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Abstract

As it was pointed out in [12] there are construction methods for spectral invari-
ant Fréchet operator algebras such as ¥*- and ¥;-algebras in the bounded oper-
ators on a Hilbert space having prescribed properties. For the Segal-Bargmann
space H and using systems of unbounded closable Toeplitz operators Ty where
f is in a certain class SP1;,(C") of symbols we show that these algebras con-
tain all Toeplitz operators T}, with h € L>(C"). Let p be the Segal-Bargmann
representation of the Heisenberg group H,, in the bounded operators on H. As
an application of our results above we characterize a class of smooth Toeplitz
operators in the ¥*-algebra of smooth elements with respect to p.

1 Introduction

Subsequent to the results in [12] it frequently has been remarked that the abstract
concept of (locally) spectral invariant Fréchet algebras such as W¥y- and ¥*-algebras suc-
cessfully can be applied to the structural analysis of certain algebras of pseudo-differential
operators. Applications arise in complex analysis, analytic perturbation theory of Fred-
holm operators and non-abelian cohomology for analyzing isomorphisms of abelian groups
in K-theory. By generalizing a characterization of the Hérmander classes ¥9 5 ' by com-
mutator conditions (see Theorem 2.1) a construction method for algebras of the above
mentioned type with prescribed properties have been given in [12].

*The author was supported by a JSPS postdoctoral fellowship (PE 05570) for North American and
European Researchers. '
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TOEPLITZ V*-ALGEBRAS

Let H := H?(C™, i) be the Segal-Bargmann space of Gaussian square integrable entire
functions on C". We denote by P the orthogonal projection from L?(C", u) onto H and
we write M; for the multiplication with a measurable symbol f. In the initial stage of
this paper we consider iterated commutators of closable Toeplitz operators Ty := PM; on
H having symbols in a certain class SPpi,( C" ) of measurable and in general unbounded
functions on C". For a system S, := [Ty, -+, Ty, | of operators with f; € SPp;,( C*)
and in the sense of [12] the Wo-algebra ¥S™ in the bounded operators £(H) on H can
be defined by commutator methods with respect to S,,. We show that ¥$» contains all
Toeplitz operators with bounded measurable symbols. More precisely:

Theorem A The symbbls map L*(C") 2 h— T, € S is well-defined and continuous.

Let H, be the Heisenberg group and « be the Segal-Bargmann representation of H, in
L(H), c.f. [10]. The map a is well-known to be unitary, irreducible and strongly continuous.
In particular, the ¥*-algebra ¥*°(H, ) C L(H) of smooth elements with respect to o arise
in a natural way and it can be characterized by commutator methods. We describe a
symmetric subspace S; C L*°(C") with the induced topology such that:

Theorem B The symbols map S; 3 h — T, € V*(H, ) is well-defined and continuous.

This result can be stated in terms of the algebra construction. Let .4 be the algebra of
multiplication operators on V := L(C", ) with bounded measurable symbols. In a natural
way a extends to a representation of H, into £(V') and the corresponding operator algebras
U ( A, H, ) of C*-elements in A form a decreasing scale. Note that M; € W*( A, H,, ) is
related to the smoothness of the symbols f € L>(C"). Clearly, A projects under P onto
the space Ap := PAP of Toeplitz operators with bounded symbols. Theorem B states:

PU*(AH,)P=PY*(AH,)PcL(H) for all k€N,

Heuristically, the smoothness of f cannot be recovered by commutator methods from
the Toeplitz operator Ty. We want to remark here that these results are related to an obser-
vation in [14], [3]. Let 8 : L?(R™) — H be the Bargmann isometry and f a bounded mea-
surable function on C". The assignment 8! T;f can be shown to be a pseudo-differential
operator W, sy on L?(R") in its Weyl quantization. By Identifying R?* and C" the Weyl
symbol o( f ) and f are related via the heat equation on R?". There is ¢y > 0 such that:

o( f)=e"%2f .= solution of the heat equation with initial data f at the time tg.

Moreover, o maps the space of continuous functions with compact support into the
symbol class S;’j,-"’, 0<d<p<1landé <1 Corresponding to Theorem A and B it can
be checked that f — o( f) is continuous with respect to the L>®(C") topology and the
usual Fréchet topology on S,3°.

In our first section we remind of some basic definitions and results related to the con-
struction of Wo- and W*-algebras. For Toeplitz operators having symbols of polynomial
growth at infinity an invariant subspace Hexp(C") of H is defined in section 3. Moreover,
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the existence of bounded extensions for a class of iterated commutators of Toeplitz opera-
tors on Hexp(C") and Theorem A are proved. Section 4 contains the proof of Theorem B
and finally we have added some examples and applications in section 5.

2 Fréchet operator algebras with prescribed properties

The following definition due to B. Gramsch have been given in [11]:

Definition 2.1 Let B be a Banach-algebra with unit e and let F be a continuously em-
bedded Fréchet algebra in B with e € F. Then F is called Wy-algebra if it is locally spectral
tnvariant in B, i.e. there is € > 0 with

{aeF:|le—a|s<e}cFL
Moreover, one defines:

o If Bis a C*-algebra and F is a symmetric ¥y-algebra in B, then F is called ¥*-algebra.
(F automatically is spectral invariant, i.e. F N B~ = F~1).

e If the topology of F is generated by a system [g; : j € N of sub-multiplicative
semi-norms with g;(e) = 1 for j € N, then F is called sub-multiplicative or locally
m-convez (E. Michael, 1952) Wq- resp. ¥*-algebra.

The concept of ¥*- and Wy-algebras allows to treat phenomenas of local structure. As it
was observed for algebras of Pseudo-differential operators, C*-properties such as pseudo-
or micro-locality are preserved by taking closures in the Fréchet topology. Important
examples of U*—algebras are given by the Hérmander classes ¥9; ? of zero order where

B := L(L*(R")). 1t is known that U0 ; can be described in terms of commutator conditions.

Theorem 2.1 ( R. Beals, '77, [6] )
An operator B : S(R™) — S'(R") is of class U} 5 iff for o, 3 € Ny all iterated commutators:

ad[ — iz)” ad[ 16, ] (B) : He—rlel+dl8l _, pe (2.1)

admit bounded extensions between sm’table Sobolev spaces to L*( R™).

On the one hand the spectral invariance of \Ilg follows from the commutator charac-
terizations in Theorem 2.1, see [19], [20]. On the other hand, by replacing iz and i8, above
with a system of closable and densely defined operators, conditions of the type (2.1) have -
been used to define (submultiplicative) ¥o-algebras in a fairly general situation, see [12].
Below we give the definitions and remind of some basic results.

20<s<p<landé<li
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2.1 Commutator Methods

Given a topological vector space X we write L(X) (resp. L£(X)) for the linear (resp.
bounded linear) operators on X.

Definition 2.2 (Iterated commutators)

For a system S, := [ Ay, -+, A ] where A;, B € L(X) we call m the length of S,,. We
inductively define the iterated commutators ad[ 0 |(B) := B and:

L4 a,d[Sl](B) = [Al,B] =AlB—BA1,
L4 ad[SJ+1](B) = ad[AJ+1](&d[SJ](B)) fOI‘j = 1, ym-—1.

In the case of A = A; where j = 1,--- ,m we also write:

o ad’{ A](B) = B and ad™[ A]( B) = ad[ Sm |( B).

With these notations it follows for finite systems S; and Sy in L(X):
ad(S; ] (ad[ 5 ](B) ) = ad[ &, S; | (B).

Let H be a Hilbert space and F C L(H) be a sub-multiplicative U*-algebra. Assume
that the topology of F is generated by a sequence ( g; );en of semi-norms and without
lost of generality let g := || - || (). Given a finite system V of closed and densely defined
operators A: H D D(A) — H and following [12] we define:

e I(A) :={ae F:a(D(A)) CD(A) },

» B(A):= {a€I(A):[A,a] extends to an element d4(a) € F }.
Inductively, one obtains:

o ¥} := F, with semi-norms g ; == g; for j € N,

hd ‘I,}.) = nAEV B(A)’

o WW:={a€ ¥  :04a€ VY  forall Ac V} where k > 2,

° \IIXO = nkeN \IIZ.

This process leads to a decreasing scale of algebras in F:

F=9D--0yD0y, DD, =¥} (2.2)
keN

For n > 1, we inductively define a system ( ¢s; )jen (resp. (gn,; )jnen) of norms on ¥V
(resp. on ¥Y)) by:

@ni(@) = n-15(a) + D _ a1, (0aa). (2.3)
AeVy
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According to [12], ¥¥ is a sub-multiplicative Wy-algebra in F. In the case where each
A €V is symmetric we replace B(A) by:

B*(A) = {a € B(A):a" € B(4) }.

Then the algebras ¥Y are symmetric and UV is a U*-algebra in L(H). Let D C H be

a core for V, i.e. the inclusion D < D(A) is dense with respect to the graph norm for all
A € V. Then it was shown in [2], [3]:

Proposition 2.1 Assume that a € F and property (Ey) holds for k € NU {o0}:

(Ex): D is invariant under all A€V and a € F. Moreover, assume that for any system

.ACSk(V):={[A1,~-~,Aj]: whereAlGVandISISjSk}.

ad[A](a): H D D — H has a continuous extensions to C(A,a) € F.

Then a € Y and C(A, a) is a bounded ertension of ad[A](a) : H C D(A) = H to H
for any operator A € V.

The (locally) spectral invariance of A C B is preserved under projections p = p? € A.
It is readily verified that A, := p Ap is (locally) spectral invariant in B, := p Bp. If in
addition B is a C*-algebra, A is symmetric in B and p = p*, then A, is symmetric and
spectral invariant in B,.

With (2.2) and an orthogonal projection p € ¥Y, n € NU {oo} from H onto a closed
subspace Hy C H there is a scale of projected algebras in £( Hp ):
L(Ho) D Fp=¥5, >0y, DUy, (29

It can be shown that (2.4) arises by commutator methods with a system V, of closed
operators on Hy where D( A, ) :=p[D(A)] and

Vp:={Apzr-pAp:HODD(AP)—»HO:AEV}.

Defining (2.4) by commutator conditions with respect to V, only requires that p € ¥Y.
Thus this method gives a natural extension of (2.4) to an infinite scale for n € N.

There is a corresponding scale of V-Sobolev spaces in H:

o HY, := H with the norm po := || - || 5
o H}, :=(ev D(A).
. H{‘,::{meﬂﬁ'I:AzeHﬁ"l forallAEV}, k> 2.

o HY = ﬂkeNH{‘;-
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We endow HY, with the norm
pk(cc):=pk_1(m)+2pk_1(Aa:), xE'H{“,.
Aev

Let the topology of Hsy be defined by the system of norms (pi)ren,- It can be shown
that (M3, px ) is a Banach spaces and (M7, (pk)keN) turns into a Fréchet space. Moreover,
each A € V induces a bounded operator Ay : H% — H& ™. For n € NU {oo} it was shown
in [12] that all maps

Uy xHY, — HE  (a,2) — a(z)

are bilinear and continuous. The following result on regularity was proved in [13]:

Theorem 2.2 Let A € WY, be a Fredholm operator and u € H with Au = f € H% for
some k € NU {oo}. Then it follows that u € HE.

3 On the Segal-Bargmann Projection

Throughout this paper we write (z,y ) := z1 §1 + -+ - Zp, §» for the Hermitian inner
product on C" and |z | := y/(z,z ). For ¢ > 0 and the Lebesgue measure v let us denote
by p. the Gaussian measure on C" given by:

dpe = c*n™" exp (—c| - |?) dv.

With p = y; let H?(C", 1) be the Segal-Bargmann space of u-square integrable entire
functions on C". We denote by P the orthogonal projection from L?(C", 1) onto H?(C™, ).
The reproducing kernel K (resp. the normalized kernel k) corresponding to H2(C", u) are
known to be:

(a) K(y,z):=exp((y,2)),

(b) ke(y) :=K(y,z) | K(-,z) |7 =exp((y,z) — 3|z |?)

where || - || denotes the L2(C", u)-norm. For z,w € C" we write 7,(2) := z+w for the shift
by w. Consider the space of measurable symbols on C" given by:

T(C*):={g:go1, € L*(C"pu) forall z€C"}.
For g € T(C™) and with the natural domain of definition
D(Ty):={f € H*(C"p) : gf € L*(C"p)} (3.1)
the Toeplitz operator T, on H?(C", u) is densely defined by:
T,:D(Ty) 2 f— P(fg).
If g has polynomial growth at infinity we can determine an invariant subspace for Ty:

We inductively define a sequence (@, )nen With a; := - and apq; = [4 (1 -ay)]! for
all n > 2. It can be checked that:
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(a) an <3, VmeN,
(b) (@n)nen is strictly increasing,
(C) liInn,-—»oo ay = %

Let P[C™] be the space of all polynomials on C™ in the variables z := (23, ,2, ) and
Z:= (%, - ,2,). We write P,[ C"] for all analytic polynomials and set:

Lep(C™) :={f€L2(C",u):3c< %,0<Ds.t. | f(z)| < D exp(c|z[?) a.e.}.

Because of P{C" ] C Lex,(C?) it follows that Le,(C") is dense in L2(C", u). With the
space H(C") of entire functions on C™ we define a subspace of H*(C", ) by:

Hug (") = H(€") 1 Lo (C7),
Consider the symbols having polynomial growth at oo:
Pol(C"):={ f:3jeNst. [ f(2)|(1+]2[?)F e Lo }.
Proposition 3.1 It holds P[ Lexp( C" )] C Hexp( C™) and for f in Pol(C™):
Ty [ How (C") | € Ha (C) € D(T}) (32)

Proof: It is obvious that Heq(C") C D( Ty ). Because the multiplication by f clearly
maps Hexp(C") into Lexp,(C™) it is sufficient to prove the first assertion of Proposition 3.1.
For g € Lexp( C™) there are ¢ < § and D > 0 such that a.e.:

lg(z)|<Dexp(c|z|*).

By (a), (b) and (c) and with (a,)nen above we can choose ng € N with ¢ < an, < 3.
Using the transformation formula and the reproducing property of K we obtain:

[Pl [ e { (o)} au
SDW‘"/nexp{Re(z,~)—[l—ano]l'lz}dv
:D(l—ano)-"/;:nexp{2Re<2‘1(1-—a,,0)—%z,->}du

=D(1=an) " exp{l4(1—fno)]—i|zlz}.

=an0+1

From (a) above we conclude that Pg € Hexp( C*). ‘ O

Hence all finite products of Toeplitz operators with symbols in Pol(C") are well-defined
on the dense subspace Hexp(C") of H%(C™, u). In particular, all iterated commutators of
P and multiplication operators My with f € Pol(C™) can been considered as elements in
L(Lexp(C™)). In fact, they can be written as integral operators and a standard application
of the Schur test leads to a criterion for the boundedness.
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Lemma 3.1 Let L: C* x C* — C be a measurable function such that:

| L(2,y)| < | F(z—y) |exp { Re (z,)}

where F € L}(C", uy). Then the integral operator A on L*(C™, p) defined by

[Af](2)= [ L) fau
is bounded on L2(C™, u) with || A || < 2"|| F || Lacrpy)-
: 2z
Proof: With p:=g=exp(3|-|?>)on C" it follows that:

/(;nlL(-,y)ldeS;r-I;/CﬂIF('—yHexp{Re(.,w__;_’.lz}dv

_ 1 1 2
_Fn/CJFIeXp{Re( +v,9) 2| +y | }dv
=2"p (Y) I Fllzicrpy)

Similarly, we get [ | L(x,-)|pdp < 2"p(z) || F ||L1(crp,)- Applying the Schur test we
2
obtain the desired result. O

Consider the subspace SPpi,(C") of Pol(C") defined by:
SPLip(C") := { f € Pol(C") : 3¢, D >0 s.t. | f(2) — f(w)| < Dexp(c|z—w])}.
As an application of Lemma (3.1) we can prove:

Proposition 3.2 Let m € N and S, := {My,,--- , My, } with f; € SPp;,(C"). Then the
commutator ad] Sy, |( P) € L( Lexp( C™ ) ) has a continuous extension to L*(C", u).

Proof: It is easy to check that the commutator ad[ Sy, |(P) can be written as an integral
operator on L?( C", u) with kernel:

Km(z,u) = exP H{ filz) = fi(u } | (3.3)

By (3.3) and our assumptions on f; € S,, we can choose ¢, D > 0 such that
| Km(2,u)| < Dexp(c|z—u|+Re(zu)).

Because of F := D exp(c|-|) € LY{C™,u 1) Lemma 3.1 implies the assertion. O

We remark that by (3.3) the maps ad[S,, ]( P) are invariant under permutations of the
system S,,. Now, we can prove the boundedness of a class of iterated commutators.
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Corollary 3.1 Let g € L*(C") and Sp, := {My,,--- , My,.} with f; € SPLi,(C"). Then
the commutator

ad[Sm]( [P, My] ) € L Lexp(C™) )

has a bounded extensions A( S, g) to L*(C", ) and (3.4) below is continuous between
Banach spaces:

L®(C") 39— A(Smg) € L(LXC"p)). (3.4)

Proof: It can be checked by induction or our remark following Proposition 3.2 that:
ad[Sm]([P,Mg]) = [ad [Sm](P),Mg] € L( Lexp(C™) ).

Because M, is bounded and ad [.Sm ]( P ) has a bounded extension to L2(C", u) by
Proposition 3.2 we conclude the desired result. O

Given a finite set X := { Xy, -+ , X, } C L(L*(C", u) ) we denote by A(X) the algebra
generated by X. Moreover, we write:

Ap(X )=PA(X)P:={PAP:Ac A(X) }.

for the corresponding projected algebra in £( H?(C", 1) ). By Proposition 3.1 and for all
m > 1 it follows that the commutator:

ad[Sner ) (1P, My, ]) = —ad[ Sn ] (P)

can be regarded as bounded operators on L*(C", p).

Proposition 3.3 Let g € L®(C") and Ty, := { T}, - , T}, } with f; € SPyp(C™). Then
0d[Tn] (Ty) € L(Hexp (C))

is well-defined. More precisely, with Sp, := { My,,--- , My, } it holds:
ad[’Tm](Tg)eAP{ ad [N](P),M,: wz'thNCSm} (3.5)

and ad [T ]1(Ty) has a bounded extension C(T,,,g) to H*(C", n). Moreover, the symbols
map

L®(C"*)3 g C(Tn,9) € L(H*(C" 1)) (3.6)
is continuous between Banach spaces.

Proof: By Proposition 3.1 the iterated commutators ad [ T;, | ( Ty ) are well-defined. It is
a straightforward computation that:

ad[7; ] (Tg)=P[[P,Mf1],[P,Mg]]P
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which proves (3.5) in the case m = 1. By induction assume ad [7; ] (T, ) has the form:

ad[7;|(T,) =Y PAM,B P (3.7)
' leT

where 7 is a finite index set, I the identity operator and
A,Bie A(S;) = A{ ad[N](P),]: with N c 5 }. (3.8)
Then it follows that:

a’d[%“](Tg) =Z[Tfj+1’PAlMgBZP]'

leT

To prove (3.7) in the case j + 1 it is sufficient to show for all | € T the existence of a
finite set Z C N and operators Ci, Di € A( Sj+1 ) such that

[T},,,,PAAM,;B,P] =" PCyM,D;P. (3.9)

kel

Note that (3.9) follows from Ty,,, P A; M, B, P = P My, , P Ay M, B; P and
[ ij+11 Q ] € A( Sj+1 )

for @ € { P, A;, B, }. The continuity of (3.6) is a direct consequence of (3.7). d

As an immediate consequence of Proposition 3.2 we remark:

Lemma 3.2 Let f € SPpyp(C™) and D(Ty) as in (3.1). Then the Toeplitz operator Ty is
densely defined and closed on D( Ty ).

Proof: Because of f € T(C") it follows that T} is densely defined. Moreover,
My=Ts+[M;,P):D(Ty) Cc H*(C*p) — L*(C"p). (3.10)

Proposition 3.2 with j = 1 shows that the commutator [ My, P ] has a continuous
extension to H2(C", p). Choose a sequence (hy)nen C D( Ty ) such that:

(i) limp_oo by = h € HX(C™, ),
(if) limp—eo Trhn = g € HA(C™, ).

Then we conclude from the continuity of [ My, P] and (3.10) that

fh=lim fh, € LAC", p)
n—00

* Hence h € D(Ty) and g = litpco P( fhn ) = Tsh. 0
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Let 7, := { T}, -+ ,T¥,. } be a system of Toeplitz operators where f; € SPr;p(C") for
j=1,---,n. From Lemma 3.2 it follows that the domains D( Ty, ) are closed with respect
to the graph norm || - ||g := || - || + || T}, - ||. Consider D; C H?*(C", u) defined by:

Dj = || - ||g — closure of Hex, (C™) in D( Ty, ).

If we consider Ty, as a closed operator on D; we can define a scale of algebras (2.2) by
commutator methods with the system S,,,. By Lemma 2.1 with D := Hexp,( C™) our result
in Proposition 3.3 can be formulated as follows:

Theorem 3.1 The symbol map L®(C") 3> h > T}, € U™ is well-defined and continuous.

Note that an application of Theorem 2.2 in the case of V := S,,, gives a regularity result
for Fredholm Toeplitz operators with bounded symbols.

4 Toeplitz U*-algebras via the Segal-Bargmann representation

There is a unitary representation of the Heisenberg group H, in £(L*(C,u)). By
identifying H,, with C™ x R the group law is given by, [10]:

(z,t)*(w,8):=(z+wt+s+2 Im{w,z)).

For z € C" and f € L?(C", u) we define the operator W, f := k, - f o 7_,. It follows by
an easy calculation:

Lemma 4.1 H?(C™, u) is an invariant subspace for all W, where z € C*. Moreover,
(1) W, is unitary with W} =W_, = W1,
(2) The commutator ad [ P ) W, vanishes,
(8) For z,w e C": W, W, = exp(i Im{w,2) ) Wy4v.
By Lemma 4.1 a unitary representation 5 : H, — £( L?(C", u) ) of H,, is given by:
| ﬁ(z,t)::e“WVz;.
Moreover, the restriction of p( z,t ) to H2(C", u) gives rise to a unitary representation

p of H, in L( H%(C™, i) ). It is well-known that p is irreducible and strongly continuous
and it is referred to as Segal-Bargmann representation, c.f. [10].

For any A € B := L( H?(C™, i) ) we define the map:

@AZ Hn - B

(4.1)
() — p(zt)Ap( z,t) = W AW%.
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In particular, note that for f € L>*(C")

<I>Tf(z,t) = Tfo,,;*,_.

v
For k € NU {00} we consider the C*-elements
¥ :={AeB:%,€C"H,B)}
defined via p. To any z € C™ we associate % : R — B by ¢%(s) :== W,, AW_,,. According
to (4.1) it follows that: :
Wk = ﬂ T** where ¥**:={ A€ B: ’902 € C*(R,B) }. (4.2)
zeCn .

Here we characterize the C*-Toeplitz operators (i.e. the Toeplitz operators Ty € Wk)
in terms of their symbols. We use a characterization of ¥* by commutator conditions and
apply our results of the previous section.

For all z € C" the map (W,,)ser C B defines a strongly continuous unitary group of
operators. By V* we denote its infinitesimal generator with domain of definition:

D(V*):={heH*C"p): Vh:= lir% 5™} (W,, — I)h exists }.
By Stone’s Theorem iV'* is selfadjoint and associated to V* := [iV?] there is a scale:
B=Wy > -9 >¥, > . 0¥ =¥ (4.3)
keN

of algebras in B defined by commutator methods with V* as it was described in (2.2) of
section 2.1. In particular, ¥¥ is a ¥*-algebra and it is well-known that (4.2) and (4.3) are
related as follows, see [16):

Proposition 4.1 For z € C" let V* := [iV*] then:
(i) k= C ®Y* for k € N,
(ii) WYi, C ¥** for k € Ny and ¥°* = .

Using the fact that convergence in H%(C™, 1) implies uniformly compact convergence
on C™ we can calculate V' explicitly. Let h € D(V*) and w € C™

d 0

| [Vzh](w)=E;[ksz(w)h(w——gz)]hﬂ:{(w,z)—sz%}h(w). (4.4)

It easily can be seen that all the monomials mq(z) := 2* for & € N} are contained in
the domain D(V*). Moreover, from the standard identities M,, :=T,, and 53—); = Ty it

follows that the restriction of V* to P,[C"] coincides with an unbounded Toeplitz operator:

Vzp = T(.]z)_(z,.)p =21 T1m<.’z>p, pE ]Pa[ c? ]

12



13

W. BAUER

In the following we write:
9::=2iIm(- 2)

for the symbol of the Toeplitz operator appearing above. Consider the space D(T,,) with
the graph norm || - || = || - || + || Tg, - ||. By Lemma 3.2 it follows that (D(Ty,), || - |lgr ) is
a Banach space containing P,[C" | and Hey,(C").

Lemma 4.2 For all 2 € C" the embedding Po[ C" | — Hexp(C") is dense with respect to
the graph norm topology. Moreover,

Hexp(C") ¢ D(VZ)ND(T,,) (4.5)
and the restrictions of V* and Ty, to Hexp(C") coincide.
Proof: For f € Hexp(C™) we can choose ¢; € (0,1 ) and D; > 0 such that:

| f(w)| < Dy exp(er|wl)

for all z € C". Hence, f € L%(C™, u,) for all 7 € (2¢1,1). Fix cp,c3 with 2¢; < ez <cz <1
and choose D, > 0 with

lw|? < Dy exp( [e3 ~—c2] lwlz)
for all w € C*. Then we obtain for all p € B,[C"]:

I To.(F =P " < Ml ge( £ =) II?
<2(zf [ 1F17-pPda
<2Dz |z Pr7™ || f = p lZaen ) <
where r = 1 —¢3 +¢; € (2¢1,1). Because P,[C"] is dense in L*(C", u,) N H(C™) for all

r > 0 the first assertion follows.

Now, (4.5) immediately can be derived from T, p = V?p for p € P,[C"| and the density
result above which implies that:

Hexp(C™) C closure( P, [C*], || -l ) € D(V*) ND(Ty, ).

Finally, we apply the continuity of V* T, : (P,[C"],| - & ) = H*(C", p). O

For 2 € C™ we denote by V?* the infinitesimal generator of (%z),eg considered as
strongly continuous group of unitary operators on L%(C", u). Let D(V?) be its domain of

definition, then V* can be obtained by restricting V' to D(V*). For f € SPy;,(C*) and
r € N we write

Afr(f) :='A([Mf"" »Mf]) CL(LZ(Cnvﬂ))

where the algebra on the right hand side was defined in (3.8) of Proposition 3.3.
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Lemma 4.3 The domain D( V*) is invariant under A € A,( f) where f is a linear
function on C". Moreover, the commutator [ A,V*] vanishes as an operator on D(V?).

Proof: It is sufficient to show that for all j € N the space D(V?) is invariant under the
operators

a;j( f)=ad’[M;](P).

Note that Lex,(C™) is an invariant under W, and it holds W_,M;W, = M., . Because
W, commutes with P it follows that:

W_.a;(f)W, =ad [ Mser,] (P) = a;( f).

We have used the linearity of f for the second equality. Hence, the commutator [A, W, ]
vanishes for all A € A.(f). Fix h € D(V*) and A € A,.( f), then:

%{WSZ—I}Ah=A§{W“—I}h—>AX7‘h

as s tends to 0. It follows that Ah € D(V*) with V2Ah = AV*h. O

Remark 4.1 Let W be any subspace of H := H?( C", 1) such that He,(C") C W.
Consider the operators:

Ow :={ A€ L(W,H ) : Hep(C") is an invariant space for A }-

Let A € Ow and assume there is A* € Oy with (Af,g) = (f,A*g) for all f,g e W.
Because of K (-, \) € Hexp(C*) for all A € C* it follows that A can be written as an integral
operator with kernel:

KA(Z,IU);A*K(;,Z)(W)- (46)

In particular, A completely is determined by the restriction of A* to Hexp,(C™). Assume
that A has a continuous extensions A from He,(C™) to H?(C", pn). Fix g € H3(C" )

and a sequence (gn)n C Hexp( C" ) with g = lim,, ., g,. Then it follows for z € C™

[/ig](z)=n111{.1°(Agn,K(-,z)> ‘
= lim (ga A°K(+12)) = (9, 4°K(,2) )
and A is given by the same integral formula. In particular, A has a (unique) extension
from W to H*(C™, u).

Let h € L*°(C") and f : C* — C be a linear function. We write C;( f,h ) for the
continuous extensions of the commutators

ad’ [Ty |(Th) € L( Hep(C™))

to H%(C", i), (note that f € SPLip( C™ ) and Proposition 3.3).
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Corollary 4.1 Leth € L°(C"). Assume that D(V*) is invariant under the multiplication
operator My,. Then D(V?*) is invariant under C;(f, h) for all j € N.

Proof: According to (3.7) there is a finite index set Z and A;, B; € A;( f ) such that

ad’[T;](Th) =) PAM,BP.
leT
Due to our assumption on h and by Lemma 4.3 the assertion follows. a

Now, we can proof our main result on the smoothness of Toeplitz operators with respect
to the Segal-Bargmann representation p of the Heisenberg group:

Theorem 4.1 Leth€ S, :=SNS where S={h:heS) and
S:={heL®C": st D(V?) is invariant under My for all z € c}.
Then the symbol map into the ¥*-algebra ¥ given by:
S, 2h—T, e W¥™®

is well-defined and continuous if S, carries the L=°(C")-topology.

Proof: Using our notation in (4.2) and (4.3) we must show that T, € ¥>* = ¥¥ for all
complex directions z € C* and V* := [iV*]:

D(V?) is invariant under T, for ¢ € {h,h} C S, and by Lemma 4.2 it follows that
the commutators A; := [iV?* T, ] and [ T},,, Ty ] coincide on Hegq( C* ). Because iV* is
self-adjoint we can define A} := [T;,:V*] and W := D(V*) in Remark 4.1. The operator
[ Ti., T, ] has a bounded extension C( ig,,q ) from He,(C) to H3(C", u). We conclude
from Remark 4.1 that Cy(ig.,q) is an extension of A; from W to H?(C", ) and T, € ¥Y".
By induction we must prove for j € N:

(1) The domain of definition D(V*) is invariant under C;(ig;,9q ),

(2) The commutators 4,4 := [iV*,C;(igs, q)] have the bounded extension C;41(4g;,q)
from D(V?) to H}(C™,u).

Assertion (1) is a direct consequence of Corollary 4.1 and (2) can be derived from
Remark 4.1 with A3, :=[C;(ig,,q)%,iV*] on W := D(V*) ® and the fact that A;;; has
the continuous extension Cj1( gz, q) from Heyp(C™) to H*(C®, ). The continuity of the
symbols map follows from (2.3) together with the continuity of (3.6) in Proposition 3.3.- O

3Note that by Corollary 4.1 and the identity C;(ig,,q)* = (—1)7C;(ig:,7) the commutator A}, is
well-defined on D(V*=).

15
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o Examples and Applications

Let A denote the subalgebra of £( L*(C™, u) ) of all 1l multiplication operators with

bounded symbols h € L®(C*). For z € C* and with V# := [iV#] there is a scale of
algebras arising by commutator methods:

A>TV 5. ¥ S el 5. =N (5.1)
neN

In general, the inclusions above will be proper. As an immediate consequence of The-
orem 4.1 it follows for the projected scale of vector spaces:

Ap DB p=---= ‘I’WP = ‘I’n+1p =Ty p. (5.2)

Here Ap C L H?(C", ) ) is the space of Toeplitz operators with bounded measurable
symbols. By passing from (5.1) to the scale (5.2) the underlying C*-structure is lost.

We give an example of a class of bounded functions g such that D(V") is an invariant
subspace for M, and Mj for all 2 € C".

Example 5.1 Denote by C2°(C") the space of compactly supported smooth functions.

For z = (21, -+ ,2n ) € C" we write z; := x; + iy; and with o, 3 € NJ:
glel gl
B . B B =
2P = gyP, 0 855 GyP
Fix h € D(V*) and z € C*. For g € C°(C") (real valued) and s # 0 we write:
1 1 1
~[Wee = I] Mgh = - [Mgo,_,, — M, | Wo.h+ M, -[W,,z —I]h. (5.3)

The second term converges in LZ(C", u) as s — 0. Consider the smooth and compactly
supported function dg( 2,- ) := —( grad g( - ), z )gzn. Then:

o[£ [ ] M |

o R ) B Sl Car |

|a |+ 81=2
Hence lim,_,g C;s , = 0 and the right hand side of

|5 [ Maoreee = My | Wash = Magah | < Con IR+ 1 dg(2,7) o 1 (Wa = 1|

tends to 0 as s — 0. It follows gh € D(V*). With our notation of Theorem 4.1 we
conclude that C°(C") C S,. By the continuity of
L®(C")CS:d2h—> T, e ™

and the fact that C2°(C") is uniformly dense in the space Cy(C") of all continuous functions
vanishing at infinity it follows that { T}, : h € Co(C™) } C ¥>°.
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In our second example we construct a compact operator A € B := L( H?(C, 1) ) which
is not contained in ¥'# for any z € C (with our notation in (4.2)). As a consequence and
using Example 5.1 A is not limit point of finite sums of finite products of Toeplitz operators
with symbols in Cy( C ) and with respect to the Fréchet topology of ¥**. However, since
A is compact it can be approximated by Toeplitz operators with smooth and compactly
supported symbols in the topology of B, c.f. [8].

Example 5.2 For j € Ny let P; € B be the rank one projection onto span{ m; := 27 }.
With a sequence a := (a,)nen tending to zero consider the compact diagonal operator:

A=) aP€B.
jeN
With z € C, |2| = 1 and g, := 2iIm({, z) we compute [T,,, A]m; = [V*, A]m; explicitly
for all j € N. By (4.4) one obtains that:
[Ty, A) mj = a; Ty, mj — A[ Zmyq — jzmy1 |

= aj (ij+1~jzmj_1) - (aj+1 ij+1 —jaj_lzmj_l)

= (aj = ajr1) Zmjs1 —j 2z (aj — aj1) mj-1.
With e; := (! )‘%z" we have (ej,él Yo = 8, for all j,! € N. Hence it follows that

T, Alesllz = (G +1) laj—ajua [P+ a5 — g [°. (5.4)

We choose a such that the right hand side of (5.4) tends to infinity for j — oo. This
can be done by the choice of an oscillating sequence a; := (—1)7j ~%. Then it follows

D] —am =G|+ (G P2 Vi

and so the right hand side of (5.4) is unbounded for j — oco. Hence [T},, A] has no bounded
extension to H2(C", 1 ) and A ¢ ¥'* by Proposition 4.1.

Let 8 : L*(R™) — H?(C", 1) denote the Bargmann isometrie, c.f. [10]. Our results on
Toeplitz operators on H2(C", 1) can be used in the analysis of a class of Gabor-Daubechies
windowed localization operators Ly, := 71T}, * on L?>(R") where h € L®(C"), c.f. [9]. It
was remarked in [14] the operator Ly can be considered as a pseudodifferential operator
Wo(x) in Weyl quantization with Weyl symbol o( h) on R?™. Via the identification of R*"

and C" the correspondence between h and o( h ) can be expressed in terms of the heat:

equation on R?". More precisely, o(h) is a solution with initial data h at a fixed time
to > 0. In the next example we describe how the operators introduced in the previous
sections transform under g, c.f. {10].

4Here the window is a Hermite function on R"

17
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Example 5.3 For u € L%(R") it is well-known that Bu can be expressed by the integral:

[ﬂu](z)=(2w)—%/"u(m) exp{(x,z)-—}zlzlz——%(z,i)}dx.

Fix a = p + iq € C", then it can be checked that W, € £( H?(C", ) ) transform as:

Bou:=[B'WoB](u)=u( --2p) exp{ig(p—-) }.

In particular, in the case g = 0 the unitary operator B, is a usual shift in direction 2p.
For j =1,--+,n it is readily verified that T, and T, transform in the following way:

( ) ﬁ—sz,ﬁ - " :t:Ja
(11) 1T51 51.']' + ij
From (i), (ii) and for o € Nj one obtains the identity:

,8 aa = ( )|a| tImz; Z?r'rl:zn ,3 ( l)lal ilmz 'B

Let g € D(R") be a test function and fix f € Hexp( C™). It follows that:

< ﬂ—lf) a:(:g >L2(R") < fa 6 aag > < /6_ ﬂmzl zImz,‘f’ g >L2(R")

Here we have used the fact that He,(C") is invariant under all unbounded Toeplitz
operators Tiim.; which was proved in Proposition 3.1. It follows that:

D := 7! Hexp( C" )-] C H*(R*) =) H*R")

keN

where H*(IR™) denotes the k-th Sobolev space. Hence, for a, 8 € N} the restriction of (2.1)
in Theorem 2.1 to D:

ad[ - iz)*ad [0, )°(B) : D » D (5.5)
is well-defined for any B € L(D). With the choice h € L*°(C") and L;, := 31 T;8 € L(D)
we obtain by conjugating (5.5) with 8 and using (i), (ii) above:

8d[ iTRez |* 84 Timz |°(Th ) : Hexp(C™) — Hep(C™). (5.6)

It follows by Proposition 3.3 that the operators in (5.6) have bounded extensions to
H?(C", 1)) and so (5.5) can be extended continuously to L?( R™ ). Hence we have proved
a weaker version of the defining property (2.1) for \112’5 in Theorem 2.1.

Since the Gaussian measure p is invariant under unitary transformations of C®, there

is a natural group representation of U, in £ H2(C™, 1) ) generating ¥*-algebras of smooth
elements. As a final example we want to remark:
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Example 5.4 Let A € R"*" be self-adjoint and consider the unitary group:
Rot— et eU,.

The group of unitary composition operators C.f := f o€*4 on H?(C", u) can be shown
to be strongly continuous, cf. [3]. The restriction of the infinitesimal generator L4 of
(Ct)ter to P;[C™] coincides with an (unbounded) Toeplitz operator. More precisely, it was
shown in [3] that:

Lap = [T{azz) —n-trace( A) |p, peP[C"].

Hence, in general the symbol of L, regarded as a Toeplitz operator is a polynomial
of degree 2, which is not globally lipschitz continuous on C". Proposition 3.3 cannot
be applied in this situation and the smoothness of a Toeplitz operator Ty with bounded
symbols f with respect to ( C; ); requires further assumption on the symbol f. For a more
detailed calculation we refer to [3].

Acknowledgment: The author wishes to express his thanks to Professor B. Gramsch for
many hints and explanations concerning the theory of spectral invariant Fréchet algebras.
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