principal R-bundle. Let H < Diff(X,R)
be a Lie group normalising R. We put A = HNDiff!(X,R) and 8 = H/A. Since
H < Diff(X,R), © acts on W. We assume that the following conditions are
satisfied: '

(1) H acts properly on X.
(2) O acts properly discontinuously on W.
(3) There exist compatible coordinates X = R x W for p such that A < Aff(R x

DEFINITION 3.1. We call data (X, R, H) as above which satisfy (1), (2), (3) a
fiber space with R-geometry.

To cvery fiber space with R-geometry, there is associated a singular fibration of the
form

(3.1) | A\R — X/H -5 W /8
and an associated group extension
(3.2) 1-A—-H—-6-—-1.

Accordingly, we will also call the map q : X/H — W /O a fiber space with R-
geometry. If A\R is compact we say that (X, R, H) has compact fibers.
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3.1.2. Fiber types. Consider the finite group ©, < © which is the stabiliser
of w € W. Accordingly, we can distinguish two principal fiber types for the fiber
space q : X/H — W/@ :

Non-singular fibers: These are the fibers Fz over points o € ©\W with 8,, =
{1}. In this case, H, = A, and Fy identifies with Ay\Ry.

Singular fibers: These are the fibers, where 8, # {1}. Then Hy, < H is a finite
extension group of A which projects onto 8,,. The singular fiber F;; identifies with
Hy\R,,.

Various situations may occur. If © is torsion-free then W / O is a manifold, all
fibers are non-singular, and (3.1) is a differentiable locally trivial fibration with
fiber A\R.

3.1.3. Affine geometry on the fibers. Since H < Diff(X,R), the action of H
preserves the affine structure on the fibres of p : X — W. Hence, the fibres of

q: X/H-W/e
inherit an affine geometry modelled on R. In fact, H,, acts affinely on F,,, and
restricting H, to F,, defines a homomorphism H, — Aff (Fw). In particular, the

fibers Fy, = F, / H,, of q are spaces with R-geometry. The geometry on Fy is
determined by the induced local holonomy homomorphism

holy : Hy, — Afi(Fy)/Rw = Aut(R) .
We remark further that, by condition (3) of Definition 3.1, the fiber-stabilising

group A naturally identifies with a subgroup of Aff(R), and this embedding deter-
mines the geometry of the generic fibers of q completely.

DEFINITION 3.2. Assume that q: X /H — W /© is a fiber space of type R. If
in addition to (1) - (3) the condition
(4) The closure of the local holonomy groups holy (Hyw) < Aff(Fy)/Ry is com-
pact, for all w e W, ‘
is satisfied, then q is called an infra-solv fiber space with fiber modelled on R.

Note that the condition (4) is satisfied if and only if A\R is an infra-solv
manifold. Another important special case arises if the holonomy of A is trivial:

DEFINITION 3.3. Assume that A is contained in R and thal H is a discrete
group. Thenq: M =X / H-W / O is called a Seifert bundle with R-fiber.

3.2. Standard actions and standard fiber spaces. Let U denote a simply
connected nilpotent Lie group. Let A < Aff(U) be a subgroup which acts properly
on U with compact quotient. Then A is called standard if A < UT, where T" <
Aut(U) is a (split) d-subgroup of the linear algebraic group Aut(U/). An action
p: T — Aff(U) is said to be standard if it is an effective properly discontinuous
action such that p(I") is standard.

We can associate to every solvable affine action on a simply connected nilpotent
Lie group U a unique standard action. In fact, as proved in [4, Theorem 1.2],
standard T-actions on U arc unique up to conjugacy in Aff(U). Moreover, U is
uniquely determined by T, see [4, §3.2].
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DEFINITION 3.4. Let (X,U, H) be a fiber space, where U is a simply connected
nilpotent Lie group. We call (X,U, H) a standard fiber space if the affine action of
A = HNDiff}(X,U) on U is standard. Let (X,I?,p) be a proper action, and let
H = p(H). Then (X, H,p) is called a standard action if (X,U, H) is a standard
fiber space. In addition, if A =TI is a discrete group then the standard fiber space
(X,U, H) is called a standard I'- fiber space. '

3.2.1. Coordinate expression of group actions and T-compatible maps. Let 7 €
Diff(X) be a diffeomorphism which preserves the fibers of the bundle projection p :
X — W. Welet 7: W — W denote the induced diffeomorphism of W. Compatible
coordinates X = R x W determine a family of diffeomorphisms ¢, ., € Diff(R) such
that (with respect to the coordinates) the action of 7 on X is expressed as

(3.3) T (ryw) = (Yrwr, Tw) .

Let T be a maximal torus in the Zariski-closure of the adjoint image of R in
Aut(R). We let Aff(R,T) denote the subgroup of clements in Aff(R) whose linear
parts stabilise 7. A diffeomorphism 7 € Diff(X,R) is called a T'-compatible map

if Yrw € AF(R,T), for all w € W. It follows that the T-compatible maps of
Diff(R, X) form a subgroup Diff(X,R,T).

We show in [3] that the equivalence classification of certain fiber spaces with
solvable geometry reduces to the classification of standard fiber spaces.

THEOREM 3.5. Let (X,R,H) be a fiber space with compact fibers such that
H < Diff(X,R,T) and the fiber stabilising group A = H NDiff*(X, R) is virtually
solvable. Then (X, R, H) is equivalent to the standard fiber space (Y, U, H'), where
- U 1s the unipotent shadow of A and H' < Diffi(Y, U, T) is isomorphic to H.

See [4], for the definition of the unipotent shadow.

The next result shows that the diffeomorphism classification of standard fiber:
spaces reduces to the corresponding classification of standard I'- spaces: Let (X, U, H)
be a standard fiber space, where U is a simply connected nilpotent Iie group. As
usual we let A = H N Diff*(X,U) denote the fiber preserving subgroup of H. Let
A° denote the connected component of A and U, the unipotent radical of the
Zariski-closure AD.

PROPOSITION 3.6. Let (X,U, H) be a standard fiber space, and let Uy be the
unipotent radical of the Zariski-closure A®. Then the following hold:

1. The action of H on X decends to an action of H/A0 on (X/UO,U/UO)

which has fiber stabilising group T = A/AD.

2. The fiber space (X/Uo, U/Us, H/Ao) is standard.

3. The natural map X — X / Uy defines a diffeomorphism of fiber spaces

(X,U,H) > (X/Uo,U/Uo,H/Ag) ]

4. If H acts freely on X then H / A° acts effectively on X, and the fiber space
(X /Uo,U/Us, H | A®) is a standard T- fiber space.

4. Iterated Seifert fibering

Let (X, U, ) be a standard fiber space, with discrcte fiber stabilising group I
We let p: m — Diff(X) denote the action of = on X. Recall that the action of I' on

10
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U is standard, and, hence, the Fitting hull F = F,(ry, ie., the hull of the maximal
normal nilpotent subgroup Fitt(p(T")) of p(T"), is a connected normal subgroup of
U. Note that the vector space V = U/F acts on X/F. Let us furthermore put
W = X/F and © = n/T.

4.1. Induced Seifert fiberings.

LEMMA 4.1. If (X, F) is the principal bundle defined by the subgroup F C U,
then there is an induced quotient principal bundle (X/F, V') such that the following
hold:

(i) The action of m normalises F.
(ii) The quotient action of m on X/F normalises V.
(i) There is an induced properly discontinuous action (X/F,n /Fitt(T), ).

Moreover, we show in [3]:

PROPOSITION 4.2.

i) The actions (X /F,V, = [Fitt(T')) define a standard fiber space which is Seifert.

ii) The actions (X, F,n) define a Seifert fiber space.

We obtain the following equivariant commutative (and exact) diagram of Seifert
actions:

(F,Fitt(I‘)) _— (F,Fitt(I‘))
(4.1) orn — . (X,mp) — (W,6)

(V,T/Fiit(T)) —— (X/F,n[Fiti(T), p) —— (W, 8).

4.1.1. Seifert fiberings. We briefly recall the definition of Seifert fiber spaces.
Let (X, N) be a principal N-bundle, where N is a connected simply connected Lie

group. Let 7 be a subgroup of Diff(X, N) which acts properly discontinuously on
X.

DEFINITION 4.3. Aclions (X, N,w) as above are said to define a Seifert fiber
space if they satisfy the following conditions

1. #xy = N N~ is a discrete uniform subgroup of N.
2. ©n = /7N acts properly discontinuously on W = X /N.
3. (X, N) admits a trivialisation X = N x W.

Let (X, m, p) be a properly discontinuous action on X. Then the actions (X, N,)
are called a Seifert action if (X, N, p(w)) defines a Scifert fiber space

~ Remark, if 7 = I then (X, N, 7) is also a fiber space with N-geometry in the
sense of Definition 3.1. Given two Seifert actions (X, N, ) and (X, N’,n'), where
N and N’ are simply connected nilpotent Lie groups, an isomorphism ¢ : 7 — «’
is called a compatible isomorphism with respect to the Seifert actions, if
i) ¢ is a compaltible map of actions, that is, ¢(ker p) = ker p’ and ¢(I') =T".
ii) ¢ respects the Seifert structure, that is, ¢(7n) = Ty

11
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4.2. Application of Seifert rigidity. We now arrive at the smooth rigidity
of standard fiber spaces (X, U, 7):

THEOREM 4.4. Let ¢ : ®# — n’' be a compatible isomorphism. Then every
equivariant diffeomorphism (f,¢) : (X/U,8) — (X/U’, Q') lifts to an equivalence
of fiber spaces

(f,8) : (X,U,m) — (X",U',7").
Therefore, if (W, 0) is smoothly rigid then (X, ) is smoothly rigid.

PROOF First step. There are induced isomorphisms of groups 4 : 7r/F1tt (T) —
7 /Fitt(I') and ¢ : © — ©’, and a commutative diagram as follows:

T N 7!
(42) 7 /Fitt(T") 4, o [Fitt(I")

! !

e s e
The compatibility of ¢ means that
é(T) =T and ¢(kerp) = kerp’,
where p : 7 — Diff(X) and p’ : n' :— Diff(X’) denote the actions of m and #’.

Now the induced isomorphisms are compatible with the iterated Seifert fiber space
structure. We need:

LEMMA 4.5.

(i) The isomorphism ¢ is compatible with respect to the Seifert actions (X, F, )
and (X', F',7").

(ii) The isomorphism ¢ is compatible with the Sezfert actions (X/F, V,r /Fitt(T))
and (X'/F', V', 7 [Fits(I)).

Second step. Using the Seifert lifting for nilpotent fiber (cf. [14]), we can construct
the lift (f,¢) of (f, ) subsequently along the vertical Seifert fiberings, as in the
following diagram:

(x,Fr) (X, F,7')

! !

(X/F,V,n/Bitt(T)) 220 (x'/F V', o [Fitt(I")

! !

(W,8) ——— (W,6') .

B
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5. Aspherical homogeneous manifolds

A manifold is called homogeneous if it has a transitive action of a Lie group,
and it is called aspherical if its universal covering space is contractible. We show,
cf. Theorem 5.8, that every aspherical homogeneous manifold carries the structure
of a singular fiber space with solv-geometry on the fibers, over a base space which is
a non-positively curved locally symmetric orbifold. As a consequence, see Theorem
5.13, we establish that every isomorphism between fundamental groups of aspher-
ical homogencous manifolds is induced by a diffcomorphism. That is, aspherical
homogeneous manifolds are smoothly rigid. This extends Mostow’s well known
rigidity result for solvmanifolds {19] .

5.1. Presentations of aspherical homogeneous spaces. A manifold M
together with a presentation M = G / H is called a homogeneous space. The homo-
geneous space M = G / H is said to be irreducible if G does not contain a proper
subgroup which acts transitively on M. It is called locally effective if H % does not
contain any non-trivial connected normal subgroup of G.

Let us put X = G/H°. Now G acts transitively on the homogeneous space
X by left-multiplication. Note also that the subgroup Ng(H°) of G acts on X by
multiplication from the right. We call the group of transformations of X which is
generated by those two actions the automorphism group Aut(X) of the homoge-
neous space X. In this way, we obtain a natural projection homomorphism

G x Ng(H®) — Aut(X)

onto an effective transformation group of X. Moreovér, by the inclusion H —
Ng(Hy), the group m = H/H® embeds as a discrete subgroup of Aut(X) which
acts properly on X, and we have a natural difleomorphism

G / H=X / .
The following has been observed by Gorbatsevich, cf. [8]:

PROPOSITION 5.1. Let G be a simply connected Lie group and H < G a closed
subgroup such that M = G/H is compact and aspherical. If G acts locally effectively
on M then:

1. HY is solvable.

2. The solvable radical R of G is simply connected. .

3. G is isomorphic to a semi-direct product of Lie groups R x (SLaR)™.

ProoF. For (1), see [8, Theorem 3.1]. We prove (2). Let G = RS be a Levi
decomposition of G. Thus R is the solvable radical of G, S is a maximal semi-simple
subgroup, and RN S is discrete. Recall that mp(G) = 1 for any Lie group G (cf.
[18]). Thus the homotopy exact sequence of the Lie-group fibration R —» G — G/R
gives rise to the short exact sequence

1 = m(R) - m(G) — Wl(G/R) —1.

Since G is simply connected it follows that R and G/R are simply connected. As
SNR— § — G/R is a covering, the discrete subgroup SN R must be trivial, and
S is simply connected. Therefore, in particular, G is a semidirect product R X S.
By our assumption, G/H is compact and aspherical. A compact Lie group which
acts locally effectively on a closed aspherical manifold is a torus, cf. [6]. Hence, the

13
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maximal compact subgroup of S is a torus. It follows that each of the simple factors
of S is locally isomorphic to SL(2,R). Therefore, S is isomorphic to (SLle) O

5.2. Structure decomposition of S. Let S be a semi simple factor of G.
Choose an enumeration S;, ¢ = 1,...,n, lor the connected normal, simple sub-
groups of S. This provides an identification

which is uniquely defined up to a permutation of the factors. We let
p:85§— S*=87 x---x & =(PSLR)"

denote the quotient mapping onto the adjoint form of S. It has kernel Z™, where
Z denotes the center of SLoR. Furthermore, let p; : S — S; denote the projection
map onto the factor S;, p; : S — S}, p; : §* — S} the projection maps {from S
onto the simple factors S} of S*.

We study direct product decompositions of the form S = P x Q, where P and
Q are normal connected subgroups of S. We have a corresponding decomposition
S* = P* x Q* of the adjoint form as well. We let pp: S — Pandpg : S — Q
denote the projection maps corresponding to the decomposition of S. Furthermore,
we let pg : § — @Q* denote the projection map onto the adjoint of Q.

DEFINITION 5.2. Let H < S be a uniform subgroup-of S. Let S = P x Q be
the unique decomposition of S which satisfies po(H®) = {1}, and p;(H°) # {1},
for all 7 < k. Then P and Q are called the canonical factors of S relative to the
uniform subgroup H. ‘

. LetG=RxSbeasabove, H<Ga uniform subgroup, R the solvable radical
of G, and S (SLgR) a maximal semi-simple connected subgroup of G. Let

pq : G — Q* be the natural projection onto Q*. Then kerpg = R x (P x Z¢). Let
furthermore K denote a maximal connected compact subgroup of SL(2,R) and AN
the maximal upper triangular subgroup. Next recall from [1] that every subgroup
H of a Lie group has a unique maximal normal solvable subgroup rad(H) which is
called the discrete solvable radical of H. With this notation we have:

THEOREM 5.3 (Structure decomposition). Let M = G/H be a compact homo-
geneous space which is locally effective. Then there erists a unique decomposition
S = P x Q of the semi-simple part S of G such that the following hold:

1. po(H) is a discrete uniform subgroup of Q™.
2. I is conjugate to a subgroup of Rx ((Z x AN)* x Q).
3. HNkerpq is the discrete solvable radical rad(H) of H.

COROLLARY 5.4 (Structure fibration). Let M = G/H be a compact aspherical
homogeneous space which is locally effective. Then there erists a closed subgroup
L < G and a singular fibration of the form

(5.1) L/rad(H) — G/H — ING/H = (H?)"/po(H) .

Here the base space (lH[z)e/ po(H) is an orbifold modelled on a product of copies
of the hyperbolic plane, and the non-singular fibers of (5.1) are diffeomorphic to a
compact aspherical homogeneous space L/ rad(H) with solvable fundamental group.

14
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PROOF. We put L = R % (P x K% < R x (P x Q) = G. Consider the
left-multiplication action of L on G. There is a corresponding L-principal bundle
(5.2) L— G-5ING = 1)

Here, right-multiplication turns L\G into a homogeneous G-space, and the map q
is a G-homomorphism. The map

(5.3) I\G — (H?)* = KA\Q = KA\Q" , Lg — K'pq(q)

is a G-equivariant diffeomorphism, where G acts on (lHIz)lf by isometries via the
homomorphism pg : G — Q™.

Taking the quotient by H gives rise to the fibration (5.1). Since po(H) is
discrete, the base is an orbifold. In particular, for all points g € (H?)¢, the stabilizer
pq(H), is finite.

By definition, the image of ¢ € (H?)/p(H) of ¢ € (H?)¢ is non-singular if
pa(H), = {1}. Thus, for such point the stabilizer of q~*(g) under H is ker pgNH =
rad(H). Hence, the fiber over 7 in (5.1) is obtained by taking the quotient of L by
an action of rad(H) which is twisted depending on g. Note that, by Theorem 5.3,
rad(H) = kerpg N H is a closed subgroup of L. Over the base point g = L, the
fiber quotient is diffcomorphic to the coset space L/ rad(H). It is easy to see that
the twisted actions of rad(H) on L are conjugate to the standard action of rad(H)
by right-multiplication in the group Diff(L). Hence all such fiber quotients arc
actually diffeomorphic to L / rad(H). Since L is diffeomorphic to Euclidean space,
L/rad(H) is an aspherical homogeneous space. O

5.3. Solv-geometry on the fibers. We will show now that the non-singular
fibers of the structure fibration (5.1) of a compact aspherical homogeneous space
M = G/H carry a natural (infra-) solv geometry. Actually, as we will show, see
Corollary 5.10, this also implics that the non-singular fiber of the structure fibration
is diffeomorphic to a homogeneous space of a solvable Lie group.

5.3.1. Solvable group actions on G. We kecp our notation G = R x S, where
R is the solvable radical. He:yeforth, S = P x @ will always denote the structure
decomposition, where P = (SLyR)*, @ = (SLyR)?, are as defined in Theorem 5.3.

Let us define now an action of the solvable group

Ry =K"x (R x (AN)’“)

on the space G. For this, we let K™ < S act on G by left-multiplication and the
right-side factor R x (AN )’c of R; by multiplication from the right. Note that
R1 acts frecly. We study here how this action of Ry interacts with the right-
multiplication action of H on G. In the following we shall thus identify Rq with its
corresponding subgroup of Diff (G), and H with the group Ry < Diff(G). Here we
let R, : G — G denote the right-multiplication map g1 919

LEMMA 5.5. After replacing H by a conjugate with an element of S, the fol-
lowing hold:

1. Ry normalizes R, in Diff(G).

2. Ry NR;y is uniform in R,.

3. Ry NRy is of finile index in Ripq(x)-

15
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ProorF. As implied by Theorem 5.3, after replacing H with a conjugate if
required, we may assume that rad(H) is contained as a uniform subgroup in

Grega(rr) = R % ((Z X AN)k X Ze) ,

and, moreover, rad(H) = Graqs) N H, since Graq(zy N H =kerpg N H.

Note that H centralizes the left-multiplication action of K™ < R;. But then
H also normalizes the second factor R x (AN)* of R;, considered as a subgroup of
G. Since both groups act by right-multiplication, H normalizes the action of R;.
Hence, (1) holds. _

Recall now that every representation of SL;R factors through SL(2,R). There-
fore, a finite index subgroup of the center Z™ of S centralizes R. This subgroup
is thus contained in the center of G. Letting G,z act by right-multiplication
on G, we deduce that the intersection Rg,,, 5, NR1 in Diff(G) is a finite index
- normal subgroup of Rg,,,,, and it is also a uniform subgroup of R;. Since rad(H)

is uniform in Gi.g(sy, all this implies that Ry MRy is uniform in R;. Hence, (2)
holds. :
Since R; is normalized by H, Ry N'R; is a solvable normal subgroup of Ry,
;md therefore it is contained in the radical Ryaq¢p). Since Rg,,,, s MRy is of finite
index in Rg,, .y, (3) follows from rad(H) < Graq(s- O

Recall next the construction of the structure fibration for G/H which is ob-
tained from the L-principal bundle (5.2)
L—G% (Hz)e
by dividing the right-multiplication of H. We show now that R acts simply tran-
sitively on the fibers of q. This gives rise to another principal bundle
(5.4) Ry — G - (H?)*
with the same projection map q. Our assertion is implied by the following:
LEMMA 5.6. The identity of G induces an equivalence of orbit spaces
Ri\G — L\G.
ProoOF. Clearly, the decomposition
(5.5) G=L-(AN)*

gives a trivialization of G as an L-bundle. Hence, every L-orbit in G has a unique
representative v € (AN)¢. Let r, = (k,ru) € Ry, where k € K™, r € R, u €
(AN)’c < P. We compute the action of r; as

rov=r"kuv.
Thus, we see that R, - v = Lv. The Lemma, follows. |
5.3.2. Affinc solv-geometry on the fibers. By Lemma 5.6, the decomposition
(5.5) corresponds to a trivialization
(5.6) G =Ry x (AN)! = R, x (H?)*
of the R;-space q : G — (H2)¢. With respect to this product decomposition we
may let the group Aff(R1) act on the first factor, and on G via trivial extension

to the second factor. In particular, Aff(R:) acts on the fibers of the R;-principal
bundle (5.4). Henceforth, we identify Aff(R;) with the corresponding subgroup
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Aff(R; x (AN)?) of Diff(G). With our conventions, the action of R; on G identifies
R as the natural normal subgroup of Aff(R;).

LEMMA 5.7. The following holds: Aff(R1) N Ry = Riaq(H)-
ProoOF. Using (5.3) and Lemma 5.6 it follows that Ry : G — G stabilizes all

fibers of (5.4) if and only if h € kerpo N H = rad(H). Therefore, Ry N Aff(R,) <
Repq(m)y-

To finish the proof of the Lemma, it remains to show that R : G +— G defines
an element of Aff(R,), for all h € rad(H): By Theorem 5.3, rad(H) is contained
in the subgroup

Gra.d(H) =Rx (AN)k x Z™ <G.
By definition, right-multiplication with R x (AN)* is, a factor of Ry = K™ x (Rx
(ANYF) < lef(G) and thus, in particular, Rpy4n)* is contained in Aﬁ'(’R,l)
It remains to understand the right-multiplication action of Z™. For this, we first
compute the evaluation map o, : R, — G, at w € (AN)%. Let (k,ru) € Ry. Then:

ow(k,ru) = (k,ru) - w = kwu 'r?
= (T'l)k”-lwku_lw .

Now for z € Z™, let p, : R x (AN)*) —» R x (AN)F) denote the automorphism
which is induced by conjugation with z inside the group G. We compute:
ow(k,ru)z = (r-1)ke” Wiy~ lwz
= (rhHR T (k)
= o0y(zk,r* w)
= Ow(Zk)“z‘l(ru))'

Extending p. to an element of Aut(R;), we can thus write

6.7 ow(k, 7u) = 0y (zps-1(k,Tu)) .
This shows that R, : G — G acts as an element of Aff(R;) on the fibers of (5.4).
Hence, Rg,,,,;, < Aff(R1). In particular, this implies Rrag() < Afi(Ry). O

THEOREM 5.8. Let M = G/H be a compact aspherical homogeneous space.
Then M has an infra-solv fiber space structure

§ — M — (H?)" /pq(H)

over the locally symmetric orbifold (H?) l/ po(H) with the infra-solv manifold S =
rad(H)\R; as non-singular fiber.

PRrROOF. Theorem 5.3 and Lemma 5.5 imply that the data X = G, A = rad(H),
W = (H?)¢ with the action of Rj; on G satisify the conditions (1) - (3) of Definition
3.1. That is, the structure fibration M — (Hz)l /pq(H) turns M into a fiber-space
with R;-geometry. By Lemma 5.7, it also satisfies condition (4) with respect to
the decomposition (5.6). Therefore, the structure fibration actually inherits a R-
geometry. Finally, by equation (5.7), hol(rad(H)) < u(Z™) < Aut(R;) is a finite
group. Thus, the geometry on the fibers is infra-solv of type R;. a

We also get:
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COROLLARY 5.9. Lel 7 be the fundamental group of a compact aspherical ho-
mogencous space. Let A = rad(IT) denote the discrete solvable radical of IT. Then
A is a Wang group, and © = II/A is isomorphic to a laitice in (PSLy R)%.

COROLLARY 5.10. The non-singular fiber of the structure fibration of an as-
pherical homogeneous space is diffeomorphic io a solv-manifold.

Both corollaries are a consequence of:
PROPOSITION 5.11. The solvable radical of m = H/Hy is a Wang group.

5.4. Rigidity of compact aspherical homogeneous manifolds. Let G/
be a compact aspherical homogeneous manifold. By Theorem 5.8, G/H has a infra-
solv fiber space structure

rad(H)\Ry — G/H — (H?)* /po(H)

over the locally symmetric orbifold (Hz)e/ po(H), with the infra-solv manifold
rad(H)\R; as non-singular fiber.
We show in [3]:

LemMMA 5.12. H < Diff(G,R;,T).

Here T < Aut(R,) is defined as in section 3.2.1. Note that the fiber stabilising
group A is isomorphic to rad(H) = H N Diff* (G, R1) which is virtually solvable.

We now arrive al:

THEOREM 5.13. Let h : M — M’ be a homotopy-equivalence between compact
aspherical homogeneous manifolds M and M'. Then there erists a diffeomorphism
®: M — M' which is homotopic to h.

PROOF. Let M = G/H, M' = G'/H’ be presentations, and let ¢ : H/H? —
H'H"® correspond to the isomorphism of fundamental groups induced by h. By
Theorem 3.5 and the subsequent Proposition 3.6, there are two standard I'-fiber
space structures (G/H°, Uy, H/H°), (G’'/H'®, U’ s, H'/H'®), which are associated
to M and M’, accordingly. Note that the associated group extension 1 — I' —»
n — po(H) — 1 is characteristic, since ' is the the radical of 7. Hence, the
isomorphism ¢ is compatible with the fiber space structures on M and M /. and
it induces an isomorphism ¢ : pQ(H ) — pq(H’). Now we need the following well
known fact, cf. (3, 21]:

PROPOSITION 5.14. The smooth rigidity holds for the actions (pg(H), (H3)?),
(po(H"), (HR)?).

Applying Theorem 4.4, we can construct an equivariant diffeomorphism (f, ¢) :
(G/H®, Uy, H/H®) — (G'/H"®,U’'1,,H'/H"®). In particular, G/H is diffeomor-
phic to G'/H'. , O
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