Toeplitz Ψ^* -algebras via unitary group representations

W. BAUER *

Science University of Tokyo,
Department of Mathematics,
Noda, Chiba (278-8510)
Japan

 $Email:\ bauerwolfram@web.de$

Abstract

As it was pointed out in [12] there are construction methods for spectral invariant Fréchet operator algebras such as Ψ^* - and Ψ_0 -algebras in the bounded operators on a Hilbert space having prescribed properties. For the Segal-Bargmann space H and using systems of unbounded closable Toeplitz operators T_f where f is in a certain class $\mathrm{SP}_{\mathrm{Lip}}(\mathbb{C}^n)$ of symbols we show that these algebras contain all Toeplitz operators T_h with $h \in L^\infty(\mathbb{C}^n)$. Let ρ be the Segal-Bargmann representation of the Heisenberg group \mathbb{H}_n in the bounded operators on H. As an application of our results above we characterize a class of smooth Toeplitz operators in the Ψ^* -algebra of smooth elements with respect to ρ .

1 Introduction

Subsequent to the results in [12] it frequently has been remarked that the abstract concept of (locally) spectral invariant Fréchet algebras such as Ψ_{0^-} and Ψ^* -algebras successfully can be applied to the structural analysis of certain algebras of pseudo-differential operators. Applications arise in complex analysis, analytic perturbation theory of Fredholm operators and non-abelian cohomology for analyzing isomorphisms of abelian groups in K-theory. By generalizing a characterization of the Hörmander classes $\Psi^0_{\rho,\delta}$ by commutator conditions (see Theorem 2.1) a construction method for algebras of the above mentioned type with prescribed properties have been given in [12].

^{*}The author was supported by a JSPS postdoctoral fellowship (PE 05570) for North American and European Researchers.

 $^{^{1}0 \}le \delta \le \rho \le 1$ and $\delta < 1$

Let $H:=H^2(\mathbb{C}^n,\mu)$ be the Segal-Bargmann space of Gaussian square integrable entire functions on \mathbb{C}^n . We denote by P the orthogonal projection from $L^2(\mathbb{C}^n,\mu)$ onto H and we write M_f for the multiplication with a measurable symbol f. In the initial stage of this paper we consider iterated commutators of closable Toeplitz operators $T_f:=PM_f$ on H having symbols in a certain class $\mathrm{SP}_{\mathrm{Lip}}(\mathbb{C}^n)$ of measurable and in general unbounded functions on \mathbb{C}^n . For a system $\mathcal{S}_m:=[T_{f_1},\cdots,T_{f_m}]$ of operators with $f_j\in\mathrm{SP}_{\mathrm{Lip}}(\mathbb{C}^n)$ and in the sense of [12] the Ψ_0 -algebra $\Psi^{\mathcal{S}_m}_\infty$ in the bounded operators $\mathcal{L}(H)$ on H can be defined by commutator methods with respect to \mathcal{S}_m . We show that $\Psi^{\mathcal{S}_m}_\infty$ contains all Toeplitz operators with bounded measurable symbols. More precisely:

Theorem A The symbols map $L^{\infty}(\mathbb{C}^n) \ni h \mapsto T_h \in \Psi^{S_m}_{\infty}$ is well-defined and continuous.

Let \mathbb{H}_n be the Heisenberg group and α be the Segal-Bargmann representation of \mathbb{H}_n in $\mathcal{L}(H)$, c.f. [10]. The map α is well-known to be unitary, irreducible and strongly continuous. In particular, the Ψ^* -algebra $\Psi^{\infty}(\mathbb{H}_n) \subset \mathcal{L}(H)$ of smooth elements with respect to α arise in a natural way and it can be characterized by commutator methods. We describe a symmetric subspace $\mathcal{S}_s \subset L^{\infty}(\mathbb{C}^n)$ with the induced topology such that:

Theorem B The symbols map $S_s \ni h \mapsto T_h \in \Psi^{\infty}(\mathbb{H}_n)$ is well-defined and continuous.

This result can be stated in terms of the algebra construction. Let \mathcal{A} be the algebra of multiplication operators on $V:=L^2(\mathbb{C}^n,\mu)$ with bounded measurable symbols. In a natural way α extends to a representation of \mathbb{H}_n into $\mathcal{L}(V)$ and the corresponding operator algebras $\Psi^k(\mathcal{A},\mathbb{H}_n)$ of C^k -elements in \mathcal{A} form a decreasing scale. Note that $M_f \in \Psi^k(\mathcal{A},\mathbb{H}_n)$ is related to the smoothness of the symbols $f \in L^\infty(\mathbb{C}^n)$. Clearly, \mathcal{A} projects under P onto the space $\mathcal{A}_P := P\mathcal{A}P$ of Toeplitz operators with bounded symbols. Theorem B states:

$$P \Psi^{k}(A, \mathbb{H}_{n}) P = P \Psi^{k+1}(A, \mathbb{H}_{n}) P \subset \mathcal{L}(H)$$
 for all $k \in \mathbb{N}$.

Heuristically, the smoothness of f cannot be recovered by commutator methods from the Toeplitz operator T_f . We want to remark here that these results are related to an observation in [14], [3]. Let $\beta: L^2(\mathbb{R}^n) \to H$ be the Bargmann isometry and f a bounded measurable function on \mathbb{C}^n . The assignment $\beta^{-1} T_f \beta$ can be shown to be a pseudo-differential operator $W_{\sigma(f)}$ on $L^2(\mathbb{R}^n)$ in its Weyl quantization. By Identifying \mathbb{R}^{2n} and \mathbb{C}^n the Weyl symbol $\sigma(f)$ and f are related via the heat equation on \mathbb{R}^{2n} . There is $t_0 > 0$ such that:

$$\sigma(f) = e^{-t_0 \Delta} f :=$$
 solution of the heat equation with initial data f at the time t_0 .

Moreover, σ maps the space of continuous functions with compact support into the symbol class $\mathcal{S}_{\rho,\delta}^{-\infty}$, $0 \leq \delta \leq \rho \leq 1$ and $\delta < 1$. Corresponding to Theorem A and B it can be checked that $f \mapsto \sigma(f)$ is continuous with respect to the $L^{\infty}(\mathbb{C}^n)$ topology and the usual Fréchet topology on $\mathcal{S}_{\rho,\delta}^{-\infty}$.

In our first section we remind of some basic definitions and results related to the construction of Ψ_0 - and Ψ^* -algebras. For Toeplitz operators having symbols of polynomial growth at infinity an invariant subspace $H_{\exp}(\mathbb{C}^n)$ of H is defined in section 3. Moreover,

the existence of bounded extensions for a class of iterated commutators of Toeplitz operators on $H_{exp}(\mathbb{C}^n)$ and Theorem A are proved. Section 4 contains the proof of Theorem B and finally we have added some examples and applications in section 5.

2 Fréchet operator algebras with prescribed properties

The following definition due to B. Gramsch have been given in [11]:

Definition 2.1 Let \mathcal{B} be a Banach-algebra with unit e and let \mathcal{F} be a continuously embedded Fréchet algebra in \mathcal{B} with $e \in \mathcal{F}$. Then \mathcal{F} is called Ψ_0 -algebra if it is locally spectral invariant in \mathcal{B} , i.e. there is $\varepsilon > 0$ with

$$\{a \in \mathcal{F} : \|e - a\|_{\mathcal{B}} < \varepsilon\} \subset \mathcal{F}^{-1}.$$

Moreover, one defines:

- If \mathcal{B} is a C^* -algebra and \mathcal{F} is a symmetric Ψ_0 -algebra in \mathcal{B} , then \mathcal{F} is called Ψ^* -algebra. (\mathcal{F} automatically is spectral invariant, i.e. $\mathcal{F} \cap \mathcal{B}^{-1} = \mathcal{F}^{-1}$).
- If the topology of \mathcal{F} is generated by a system $[q_j:j\in\mathbb{N}]$ of sub-multiplicative semi-norms with $q_j(e)=1$ for $j\in\mathbb{N}$, then \mathcal{F} is called *sub-multiplicative* or *locally m-convex* (E. Michael, 1952) Ψ_0 resp. Ψ^* -algebra.

The concept of Ψ^* - and Ψ_0 -algebras allows to treat phenomenas of local structure. As it was observed for algebras of Pseudo-differential operators, C^{∞} -properties such as pseudo-or micro-locality are preserved by taking closures in the Fréchet topology. Important examples of Ψ^* -algebras are given by the Hörmander classes $\Psi^0_{\rho,\delta}$ of zero order where $\mathcal{B} := \mathcal{L}(L^2(\mathbb{R}^n))$. It is known that $\Psi^0_{\rho,\delta}$ can be described in terms of commutator conditions.

Theorem 2.1 (R. Beals, '77, [6]) An operator $B: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ is of class $\Psi^0_{\rho,\delta}$ iff for $\alpha, \beta \in \mathbb{N}^n_0$ all iterated commutators:

$$ad[-ix]^{\alpha}ad[i\partial_x]^{\beta}(B): H^{s-\rho|\alpha|+\delta|\beta|} \to H^s$$
 (2.1)

admit bounded extensions between suitable Sobolev spaces to $L^2(\mathbb{R}^n)$.

On the one hand the spectral invariance of $\Psi^0_{\rho,\delta}$ follows from the commutator characterizations in Theorem 2.1, see [19], [20]. On the other hand, by replacing ix and $i\partial_x$ above with a system of closable and densely defined operators, conditions of the type (2.1) have been used to define (submultiplicative) Ψ_0 -algebras in a fairly general situation, see [12]. Below we give the definitions and remind of some basic results.

 $^{^{2}0 \}le \delta \le \rho \le 1$ and $\delta < 1$

2.1 Commutator Methods

Given a topological vector space X we write L(X) (resp. $\mathcal{L}(X)$) for the linear (resp. bounded linear) operators on X.

Definition 2.2 (Iterated commutators)

For a system $\mathcal{S}_m := [A_1, \dots, A_m]$ where $A_j, B \in L(X)$ we call m the length of \mathcal{S}_m . We inductively define the iterated commutators ad $[\emptyset](B) := B$ and:

- ad $[S_1](B) := [A_1, B] = A_1B BA_1$,
- $\operatorname{ad} \left[S_{j+1} \right](B) := \operatorname{ad} \left[A_{j+1} \right] \left(\operatorname{ad} \left[S_{j} \right](B) \right) \text{ for } j = 1, \dots, m-1.$

In the case of $A = A_j$ where $j = 1, \dots, m$ we also write:

• $ad^0[A](B) := B \text{ and } ad^m[A](B) := ad[S_m](B)$.

With these notations it follows for finite systems S_i and S_k in L(X):

$$\operatorname{ad}[S_j](\operatorname{ad}[S_k](B)) = \operatorname{ad}[S_k, S_j](B).$$

Let H be a Hilbert space and $\mathcal{F} \subset \mathcal{L}(H)$ be a sub-multiplicative Ψ^* -algebra. Assume that the topology of \mathcal{F} is generated by a sequence $(q_j)_{j\in\mathbb{N}}$ of semi-norms and without lost of generality let $q_0 := \|\cdot\|_{\mathcal{L}(H)}$. Given a finite system \mathcal{V} of closed and densely defined operators $A: H \supset \mathcal{D}(A) \to H$ and following [12] we define:

- $\mathcal{I}(A) := \{ a \in \mathcal{F} : a(\mathcal{D}(A)) \subset \mathcal{D}(A) \},$
- $\mathcal{B}(A) := \{ a \in \mathcal{I}(A) : [A, a] \text{ extends to an element } \delta_A(a) \in \mathcal{F} \}.$

Inductively, one obtains:

- $\Psi_0^{\mathcal{V}} := \mathcal{F}$, with semi-norms $q_{0,j} := q_j$ for $j \in \mathbb{N}$,
- $\Psi_1^{\mathcal{V}} := \bigcap_{A \in \mathcal{V}} \mathcal{B}(A)$,
- $\Psi_k^{\mathcal{V}} := \{ a \in \Psi_{k-1}^{\mathcal{V}} : \delta_A a \in \Psi_{k-1}^{\mathcal{V}} \text{ for all } A \in \mathcal{V} \} \text{ where } k \geq 2,$
- $\Psi^{\mathcal{V}}_{\infty} := \bigcap_{k \in \mathbb{N}} \Psi^{\mathcal{V}}_k$.

This process leads to a decreasing scale of algebras in \mathcal{F} :

$$\mathcal{F} = \Psi_0^{\mathcal{V}} \supset \cdots \Psi_n^{\mathcal{V}} \supset \Psi_{n+1}^{\mathcal{V}} \supset \cdots \supset \Psi_{\infty}^{\mathcal{V}} := \bigcap_{k \in \mathbb{N}} \Psi_k^{\mathcal{V}}. \tag{2.2}$$

For $n \geq 1$, we inductively define a system $(q_{n,j})_{j \in \mathbb{N}}$ (resp. $(q_{n,j})_{j,n \in \mathbb{N}}$) of norms on $\Psi_n^{\mathcal{V}}$ (resp. on $\Psi_{\infty}^{\mathcal{V}}$) by:

$$q_{n,j}(a) := q_{n-1,j}(a) + \sum_{A \in \mathcal{V}} q_{n-1,j}(\delta_A a).$$
 (2.3)

According to [12], $\Psi^{\mathcal{V}}_{\infty}$ is a sub-multiplicative Ψ_0 -algebra in \mathcal{F} . In the case where each $A \in \mathcal{V}$ is symmetric we replace $\mathcal{B}(A)$ by:

$$\mathcal{B}^*(A) := \{ a \in \mathcal{B}(A) : a^* \in \mathcal{B}(A) \}.$$

Then the algebras $\Psi_n^{\mathcal{V}}$ are symmetric and $\Psi_{\infty}^{\mathcal{V}}$ is a Ψ^* -algebra in $\mathcal{L}(H)$. Let $D \subset H$ be a *core* for \mathcal{V} , i.e. the inclusion $D \hookrightarrow \mathcal{D}(A)$ is dense with respect to the graph norm for all $A \in \mathcal{V}$. Then it was shown in [2], [3]:

Proposition 2.1 Assume that $a \in \mathcal{F}$ and property (E_k) holds for $k \in \mathbb{N} \cup \{\infty\}$:

 (E_k) : D is invariant under all $A \in \mathcal{V}$ and $a \in \mathcal{F}$. Moreover, assume that for any system

$$\mathcal{A}\subset\mathcal{S}_k(\ \mathcal{V}\):=\Big\{\left[\ A_1,\cdots,A_j\ \right]:\ \ ext{where}\ A_l\in\mathcal{V}\ \ ext{and}\ 1\leq l\leq j\leq k\ \Big\}.$$

 $ad[A](a): H \supset D \rightarrow H$ has a continuous extensions to $C(A, a) \in \mathcal{F}$.

Then $a \in \Psi_k^{\mathcal{V}}$ and $C(\mathcal{A}, a)$ is a bounded extension of $ad[\mathcal{A}](a) : H \subset \mathcal{D}(A) \to H$ to H for any operator $A \in \mathcal{V}$.

The (locally) spectral invariance of $\mathcal{A} \subset \mathcal{B}$ is preserved under projections $p = p^2 \in \mathcal{A}$. It is readily verified that $\mathcal{A}_p := p \mathcal{A} p$ is (locally) spectral invariant in $\mathcal{B}_p := p \mathcal{B} p$. If in addition \mathcal{B} is a C^* -algebra, \mathcal{A} is symmetric in \mathcal{B} and $p = p^*$, then \mathcal{A}_p is symmetric and spectral invariant in \mathcal{B}_p .

With (2.2) and an orthogonal projection $p \in \Psi_n^{\mathcal{V}}$, $n \in \mathbb{N} \cup \{\infty\}$ from H onto a closed subspace $H_0 \subset H$ there is a scale of projected algebras in $\mathcal{L}(H_0)$:

$$\mathcal{L}(H_0) \supset \mathcal{F}_p = \Psi_{0p}^{\nu} \supset \cdots \Psi_{n-1p}^{\nu} \supset \Psi_{np}^{\nu}. \tag{2.4}$$

It can be shown that (2.4) arises by commutator methods with a system \mathcal{V}_p of closed operators on H_0 where $\mathcal{D}(A_p) := p[\mathcal{D}(A)]$ and

$$\mathcal{V}_p := \big\{ A_p := p \ A \ p : H_0 \supset \mathcal{D}(A_p) \to H_0 : A \in \mathcal{V} \big\}.$$

Defining (2.4) by commutator conditions with respect to \mathcal{V}_p only requires that $p \in \Psi_1^{\mathcal{V}}$. Thus this method gives a natural extension of (2.4) to an infinite scale for $n \in \mathbb{N}$.

There is a corresponding scale of V-Sobolev spaces in H:

- $\mathcal{H}^0_{\mathcal{V}} := H$ with the norm $p_0 := \| \cdot \|_H$.
- $\mathcal{H}^1_{\mathcal{V}} := \bigcap_{A \in \mathcal{V}} \mathcal{D}(A)$.
- $\mathcal{H}_{\mathcal{V}}^{k} := \left\{ x \in \mathcal{H}_{\mathcal{V}}^{k-1} : Ax \in \mathcal{H}_{\mathcal{V}}^{k-1} \text{ for all } A \in \mathcal{V} \right\}, \ k \geq 2.$
- $\mathcal{H}^{\infty}_{\mathcal{V}} := \bigcap_{k \in \mathbb{N}} \mathcal{H}^{k}_{\mathcal{V}}$.

We endow $\mathcal{H}_{\mathcal{V}}^{k}$ with the norm

$$p_k(x) := p_{k-1}(x) + \sum_{A \in \mathcal{V}} p_{k-1}(Ax), \qquad x \in \mathcal{H}_{\mathcal{V}}^k.$$

Let the topology of $\mathcal{H}^{\infty}_{\mathcal{V}}$ be defined by the system of norms $(p_k)_{k\in\mathbb{N}_0}$. It can be shown that $(\mathcal{H}^k_{\mathcal{V}}, p_k)$ is a Banach spaces and $(\mathcal{H}^{\infty}_{\mathcal{V}}, (p_k)_{k\in\mathbb{N}})$ turns into a Fréchet space. Moreover, each $A \in \mathcal{V}$ induces a bounded operator $\tilde{A}_k : \mathcal{H}^k_{\mathcal{V}} \to \mathcal{H}^{k-1}_{\mathcal{V}}$. For $n \in \mathbb{N} \cup \{\infty\}$ it was shown in [12] that all maps

$$\Psi_k^{\mathcal{V}} \times \mathcal{H}_{\mathcal{V}}^k \longrightarrow \mathcal{H}_{\mathcal{V}}^k : (a, x) \mapsto a(x)$$

are bilinear and continuous. The following result on regularity was proved in [13]:

Theorem 2.2 Let $A \in \Psi^{\mathcal{V}}_{\infty}$ be a Fredholm operator and $u \in H$ with $Au = f \in \mathcal{H}^k_{\mathcal{V}}$ for some $k \in \mathbb{N} \cup \{\infty\}$. Then it follows that $u \in \mathcal{H}^k_{\mathcal{V}}$.

3 On the Segal-Bargmann Projection

Throughout this paper we write $\langle x, y \rangle := x_1 \bar{y}_1 + \cdots + x_n \bar{y}_n$ for the Hermitian inner product on \mathbb{C}^n and $|x| := \sqrt{\langle x, x \rangle}$. For c > 0 and the Lebesgue measure v let us denote by μ_c the Gaussian measure on \mathbb{C}^n given by:

$$d\mu_c = c^n \pi^{-n} \exp\left(-c \mid \cdot \mid^2\right) dv.$$

With $\mu := \mu_1$ let $H^2(\mathbb{C}^n, \mu)$ be the Segal-Bargmann space of μ -square integrable entire functions on \mathbb{C}^n . We denote by P the orthogonal projection from $L^2(\mathbb{C}^n, \mu)$ onto $H^2(\mathbb{C}^n, \mu)$. The reproducing kernel K (resp. the normalized kernel k) corresponding to $H^2(\mathbb{C}^n, \mu)$ are known to be:

(a)
$$K(y,x) := \exp(\langle y,x \rangle)$$
,

(b)
$$k_x(y) := K(y,x) \| K(\cdot,x) \|^{-1} = \exp(\langle y,x \rangle - \frac{1}{2} |x|^2)$$

where $\|\cdot\|$ denotes the $L^2(\mathbb{C}^n, \mu)$ -norm. For $z, w \in \mathbb{C}^n$ we write $\tau_w(z) := z + w$ for the shift by w. Consider the space of measurable symbols on \mathbb{C}^n given by:

$$\mathcal{T}(\,\mathbb{C}^n\,) := \{\, g : g \circ \tau_x \in L^2(\mathbb{C}^n,\mu) \quad \text{for all} \quad x \in \mathbb{C}^n \,\}.$$

For $g \in \mathcal{T}(\mathbb{C}^n)$ and with the natural domain of definition

$$\mathcal{D}(T_g) := \left\{ f \in H^2(\mathbb{C}^n, \mu) : gf \in L^2(\mathbb{C}^n, \mu) \right\}$$
 (3.1)

the Toeplitz operator T_q on $H^2(\mathbb{C}^n, \mu)$ is densely defined by:

$$T_g: \mathcal{D}(T_g) \ni f \mapsto P(fg).$$

If g has polynomial growth at infinity we can determine an invariant subspace for T_q :

We inductively define a sequence $(a_n)_{n\in\mathbb{N}}$ with $a_1 := \frac{1}{4}$ and $a_{n+1} := [4 \cdot (1-a_n)]^{-1}$ for all $n \geq 2$. It can be checked that:

- (a) $a_n < \frac{1}{2}, \quad \forall n \in \mathbb{N},$
- (b) $(a_n)_{n\in\mathbb{N}}$ is strictly increasing,
- (c) $\lim_{n\to\infty} a_n = \frac{1}{2}$

Let $\mathbb{P}[\mathbb{C}^n]$ be the space of all *polynomials* on \mathbb{C}^n in the variables $z := (z_1, \dots, z_n)$ and $\bar{z} := (\bar{z}_1, \dots, \bar{z}_n)$. We write $\mathbb{P}_a[\mathbb{C}^n]$ for all *analytic polynomials* and set:

$$L_{\mathrm{exp}}\big(\,\mathbb{C}^n\,\big) := \Big\{\,f \in L^2(\mathbb{C}^n,\mu) : \exists \; c < \frac{1}{2}, 0 < D \text{ s.t. } \mid f(z) \mid \leq D \,\exp\big(\,c \mid z\mid^2\,\big) \text{ a.e. } \Big\}.$$

Because of $\mathbb{P}[\mathbb{C}^n] \subset L_{\exp}(\mathbb{C}^n)$ it follows that $L_{\exp}(\mathbb{C}^n)$ is dense in $L^2(\mathbb{C}^n, \mu)$. With the space $\mathcal{H}(\mathbb{C}^n)$ of entire functions on \mathbb{C}^n we define a subspace of $H^2(\mathbb{C}^n, \mu)$ by:

$$H_{\mathrm{exp}}(\mathbb{C}^n) := \mathcal{H}(\mathbb{C}^n) \cap L_{\mathrm{exp}}(\mathbb{C}^n),$$

Consider the symbols having polynomial growth at ∞ :

$$\operatorname{Pol}(\mathbb{C}^n) := \left\{ f : \exists j \in \mathbb{N} \text{ s.t. } |f(z)| \left(1 + |z|^2\right)^{-\frac{j}{2}} \in L^{\infty}(\mathbb{C}^n) \right\}.$$

Proposition 3.1 It holds $P[L_{\exp}(\mathbb{C}^n)] \subset H_{\exp}(\mathbb{C}^n)$ and for f in $Pol(\mathbb{C}^n)$:

$$T_{f}\left[H_{\exp}\left(\mathbb{C}^{n}\right)\right] \subset H_{\exp}\left(\mathbb{C}^{n}\right) \subset \mathcal{D}\left(T_{f}\right)$$
(3.2)

Proof: It is obvious that $H_{\exp}(\mathbb{C}^n) \subset \mathcal{D}(T_f)$. Because the multiplication by f clearly maps $H_{\exp}(\mathbb{C}^n)$ into $L_{\exp}(\mathbb{C}^n)$ it is sufficient to prove the first assertion of Proposition 3.1. For $g \in L_{\exp}(\mathbb{C}^n)$ there are $c < \frac{1}{2}$ and D > 0 such that a.e.:

$$|g(z)| \le D \exp(c|z|^2).$$

By (a), (b) and (c) and with $(a_n)_{n\in\mathbb{N}}$ above we can choose $n_0\in\mathbb{N}$ with $c< a_{n_0}<\frac{1}{2}$. Using the transformation formula and the reproducing property of K we obtain:

$$| [Pg](z)| \le \int_{\mathbb{C}^{n}} |g \exp\{\langle z, \cdot \rangle\}| d\mu$$

$$\le D \pi^{-n} \int_{\mathbb{C}^{n}} \exp\{\operatorname{Re}\langle z, \cdot \rangle - [1 - a_{n_{0}}] | \cdot |^{2}\} d\nu$$

$$= D (1 - a_{n_{0}})^{-n} \int_{\mathbb{C}^{n}} \exp\{\operatorname{2Re}\langle 2^{-1} (1 - a_{n_{0}})^{-\frac{1}{2}} z, \cdot \rangle\} d\mu$$

$$= D (1 - a_{n_{0}})^{-n} \exp\{\underbrace{[4 (1 - a_{n_{0}})]^{-1}}_{=a_{n_{0}+1}} |z|^{2}\}.$$

From (a) above we conclude that $Pg \in H_{\exp}(\mathbb{C}^n)$.

Hence all finite products of Toeplitz operators with symbols in $\operatorname{Pol}(\mathbb{C}^n)$ are well-defined on the dense subspace $H_{\exp}(\mathbb{C}^n)$ of $H^2(\mathbb{C}^n,\mu)$. In particular, all iterated commutators of P and multiplication operators M_f with $f \in \operatorname{Pol}(\mathbb{C}^n)$ can been considered as elements in $\operatorname{L}(\operatorname{L}_{\exp}(\mathbb{C}^n))$. In fact, they can be written as integral operators and a standard application of the *Schur test* leads to a criterion for the boundedness.

Lemma 3.1 Let $L: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ be a measurable function such that:

$$\mid L(x,y) \mid \leq \mid F(x-y) \mid \exp \left\{ Re \left\langle x,y \right\rangle \right\}$$

where $F \in L^1(\mathbb{C}^n, \mu_{\frac{1}{n}})$. Then the integral operator A on $L^2(\mathbb{C}^n, \mu)$ defined by

$$[Af](z) := \int_{\mathbb{C}^n} L(z,\cdot) f \, d\mu$$

is bounded on $L^2(\mathbb{C}^n, \mu)$ with $||A|| \leq 2^n ||F||_{L^1(\mathbb{C}^n, \mu_{\frac{1}{4}})}$.

Proof: With $p := q = \exp(\frac{1}{2}|\cdot|^2)$ on \mathbb{C}^n it follows that:

$$\begin{split} \int_{\mathbb{C}^n} |L(\,\cdot,y\,)\,|\,p\,d\mu &\leq \frac{1}{\pi^n} \int_{\mathbb{C}^n} |F(\,\cdot-y\,)\,|\,\exp\Big\{\operatorname{Re}\,\langle\,\cdot,y\,\rangle - \frac{1}{2}\,|\,\cdot\,|^2\,\Big\}\,dv \\ &= \frac{1}{\pi^n} \int_{\mathbb{C}^n} |F\,|\,\exp\Big\{\operatorname{Re}\,\langle\,\cdot+y,y\,\rangle - \frac{1}{2}|\,\cdot+y\,|^2\,\Big\}\,dv \\ &= 2^n\,p\,(\,y\,)\,\|\,F\,\|_{L^1(\mathbb{C}^n,\mu_{\frac{1}{2}}\,)}. \end{split}$$

Similarly, we get $\int |L(x,\cdot)| p d\mu \leq 2^n p(x) ||F||_{L^1(\mathbb{C}^n,\mu_{\frac{1}{2}})}$. Applying the *Schur test* we obtain the desired result.

Consider the subspace $\mathrm{SP}_{\mathrm{Lip}}(\mathbb{C}^n)$ of $\mathrm{Pol}(\mathbb{C}^n)$ defined by:

$$\mathrm{SP}_{\mathrm{Lip}}(\mathbb{C}^n) := \big\{ \, f \in \mathrm{Pol}(\mathbb{C}^n) : \exists \, c, D > 0 \ \text{ s.t. } \mid f(z) - f(w) \mid \leq D \, \exp(\, c \mid z - w \mid) \, \big\}.$$

As an application of Lemma (3.1) we can prove:

Proposition 3.2 Let $m \in \mathbb{N}$ and $S_m := \{M_{f_1}, \dots, M_{f_m}\}$ with $f_j \in SP_{Lip}(\mathbb{C}^n)$. Then the commutator $ad[S_m](P) \in L(L_{\exp}(\mathbb{C}^n))$ has a continuous extension to $L^2(\mathbb{C}^n, \mu)$.

Proof: It is easy to check that the commutator ad $[S_m](P)$ can be written as an integral operator on $L^2(\mathbb{C}^n, \mu)$ with kernel:

$$K_m(z,u) = \exp\left(\langle z,u\rangle\right) \prod_{j=1}^m \left\{ f_j(z) - f_j(u) \right\}. \tag{3.3}$$

By (3.3) and our assumptions on $f_j \in \mathcal{S}_m$ we can choose c, D > 0 such that

$$|K_m(z,u)| \le D \exp(c|z-u| + \operatorname{Re}\langle z,u\rangle).$$

Because of F:=D exp $(c \mid \cdot \mid) \in L^1(\mathbb{C}^n, \mu_{\frac{1}{2}})$ Lemma 3.1 implies the assertion.

We remark that by (3.3) the maps $\operatorname{ad}[\mathcal{S}_m](P)$ are invariant under permutations of the system \mathcal{S}_m . Now, we can prove the boundedness of a class of iterated commutators.

Corollary 3.1 Let $g \in L^{\infty}(\mathbb{C}^n)$ and $S_m := \{M_{f_1}, \dots, M_{f_m}\}$ with $f_j \in SP_{Lip}(\mathbb{C}^n)$. Then the commutator

$$ad\left[S_{m}\right]\left(\left[P,M_{g}\right]\right)\in L\left(L_{\exp}(\mathbb{C}^{n})\right)$$

has a bounded extensions $A(S_m, g)$ to $L^2(\mathbb{C}^n, \mu)$ and (3.4) below is continuous between Banach spaces:

$$L^{\infty}(\mathbb{C}^n) \ni g \mapsto A(\mathcal{S}_m, g) \in \mathcal{L}(L^2(\mathbb{C}^n, \mu)). \tag{3.4}$$

Proof: It can be checked by induction or our remark following Proposition 3.2 that:

$$\operatorname{ad} \left[S_m \right] \left(\left[P, M_g \right] \right) = \left[\operatorname{ad} \left[S_m \right] (P), M_g \right] \in \operatorname{L}(L_{\exp}(\mathbb{C}^n)).$$

Because M_g is bounded and ad $[S_m](P)$ has a bounded extension to $L^2(\mathbb{C}^n, \mu)$ by Proposition 3.2 we conclude the desired result.

Given a finite set $\mathbf{X} := \{X_1, \dots, X_n\} \subset \mathcal{L}(L^2(\mathbb{C}^n, \mu))$ we denote by $\mathcal{A}(\mathbf{X})$ the algebra generated by \mathbf{X} . Moreover, we write:

$$A_P(\mathbf{X}) := P A(\mathbf{X}) P := \{ PAP : A \in A(\mathbf{X}) \}.$$

for the corresponding projected algebra in $\mathcal{L}(H^2(\mathbb{C}^n,\mu))$. By Proposition 3.1 and for all $m \geq 1$ it follows that the commutator:

$$\operatorname{ad} \left[\left. \mathcal{S}_{m-1} \right. \right] \left(\left. \left[\right. P, M_{f_m} \right. \right] \right) = -\operatorname{ad} \left[\left. \left. \mathcal{S}_m \right. \right] \left(\right. P \right. \right)$$

can be regarded as bounded operators on $L^2(\mathbb{C}^n, \mu)$.

Proposition 3.3 Let $g \in L^{\infty}(\mathbb{C}^n)$ and $\mathcal{T}_m := \{ T_{f_1}, \cdots, T_{f_m} \}$ with $f_j \in SP_{Lip}(\mathbb{C}^n)$. Then

$$ad[T_m](T_g) \in L(H_{\exp}(\mathbb{C}^n))$$

is well-defined. More precisely, with $S_m := \{ M_{f_1}, \cdots, M_{f_m} \}$ it holds:

$$ad[\mathcal{T}_m](T_g) \in \mathcal{A}_P \left\{ ad[\mathcal{N}](P), M_g: with \mathcal{N} \subset \mathcal{S}_m \right\}$$
 (3.5)

and $ad[\mathcal{T}_m](\mathcal{T}_g)$ has a bounded extension $C(\mathcal{T}_m, g)$ to $H^2(\mathbb{C}^n, \mu)$. Moreover, the symbols map

$$L^{\infty}(\mathbb{C}^n) \ni g \mapsto C(\mathcal{T}_m, g) \in \mathcal{L}(H^2(\mathbb{C}^n, \mu))$$
(3.6)

is continuous between Banach spaces.

Proof: By Proposition 3.1 the iterated commutators ad $[\mathcal{T}_m]$ (T_g) are well-defined. It is a straightforward computation that:

$$\operatorname{ad}\left[\left.\mathcal{T}_{1}\right.\right]\,\left(\left.\mathcal{T}_{g}\right.\right)=P\left[\left.\left[\right.P,M_{f_{1}}\right.\right],\left[\left.P,M_{g}\right.\right]\right]P$$

which proves (3.5) in the case m=1. By induction assume ad $[T_j](T_g)$ has the form:

$$\operatorname{ad}[T_j](T_g) = \sum_{l \in \mathcal{I}} P A_l M_g B_l P$$
(3.7)

where \mathcal{I} is a finite index set, I the identity operator and

$$A_l, B_l \in \mathcal{A}(S_j) := \mathcal{A} \left\{ \operatorname{ad}[\mathcal{N}](P), I : \operatorname{with} \mathcal{N} \subset S_j \right\}.$$
 (3.8)

Then it follows that:

$$\operatorname{ad}[T_{j+1}](T_g) = \sum_{l \in \mathcal{I}} [T_{f_{j+1}}, P A_l M_g B_l P].$$

To prove (3.7) in the case j+1 it is sufficient to show for all $l \in \mathcal{I}$ the existence of a finite set $\widetilde{\mathcal{I}} \subset \mathbb{N}$ and operators $C_k, D_k \in \mathcal{A}(\mathcal{S}_{j+1})$ such that

$$[T_{f_{j+1}}, P A_l M_g B_l P] = \sum_{k \in \tilde{T}} P C_k M_g D_k P.$$
(3.9)

Note that (3.9) follows from $T_{f_{j+1}} P A_l M_g B_l P = P M_{f_{j+1}} P A_l M_g B_l P$ and

$$\left[\,M_{f_{j+1}},Q\,\right]\in A(\,\mathcal{S}_{j+1}\,)$$

for $Q \in \{P, A_l, B_l\}$. The continuity of (3.6) is a direct consequence of (3.7).

As an immediate consequence of Proposition 3.2 we remark:

Lemma 3.2 Let $f \in SP_{Lip}(\mathbb{C}^n)$ and $\mathcal{D}(T_f)$ as in (3.1). Then the Toeplitz operator T_f is densely defined and closed on $\mathcal{D}(T_f)$.

Proof: Because of $f \in \mathcal{T}(\mathbb{C}^n)$ it follows that T_f is densely defined. Moreover,

$$M_f = T_f + [M_f, P] : \mathcal{D}(T_f) \subset H^2(\mathbb{C}^n, \mu) \longrightarrow L^2(\mathbb{C}^n, \mu). \tag{3.10}$$

Proposition 3.2 with j=1 shows that the commutator $[M_f, P]$ has a continuous extension to $H^2(\mathbb{C}^n, \mu)$. Choose a sequence $(h_n)_{n\in\mathbb{N}}\subset \mathcal{D}(T_f)$ such that:

- (i) $\lim_{n\to\infty} h_n = h \in H^2(\mathbb{C}^n, \mu),$
- (ii) $\lim_{n\to\infty} T_f h_n = g \in H^2(\mathbb{C}^n, \mu)$.

Then we conclude from the continuity of $[M_f, P]$ and (3.10) that

$$fh = \lim_{n \to \infty} fh_n \in L^2(\mathbb{C}^n, \mu)$$

Hence
$$h \in \mathcal{D}(T_f)$$
 and $g = \lim_{n \to \infty} P(fh_n) = T_f h$.

Let $\mathcal{T}_m := \{ T_{f_1}, \dots, T_{f_m} \}$ be a system of Toeplitz operators where $f_j \in \mathrm{SP}_{\mathrm{Lip}}(\mathbb{C}^n)$ for $j = 1, \dots, n$. From Lemma 3.2 it follows that the domains $\mathcal{D}(T_{f_j})$ are closed with respect to the graph norm $\|\cdot\|_{\mathrm{gr}} := \|\cdot\| + \|T_{f_j}\cdot\|$. Consider $D_j \subset H^2(\mathbb{C}^n, \mu)$ defined by:

$$D_j := \|\cdot\|_{\operatorname{gr}} - \operatorname{closure of } \operatorname{H}_{\operatorname{exp}}(\mathbb{C}^n) \text{ in } \mathcal{D}(T_{f_j}).$$

If we consider T_{f_j} as a closed operator on D_j we can define a scale of algebras (2.2) by commutator methods with the system S_m . By Lemma 2.1 with $D := H_{\exp}(\mathbb{C}^n)$ our result in Proposition 3.3 can be formulated as follows:

Theorem 3.1 The symbol map $L^{\infty}(\mathbb{C}^n) \ni h \mapsto T_h \in \Psi^{\mathcal{S}_m}_{\infty}$ is well-defined and continuous.

Note that an application of Theorem 2.2 in the case of $\mathcal{V} := \mathcal{S}_m$ gives a regularity result for Fredholm Toeplitz operators with bounded symbols.

4 Toeplitz Ψ^* -algebras via the Segal-Bargmann representation

There is a unitary representation of the Heisenberg group \mathbb{H}_n in $\mathcal{L}(L^2(\mathbb{C},\mu))$. By identifying \mathbb{H}_n with $\mathbb{C}^n \times \mathbb{R}$ the group law is given by, [10]:

$$(z,t)*(w,s) := (z+w,t+s+2^{-1}\operatorname{Im}\langle w,z\rangle).$$

For $z \in \mathbb{C}^n$ and $f \in L^2(\mathbb{C}^n, \mu)$ we define the operator $W_z f := k_z \cdot f \circ \tau_{-z}$. It follows by an easy calculation:

Lemma 4.1 $H^2(\mathbb{C}^n, \mu)$ is an invariant subspace for all W_z where $z \in \mathbb{C}^n$. Moreover,

- (1) W_z is unitary with $W_z^* = W_{-z} = W_z^{-1}$,
- (2) The commutator ad $[P]W_z$ vanishes,
- (3) For $z, w \in \mathbb{C}^n : W_z W_w = \exp(i \operatorname{Im} \langle w, z \rangle) W_{z+w}$.

By Lemma 4.1 a unitary representation $\tilde{\rho}: \mathbb{H}_n \to \mathcal{L}(L^2(\mathbb{C}^n, \mu))$ of \mathbb{H}_n is given by:

$$\tilde{
ho}(z,t) := e^{it} W_{\frac{z}{\sqrt{2}}}$$

Moreover, the restriction of $\tilde{\rho}(z,t)$ to $H^2(\mathbb{C}^n,\mu)$ gives rise to a unitary representation ρ of \mathbb{H}_n in $\mathcal{L}(H^2(\mathbb{C}^n,\mu))$. It is well-known that ρ is irreducible and strongly continuous and it is referred to as Segal-Bargmann representation, c.f. [10].

For any $A \in \mathcal{B} := \mathcal{L}(H^2(\mathbb{C}^n, \mu))$ we define the map:

$$\Phi_{A}: \quad \mathbb{H}_{n} \longrightarrow \mathcal{B}
(z,t) \quad \mapsto \quad \rho(z,t) A \rho(z,t)^{-1} = W_{\frac{z}{\sqrt{2}}} A W_{\frac{-z}{\sqrt{2}}}.$$
(4.1)

In particular, note that for $f \in L^{\infty}(\mathbb{C}^n)$

$$\Phi_{T_f}(z,t) = T_{f \circ \tau_{-\frac{z}{\sqrt{2}}}}.$$

For $k \in \mathbb{N} \cup \{\infty\}$ we consider the C^k -elements

$$\Psi^{k} := \left\{ A \in \mathcal{B} : \Phi_{A} \in C^{k}(\mathbb{H}_{n}, \mathcal{B}) \right\}$$

defined via ρ . To any $z \in \mathbb{C}^n$ we associate $\varphi_A^z : \mathbb{R} \to \mathcal{B}$ by $\varphi_A^z(s) := W_{sz} A W_{-sz}$. According to (4.1) it follows that:

$$\Psi^{k} = \bigcap_{z \in \mathbb{C}^{n}} \Psi^{k,z} \text{ where } \Psi^{k,z} := \left\{ A \in \mathcal{B} : \varphi_{A}^{z} \in C^{k}(\mathbb{R}, \mathcal{B}) \right\}.$$
 (4.2)

Here we characterize the C^k -Toeplitz operators (i.e. the Toeplitz operators $T_f \in \Psi^k$) in terms of their symbols. We use a characterization of Ψ^{∞} by commutator conditions and apply our results of the previous section.

For all $z \in \mathbb{C}^n$ the map $(W_{sz})_{s \in \mathbb{R}} \subset \mathcal{B}$ defines a strongly continuous unitary group of operators. By V^z we denote its infinitesimal generator with domain of definition:

$$\mathcal{D}(\ V^z\):=\big\{\ h\in H^2(\mathbb{C}^n,\mu): V^zh:=\lim_{s\to 0}s^{-1}(W_{sz}-I)h\ \text{ exists }\ \big\}.$$

By Stone's Theorem iV^z is selfadjoint and associated to $\mathcal{V}^z := [iV^z]$ there is a scale:

$$\mathcal{B} := \Psi_0^{\mathcal{V}^z} \supset \cdots \Psi_n^{\mathcal{V}^z} \supset \Psi_{n+1}^{\mathcal{V}^z} \supset \cdots \supset \Psi_{\infty}^{\mathcal{V}^z} := \bigcap_{k \in \mathbb{N}} \Psi_k^{\mathcal{V}^z}$$
(4.3)

of algebras in \mathcal{B} defined by commutator methods with \mathcal{V}^z as it was described in (2.2) of section 2.1. In particular, $\Psi^{\mathcal{V}^z}_{\infty}$ is a Ψ^* -algebra and it is well-known that (4.2) and (4.3) are related as follows, see [16]:

Proposition 4.1 For $z \in \mathbb{C}^n$ let $\mathcal{V}^z := [iV^z]$ then:

- (i) $\Psi^{k,z} \subset \Psi^{\mathcal{V}^z}_k$ for $k \in \mathbb{N}$,
- (ii) $\Psi_{k+1}^{\mathcal{V}^z} \subset \Psi^{k,z}$ for $k \in \mathbb{N}_0$ and $\Psi^{\infty,z} = \Psi_{\infty}^{\mathcal{V}^z}$.

Using the fact that convergence in $H^2(\mathbb{C}^n, \mu)$ implies uniformly compact convergence on \mathbb{C}^n we can calculate V^z explicitly. Let $h \in \mathcal{D}(V^z)$ and $w \in \mathbb{C}^n$:

$$[V^{z}h](w) = \frac{d}{ds}[k_{sz}(w)h(w-sz)]_{|_{s=0}} = \{\langle w,z\rangle - \sum_{j=1}^{n} z_{j} \frac{\partial}{\partial w_{j}}\}h(w). \tag{4.4}$$

It easily can be seen that all the monomials $m_{\alpha}(z) := z^{\alpha}$ for $\alpha \in \mathbb{N}_{0}^{n}$ are contained in the domain $\mathcal{D}(V^{z})$. Moreover, from the standard identities $M_{w_{j}} := T_{w_{j}}$ and $\frac{\partial}{\partial w_{j}} := T_{\overline{w_{j}}}$ it follows that the restriction of V^{z} to $\mathbb{P}_{a}[\mathbb{C}^{n}]$ coincides with an unbounded Toeplitz operator:

$$V^{z}p := T_{\langle \cdot, z \rangle - \langle z, \cdot \rangle}p = 2i T_{\operatorname{Im}\langle \cdot, z \rangle}p, \qquad p \in \mathbb{P}_{a}[\mathbb{C}^{n}].$$

In the following we write:

$$g_z := 2i \operatorname{Im} \langle \cdot, z \rangle$$

for the symbol of the Toeplitz operator appearing above. Consider the space $\mathcal{D}(T_{g_z})$ with the graph norm $\|\cdot\|_{\mathrm{gr}} := \|\cdot\| + \|T_{g_z}\cdot\|$. By Lemma 3.2 it follows that $(\mathcal{D}(T_{g_z}), \|\cdot\|_{\mathrm{gr}})$ is a Banach space containing $\mathbb{P}_a[\mathbb{C}^n]$ and $H_{\mathrm{exp}}(\mathbb{C}^n)$.

Lemma 4.2 For all $z \in \mathbb{C}^n$ the embedding $\mathbb{P}_a[\mathbb{C}^n] \hookrightarrow H_{\exp}(\mathbb{C}^n)$ is dense with respect to the graph norm topology. Moreover,

$$H_{\exp}(\mathbb{C}^n) \subset \mathcal{D}(V^z) \cap \mathcal{D}(T_{g_z})$$
 (4.5)

and the restrictions of V^z and T_{g_z} to $H_{\exp}(\mathbb{C}^n)$ coincide.

Proof: For $f \in H_{\exp}(\mathbb{C}^n)$ we can choose $c_1 \in (0, \frac{1}{2})$ and $D_1 > 0$ such that:

$$|f(w)| \leq D_1 \, \exp\left(\left. c_1 \, |w|^2 \right. \right)$$

for all $z \in \mathbb{C}^n$. Hence, $f \in L^2(\mathbb{C}^n, \mu_r)$ for all $r \in (2c_1, 1)$. Fix c_2, c_3 with $2c_1 < c_2 < c_3 < 1$ and choose $D_2 > 0$ with

$$|w|^2 \le D_2 \exp([c_3 - c_2] |w|^2)$$

for all $w \in \mathbb{C}^n$. Then we obtain for all $p \in \mathbb{P}_a[\mathbb{C}^n]$:

$$\begin{split} \| \, T_{g_z}(f-p) \, \|^2 & \leq \| \, g_z(\, f-p \,) \, \|^2 \\ & \leq 2 \, | \, z \, |^2 \int_{\mathbb{C}^n} | \cdot |^2 \, | \, f-p \, |^2 \, d\mu \\ & \leq 2 D_2 \, | \, z \, |^2 \, r^{-n} \, \| \, f-p \, \|_{L^2(\mathbb{C}^n,\mu_r)}^2 < \infty \end{split}$$

where $r=1-c_3+c_2\in (2c_1,1)$. Because $\mathbb{P}_a[\mathbb{C}^n]$ is dense in $L^2(\mathbb{C}^n,\mu_r)\cap \mathcal{H}(\mathbb{C}^n)$ for all r>0 the first assertion follows.

Now, (4.5) immediately can be derived from $T_{g_z}p = V^zp$ for $p \in \mathbb{P}_a[\mathbb{C}^n]$ and the density result above which implies that:

$$H_{\exp}(\mathbb{C}^n) \subset \operatorname{closure}(\mathbb{P}_a[\mathbb{C}^n], \|\cdot\|_{\operatorname{gr}}) \subset \mathcal{D}(V^z) \cap \mathcal{D}(T_{g_z}).$$

Finally, we apply the continuity of $V^z, T_{g_z}: (\mathbb{P}_a[\mathbb{C}^n], \|\cdot\|_{g_r}) \to H^2(\mathbb{C}^n, \mu).$

For $z \in \mathbb{C}^n$ we denote by \widetilde{V}^z the infinitesimal generator of $(W_{sz})_{s \in \mathbb{R}}$ considered as strongly continuous group of unitary operators on $L^2(\mathbb{C}^n, \mu)$. Let $\mathcal{D}(\widetilde{V}^z)$ be its domain of definition, then V^z can be obtained by restricting \widetilde{V}^z to $\mathcal{D}(V^z)$. For $f \in \mathrm{SP}_{\mathrm{Lip}}(\mathbb{C}^n)$ and $r \in \mathbb{N}$ we write

$$\mathcal{A}_r(f) := \mathcal{A}(\underbrace{M_f, \cdots, M_f}_{\text{r-times}}) \subset \mathcal{L}(L^2(\mathbb{C}^n, \mu))$$

where the algebra on the right hand side was defined in (3.8) of Proposition 3.3.

Lemma 4.3 The domain $\mathcal{D}(\widetilde{V}^z)$ is invariant under $A \in \mathcal{A}_r(f)$ where f is a linear function on \mathbb{C}^n . Moreover, the commutator $[A, \widetilde{V}^z]$ vanishes as an operator on $\mathcal{D}(\widetilde{V}^z)$.

Proof: It is sufficient to show that for all $j \in \mathbb{N}$ the space $\mathcal{D}(\widetilde{V}^z)$ is invariant under the operators

$$a_j(f) := \operatorname{ad}^j[M_f](P).$$

Note that $L_{\exp}(\mathbb{C}^n)$ is an invariant under W_z and it holds $W_{-z}M_fW_z=M_{f\circ\tau_z}$. Because W_z commutes with P it follows that:

$$W_{-z} a_j(f) W_z = \operatorname{ad}^j \left[M_{f \circ \tau_z} \right] (P) = a_j(f).$$

We have used the linearity of f for the second equality. Hence, the commutator $[A, W_z]$ vanishes for all $A \in \mathcal{A}_r(f)$. Fix $h \in \mathcal{D}(\tilde{V}^z)$ and $A \in \mathcal{A}_r(f)$, then:

$$\frac{1}{s} \{ W_{sz} - I \} A h = A \frac{1}{s} \{ W_{sz} - I \} h \to A \widetilde{V}^z h$$

as s tends to 0. It follows that $Ah \in \mathcal{D}(\widetilde{V}^z)$ with $\widetilde{V}^z Ah = A \widetilde{V}^z h$.

Remark 4.1 Let W be any subspace of $H := H^2(\mathbb{C}^n, \mu)$ such that $H_{\exp}(\mathbb{C}^n) \subset W$. Consider the operators:

$$\mathcal{O}_W := \{ A \in L(W, H) : H_{exp}(\mathbb{C}^n) \text{ is an invariant space for } A \}.$$

Let $A \in \mathcal{O}_W$ and assume there is $A^* \in \mathcal{O}_W$ with $\langle Af, g \rangle = \langle f, A^*g \rangle$ for all $f, g \in W$. Because of $K(\cdot, \lambda) \in H_{\exp}(\mathbb{C}^n)$ for all $\lambda \in \mathbb{C}^n$ it follows that A can be written as an integral operator with kernel:

$$K_A(z,w) = \overline{A^*K(\cdot,z)(w)}. \tag{4.6}$$

In particular, A completely is determined by the restriction of A^* to $H_{\exp}(\mathbb{C}^n)$. Assume that A has a continuous extensions \tilde{A} from $H_{\exp}(\mathbb{C}^n)$ to $H^2(\mathbb{C}^n, \mu)$. Fix $g \in H^2(\mathbb{C}^n, \mu)$ and a sequence $(g_n)_n \subset H_{\exp}(\mathbb{C}^n)$ with $g = \lim_{n \to \infty} g_n$. Then it follows for $z \in \mathbb{C}^n$:

$$\left[\tilde{A}g \right] (z) = \lim_{n \to \infty} \left\langle Ag_n, K(\cdot, z) \right\rangle$$

$$= \lim_{n \to \infty} \left\langle g_n, A^*K(\cdot, z) \right\rangle = \left\langle g, A^*K(\cdot, z) \right\rangle$$

and \tilde{A} is given by the same integral formula. In particular, A has a (unique) extension from W to $H^2(\mathbb{C}^n, \mu)$.

Let $h \in L^{\infty}(\mathbb{C}^n)$ and $f : \mathbb{C}^n \to \mathbb{C}$ be a linear function. We write $C_j(f, h)$ for the continuous extensions of the commutators

$$\operatorname{ad}^{j}[T_{f}](T_{h}) \in L(H_{\exp}(\mathbb{C}^{n}))$$

to $H^2(\mathbb{C}^n, \mu)$, (note that $f \in \mathrm{SP}_{\mathrm{Lip}}(\mathbb{C}^n)$ and Proposition 3.3).

Corollary 4.1 Let $h \in L^{\infty}(\mathbb{C}^n)$. Assume that $\mathcal{D}(\widetilde{V}^z)$ is invariant under the multiplication operator M_h . Then $\mathcal{D}(V^z)$ is invariant under $C_j(f,h)$ for all $j \in \mathbb{N}$.

Proof: According to (3.7) there is a finite index set \mathcal{I} and $A_l, B_l \in \mathcal{A}_j(f)$ such that

$$\operatorname{ad}^{j}[T_{f}](T_{h}) = \sum_{l \in \mathcal{I}} P A_{l} M_{h} B_{l} P.$$

Due to our assumption on h and by Lemma 4.3 the assertion follows.

Now, we can proof our main result on the smoothness of Toeplitz operators with respect to the Segal-Bargmann representation ρ of the Heisenberg group:

Theorem 4.1 Let $h \in \mathcal{S}_s := \mathcal{S} \cap \overline{\mathcal{S}}$ where $\overline{\mathcal{S}} = \{ \overline{h} : h \in \mathcal{S} \}$ and

$$\mathcal{S} := \{ h \in L^{\infty}(\mathbb{C}^n) : s. t. \mathcal{D}(\widetilde{V}^z) \text{ is invariant under } M_h \text{ for all } z \in \mathbb{C}^n \}.$$

Then the symbol map into the Ψ^* -algebra Ψ^{∞} given by:

$$S_s \ni h \mapsto T_h \in \Psi^{\infty}$$

is well-defined and continuous if S_s carries the $L^{\infty}(\mathbb{C}^n)$ -topology.

Proof: Using our notation in (4.2) and (4.3) we must show that $T_h \in \Psi^{\infty,z} = \Psi^{\mathcal{V}^z}_{\infty}$ for all complex directions $z \in \mathbb{C}^n$ and $\mathcal{V}^z := [iV^z]$:

 $\mathcal{D}(V^z)$ is invariant under T_q for $q \in \{h, \bar{h}\} \subset \mathcal{S}_s$ and by Lemma 4.2 it follows that the commutators $A_1 := [iV^z, T_q]$ and $[T_{ig_z}, T_q]$ coincide on $H_{\exp}(\mathbb{C}^n)$. Because iV^z is self-adjoint we can define $A_1^* := [T_{\bar{q}}, iV^z]$ and $W := \mathcal{D}(V^z)$ in Remark 4.1. The operator $[T_{ig_z}, T_q]$ has a bounded extension $C_1(ig_z, q)$ from $H_{\exp}(\mathbb{C}^n)$ to $H^2(\mathbb{C}^n, \mu)$. We conclude from Remark 4.1 that $C_1(ig_z, q)$ is an extension of A_1 from W to $H^2(\mathbb{C}^n, \mu)$ and $T_q \in \Psi_1^{\nu^z}$. By induction we must prove for $j \in \mathbb{N}$:

- (1) The domain of definition $\mathcal{D}(V^z)$ is invariant under $C_j(ig_z, q)$,
- (2) The commutators $A_{j+1} := [iV^z, C_j(ig_z, q)]$ have the bounded extension $C_{j+1}(ig_z, q)$ from $\mathcal{D}(V^z)$ to $H^2(\mathbb{C}^n, \mu)$.

Assertion (1) is a direct consequence of Corollary 4.1 and (2) can be derived from Remark 4.1 with $A_{j+1}^* := [C_j(ig_z, q)^*, iV^z]$ on $W := \mathcal{D}(V^z)^3$ and the fact that A_{j+1} has the continuous extension $C_{j+1}(ig_z, q)$ from $H_{\exp}(\mathbb{C}^n)$ to $H^2(\mathbb{C}^n, \mu)$. The continuity of the symbols map follows from (2.3) together with the continuity of (3.6) in Proposition 3.3. \square

³Note that by Corollary 4.1 and the identity $C_j(ig_z,q)^* = (-1)^j C_j(ig_z,\bar{q})$ the commutator A_{j+1}^* is well-defined on $\mathcal{D}(V^z)$.

5 Examples and Applications

Let \mathcal{A} denote the subalgebra of $\mathcal{L}(L^2(\mathbb{C}^n, \mu))$ of all multiplication operators with bounded symbols $h \in L^{\infty}(\mathbb{C}^n)$. For $z \in \mathbb{C}^n$ and with $\widetilde{\mathcal{V}^z} := [i\widetilde{\mathcal{V}}^z]$ there is a scale of algebras arising by commutator methods:

$$\mathcal{A} \supset \Psi_1^{\widetilde{\mathcal{V}}^z} \supset \cdots \Psi_n^{\widetilde{\mathcal{V}}^z} \supset \Psi_{n+1}^{\widetilde{\mathcal{V}}^z} \supset \cdots \Psi_{\infty}^{\widetilde{\mathcal{V}}^z} = \bigcap_{n \in \mathbb{N}} \Psi_n^{\widetilde{\mathcal{V}}^z}. \tag{5.1}$$

In general, the inclusions above will be proper. As an immediate consequence of Theorem 4.1 it follows for the projected scale of vector spaces:

$$\mathcal{A}_{P} \supset \Psi_{1}^{\widetilde{\gamma}z}{}_{P} = \cdots = \Psi_{n}^{\widetilde{\gamma}z}{}_{P} = \Psi_{n+1P}^{\widetilde{\gamma}z} = \cdots = \Psi_{\infty P}^{\widetilde{\gamma}z}. \tag{5.2}$$

Here $\mathcal{A}_P \subset \mathcal{L}(H^2(\mathbb{C}^n, \mu))$ is the space of Toeplitz operators with bounded measurable symbols. By passing from (5.1) to the scale (5.2) the underlying C^k -structure is lost.

We give an example of a class of bounded functions g such that $\mathcal{D}(\widetilde{V}^z)$ is an invariant subspace for M_g and $M_{\bar{g}}$ for all $z \in \mathbb{C}^n$.

Example 5.1 Denote by $C_c^{\infty}(\mathbb{C}^n)$ the space of compactly supported smooth functions. For $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ we write $z_j := x_j + iy_j$ and with $\alpha, \beta \in \mathbb{N}_0^n$:

$$z^{lpha,eta}:=x^{lpha}y^{eta}, \qquad \qquad \partial^{lpha,eta}:=rac{\partial^{|lpha|}}{\partial x^{lpha}}\,rac{\partial^{|eta|}}{\partial y^{eta}}.$$

Fix $h \in \mathcal{D}(\widetilde{V}^z)$ and $z \in \mathbb{C}^n$. For $g \in C_c^{\infty}(\mathbb{C}^n)$ (real valued) and $s \neq 0$ we write:

$$\frac{1}{s} [W_{sz} - I] M_g h = \frac{1}{s} [M_{g \circ \tau_{-tz}} - M_g] W_{sz} h + M_g \frac{1}{s} [W_{sz} - I] h.$$
 (5.3)

The second term converges in $L^2(\mathbb{C}^n, \mu)$ as $s \to 0$. Consider the smooth and compactly supported function $dg(z, \cdot) := -\langle \operatorname{grad} g(\cdot), z \rangle_{\mathbb{R}^{2n}}$. Then:

$$C_{s,z} := \left\| \frac{1}{s} \left[M_{g \circ \tau_{-sz}} - M_g \right] - M_{dg(z,\cdot)} \right\|$$

$$= \left\| \frac{1}{s} \left[g \circ \tau_{-sz} - g \right] - dg(z,\cdot) \right\|_{\infty} \leq \sum_{|\alpha|+|\beta|=2} \frac{|s|}{(\alpha+\beta)!} \left\| \partial^{\alpha,\beta} g \right\|_{\infty} |z^{\alpha,\beta}|.$$

Hence $\lim_{s\to 0} C_{s,z} = 0$ and the right hand side of

$$\left\|\frac{1}{s}\left[M_{g\circ\tau_{-sz}}-M_{g}\right]W_{sz}h-M_{dg\left(z,\cdot\right)}h\right\|\leq C_{s,z}\left\|h\right\|+\left\|dg\left(z,\cdot\right)\right\|_{\infty}\left\|\left(W_{sz}-I\right)h\right\|$$

tends to 0 as $s \to 0$. It follows $gh \in \mathcal{D}(V^z)$. With our notation of Theorem 4.1 we conclude that $C_c^{\infty}(\mathbb{C}^n) \subset \mathcal{S}_s$. By the continuity of

$$L^{\infty}(\mathbb{C}^n) \subset \mathcal{S}_s \ni h \mapsto T_h \in \Psi^{\infty}$$

and the fact that $C_c^{\infty}(\mathbb{C}^n)$ is uniformly dense in the space $C_0(\mathbb{C}^n)$ of all continuous functions vanishing at infinity it follows that $\{T_h : h \in C_0(\mathbb{C}^n)\} \subset \Psi^{\infty}$.

In our second example we construct a compact operator $A \in \mathcal{B} := \mathcal{L}(H^2(\mathbb{C}, \mu))$ which is not contained in $\Psi^{1,z}$ for any $z \in \mathbb{C}$ (with our notation in (4.2)). As a consequence and using Example 5.1 A is not limit point of finite sums of finite products of Toeplitz operators with symbols in $C_0(\mathbb{C})$ and with respect to the Fréchet topology of $\Psi^{\infty,z}$. However, since A is compact it can be approximated by Toeplitz operators with smooth and compactly supported symbols in the topology of \mathcal{B} , c.f. [8].

Example 5.2 For $j \in \mathbb{N}_0$ let $P_j \in \mathcal{B}$ be the rank one projection onto $span\{m_j := z^j\}$. With a sequence $a := (a_n)_{n \in \mathbb{N}}$ tending to zero consider the compact diagonal operator:

$$A:=\sum_{j\in\mathbb{N}}a_jP_j\in\mathcal{B}.$$

With $z \in \mathbb{C}$, |z| = 1 and $g_z := 2i \operatorname{Im}\langle \cdot, z \rangle$ we compute $[T_{g_z}, A] m_j = [V^z, A] m_j$ explicitly for all $j \in \mathbb{N}$. By (4.4) one obtains that:

$$[T_{g_z}, A] m_j = a_j T_{g_z} m_j - A [\bar{z} m_{j+1} - j z m_{j-1}]$$

$$= a_j (\bar{z} m_{j+1} - j z m_{j-1}) - (a_{j+1} \bar{z} m_{j+1} - j a_{j-1} z m_{j-1})$$

$$= (a_j - a_{j+1}) \bar{z} m_{j+1} - j z (a_j - a_{j-1}) m_{j-1}.$$

With $e_j := (j!)^{-\frac{1}{2}} z^j$ we have $\langle e_j, e_l \rangle_2 = \delta_{l,j}$ for all $j, l \in \mathbb{N}$. Hence it follows that

$$||[T_{g_z}, A]e_j||_2^2 = (j+1)|a_j - a_{j+1}|^2 + j|a_j - a_{j-1}|^2.$$
 (5.4)

We choose a such that the right hand side of (5.4) tends to infinity for $j \to \infty$. This can be done by the choice of an oscillating sequence $a_j := (-1)^j j^{-\frac{1}{4}}$. Then it follows

$$(j+1) |a_j - a_{j+1}|^2 = (j+1) |j^{-\frac{1}{4}} + (j+1)^{-\frac{1}{4}}|^2 \ge \sqrt{j+1}$$

and so the right hand side of (5.4) is unbounded for $j \to \infty$. Hence $[T_{g_z}, A]$ has no bounded extension to $H^2(\mathbb{C}^n, \mu)$ and $A \notin \Psi^{1,z}$ by Proposition 4.1.

Let $\beta: L^2(\mathbb{R}^n) \to H^2(\mathbb{C}^n, \mu)$ denote the Bargmann isometrie, c.f. [10]. Our results on Toeplitz operators on $H^2(\mathbb{C}^n, \mu)$ can be used in the analysis of a class of Gabor-Daubechies windowed localization operators $L_h := \beta^{-1}T_h\beta^4$ on $L^2(\mathbb{R}^n)$ where $h \in L^\infty(\mathbb{C}^n)$, c.f. [9]. It was remarked in [14] the operator L_h can be considered as a pseudodifferential operator $W_{\sigma(h)}$ in Weyl quantization with Weyl symbol $\sigma(h)$ on \mathbb{R}^{2n} . Via the identification of \mathbb{R}^{2n} and \mathbb{C}^n the correspondence between h and $\sigma(h)$ can be expressed in terms of the heat equation on \mathbb{R}^{2n} . More precisely, $\sigma(h)$ is a solution with initial data h at a fixed time $t_0 > 0$. In the next example we describe how the operators introduced in the previous sections transform under β , c.f. [10].

⁴Here the window is a Hermite function on \mathbb{R}^n

Example 5.3 For $u \in L^2(\mathbb{R}^n)$ it is well-known that βu can be expressed by the integral:

$$[\beta u](z) = (2\pi)^{-\frac{n}{4}} \int_{\mathbb{R}^n} u(x) \exp\{\langle x, z \rangle - \frac{1}{4} |x|^2 - \frac{1}{2} \langle z, \bar{z} \rangle\} dx.$$

Fix $a = p + iq \in \mathbb{C}^n$, then it can be checked that $W_a \in \mathcal{L}(H^2(\mathbb{C}^n, \mu))$ transform as:

$$B_a u := \left[\beta^{-1} W_a \beta \right] (u) = u(\cdot -2p) \exp \left\{ iq(p-\cdot) \right\}.$$

In particular, in the case q=0 the unitary operator B_a is a usual shift in direction 2p. For $j=1,\dots,n$ it is readily verified that T_{z_j} and $T_{\bar{z}_j}$ transform in the following way:

(i)
$$\beta^{-1}T_{z_i}\beta = \frac{1}{2}x_j - \partial_{x_i}$$

(ii)
$$\beta^{-1}T_{\bar{z}_i}\beta = \frac{1}{2}x_j + \partial_{x_i}$$

From (i), (ii) and for $\alpha \in \mathbb{N}_0^n$ one obtains the identity:

$$\beta \, \partial_x^{\alpha} = (-1)^{|\alpha|} \, T_{i \operatorname{Im} z_1}^{\alpha_1} \cdots T_{i \operatorname{Im} z_n}^{\alpha_n} \, \beta =: (-1)^{|\alpha|} \, T_{i \operatorname{Im} z}^{\alpha} \, \beta.$$

Let $g \in \mathcal{D}(\mathbb{R}^n)$ be a test function and fix $f \in H_{\exp}(\mathbb{C}^n)$. It follows that:

$$\left\langle \beta^{-1}f,\partial_x^{\alpha}g\right\rangle_{L^2(\mathbb{R}^n)} = \left\langle f,\beta\;\partial_x^{\alpha}g\;\right\rangle = \left\langle \;\beta^{-1}\;T_{i\mathrm{Im}z_1}^{\alpha_1}\,\cdots\,T_{i\mathrm{Im}z_n}^{\alpha_n}f,g\;\right\rangle_{L^2(\mathbb{R}^n)}.$$

Here we have used the fact that $H_{\exp}(\mathbb{C}^n)$ is invariant under all unbounded Toeplitz operators $T_{i\operatorname{Im} z_j}$ which was proved in Proposition 3.1. It follows that:

$$\mathbf{D} := \beta^{-1} \big[H_{\exp} (\mathbb{C}^n) \big] \subset H^{\infty} (\mathbb{R}^n) = \bigcap_{k \in \mathbb{N}} H^k (\mathbb{R}^n)$$

where $H^s(\mathbb{R}^n)$ denotes the k-th Sobolev space. Hence, for $\alpha, \beta \in \mathbb{N}_0^n$ the restriction of (2.1) in Theorem 2.1 to **D**:

$$\operatorname{ad} \left[-ix \right]^{\alpha} \operatorname{ad} \left[i\partial_{x} \right]^{\beta}(B) : \mathbf{D} \to \mathbf{D}$$
 (5.5)

is well-defined for any $B \in L(\mathbf{D})$. With the choice $h \in L^{\infty}(\mathbb{C}^n)$ and $L_h := \beta^{-1} T_h \beta \in L(\mathbf{D})$ we obtain by conjugating (5.5) with β and using (i), (ii) above:

$$\operatorname{ad}\left[iT_{2\operatorname{Re}z}\right]^{\alpha}\operatorname{ad}\left[T_{\operatorname{Im}z}\right]^{\beta}\left(T_{h}\right):H_{\exp}(\mathbb{C}^{n})\to H_{\exp}(\mathbb{C}^{n}). \tag{5.6}$$

It follows by Proposition 3.3 that the operators in (5.6) have bounded extensions to $H^2(\mathbb{C}^n, \mu)$) and so (5.5) can be extended continuously to $L^2(\mathbb{R}^n)$. Hence we have proved a weaker version of the defining property (2.1) for $\Psi^0_{\rho,\delta}$ in Theorem 2.1.

Since the Gaussian measure μ is invariant under unitary transformations of \mathbb{C}^n , there is a natural group representation of U_n in $\mathcal{L}(H^2(\mathbb{C}^n,\mu))$ generating Ψ^* -algebras of smooth elements. As a final example we want to remark:

Example 5.4 Let $A \in \mathbb{R}^{n \times n}$ be self-adjoint and consider the unitary group:

$$\mathbb{R}\ni t\mapsto e^{itA}\in U_n.$$

The group of unitary composition operators $C_t f := f \circ e^{itA}$ on $H^2(\mathbb{C}^n, \mu)$ can be shown to be strongly continuous, cf. [3]. The restriction of the infinitesimal generator L_A of $(C_t)_{t \in \mathbb{R}}$ to $\mathbb{P}_a[\mathbb{C}^n]$ coincides with an (unbounded) Toeplitz operator. More precisely, it was shown in [3] that:

$$L_A p = \left[T_{\langle Az,z \rangle} - n \cdot \operatorname{trace}(A) \right] p, \qquad p \in \mathbb{P}_a \left[\mathbb{C}^n \right].$$

Hence, in general the symbol of L_A regarded as a Toeplitz operator is a polynomial of degree 2, which is not globally lipschitz continuous on \mathbb{C}^n . Proposition 3.3 cannot be applied in this situation and the smoothness of a Toeplitz operator T_f with bounded symbols f with respect to $(C_t)_t$ requires further assumption on the symbol f. For a more detailed calculation we refer to [3].

Acknowledgment: The author wishes to express his thanks to Professor B. Gramsch for many hints and explanations concerning the theory of spectral invariant Fréchet algebras.

References

- [1] V. BARGMANN, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14, 187-214, (1961).
- [2] W. BAUER, Local Properties of the Segal-Bargmann projection and Ψ_0 -algebras, submitted for the Journal of the ISAAC conference, Catania (2005).
- [3] W. BAUER, Toeplitz operators on finite and infinite dimensional spaces with associated Ψ^* -Fréchet algebras, Ph. D. thesis, Shaker Verlag Aachen, (2006).
- [4] W. BAUER, Hilbert-Schmidt Hankel operators on the Segal-Bargmann space, Proc. Amer. Math. Soc. 132, pp. 2989-2998, (2004).
- [5] W. BAUER, Mean oscillation and Hankel operators on the Segal-Bargmann space, Int. Equ. Oper. Theory 52, 1-15, (2005).
- [6] R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44, 45-57, (1977), ibid. 46 (1979), p. 215.
- [7] C.A. BERGER, L.A. COBURN, Toeplitz operators on the Segal Bargmann space, Trans. Amer. Math. Soc. 301, 813-829, (1994).
- [8] C.A. Berger, L.A. Coburn, Heat flow and Berezin-Toeplitz estimates, Amer. J. Math., 116 No. 3, 563-590, (1994).

- [9] L.A. COBURN, The Bargmann isometry and Gabor-Daubechies wavelet localization operators. Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), 169-178, Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, (2001).
- [10] G.B. FOLLAND, *Harmonic analysis in phase space*, Annals of Mathematics Studies, Princeton University Press 122, (1989).
- [11] B. Gramsch, Relative Inversion in der Störungstheorie von Operatoren und Ψ -Algebren, Math. Ann. 269, 27-71, (1984).
- B. Gramsch, J. Ueberberg, K. Wagner, Spectral invariance and submultiplicativity for Fréchet algebras with applications to pseudo-differential operators and Ψ*-quantization, in: Operator Theory: Adv. and Appl. 57, 71-98. Birkhäuser Basel, (1992).
- [13] B. Gramsch, K.G. Kalb, Pseudo-locality and hypoellipticity in operator algebras, Semesterbericht Funkt. Anal., Universität Tübingen, 51-61, Sommersemester (1985).
- [14] V. Guillemin, *Toeplitz operators in n-dimensions*, Integral equations Operator Theory 7, pp. 145-205, (1984).
- [15] R. LAUTER, Pseudodifferential analysis on conformally compact spaces, Memoirs of the AMS 163 No. 777, (2003).
- [16] R. LAUTER, Holomorphic functional calculus in several variables and Ψ*-algebras of totally characteristic operators on manifolds with boundary, Dissertation, Shaker-Verlag (1996).
- [17] R. LAUTER, R. MONTHUBERT, V. NISTOR, Spectral invariance for certain algebras of pseudodifferential operators, Jour. of the Inst. of Math. Jussieu 4, No. 3, 405-442, (2005).
- [18] E. Schrohe, Fréchet algebra techniques for boundary value problems: Fredholm criteria and functional calculus via spectral invariance, Math. Nachr. 199, 145-185, (1999).
- [19] E. SCHROHE, Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted L^p-Sobolev spaces. Int. Equations and Operator Theory 13, 271-284, (1990).
- [20] J. UEBERBERG, Zur Spektralinvarianz von Algebren von Pseudodifferentialoperatoren in der L^p-Theorie. Manuscripta Math. 61 No. 4, 459-475, (1988).
- [21] L. WAELBROECK, Le calcul symbolique dans les algèbres commutatives, J. Math. Pures Appl., 33 No. 9, 147-186, (1954).