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NOTE ON THE BEREZIN TRANSFORM ON HERZ SPACES
- BOO RIM CHOE |

ABSTRACT. In a previous work of the author with Koo and Na, the
Berezin transform is shown to be bounded on Herz spaces K7'* on the
unit ball of R™, when the parameters p, g and a belong to a ceratin range.
In this note that parameter range is shown to be also necessary. In ad-
dition, the parameter g is extended to the full range 0 < g < oo. Also,
the pointwise growth estimate of the Berezin transform on Herz spaces
is obtained in certain cases.

1. INTRODUCTION

For a fixed integer n > 2,let B = B, denote the open unit ball in R™.
Let R be the kernel function on B x B defined by

_ 1 1 1-|z?y2\*  4lz?lyl?
(1.1) R(x,y)—a'w{(—g,‘y—]—> "—n—}

for z,y € B where w,, is the volume of B and

[z,9] = V1 -2z -y + |z|?|y]?.

Here, z - y denotes the dot product of z,y € R". This kemnel R is the
well-known harmonic Bergman kernel for B which has the the reproducing
property for harmonic Bergman functions on B. More explicitly, if f is a
square-integrable harmonic function on B, then

(12) f@) = /B )R

for z € B. See [1] for more information and related facts.
Given a positive Borel measure 1 on B (we write u > 0, for brevity), the
(harmonic) Berezin transform 11 is a function on B defined by

(@) = Re,2)™ [ Rz, )P du)
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for x € B. Also, for a complex Borel measure 1 on B, we define [ Simi-
larly. Let V' be the volume measure on B. Incase du = fdV,welet f =1

for brevity.
Note that we have
1 1 4|z|*
r) = — . 1 2\2 _
Rla,e) = o Gy {0+ e - 20}
and thus
(@) ~ (1= fe)" [ Rz )P du(y)
for u > 0. '

Given « real, let V,, denote the weighted measure on B defined by
dVo(z) = (1 - |z|)* dz.

and let L? = LP(B,dV,). In case « = 0, we let LP = L}. Clearly, the

Berezin transform is a bounded linear operator on L*°. More generally,
when 1 < p < oo, the precise range of parameters for L2 on which the
Berezin transform is bounded is proved in [2]: '

1
The Berezin transform is bounded on L} <= —n < 9—:— <1

The purpose of this note is to find the precise range of parameters for certain
mixed norm spaces, called Herz spaces, which is briefly recalled below.
We decompose B into a family of annuli A,, given by

Apn={r€B : rp, <|z| <Tppa}
where
Tm=1—=2"T
for each integer m > 0. Now, given a real and 0 < p,q < oo, the Herz

space K2 is defined to be the space consisting of all functions f € LY (V)
such that

£z = || {27 | fxmllzo}

where x,, denotes the characteristic function of the annulus A,, and ¢4
stands for the g-summable sequence space. For 1 < p,q < oo, the space
K2 is a Banach space with the norm above. Also, we let K5 be the sub-

<00
£

space of KZ:* consisting of all functions f € K& such that 27™%|| fx,,|[z» —

0 as m — oo. Note that K> C K§ for all ¢ < co. Some basic proper-
ties of Herz spaces relevant to this note is collected in Section 2. For more
information on Herz spaces, see [4] and references therein.

Boundedness of the Berezin transform is also studied in [2] on Herz
spaces. However, the parameter range obtained there is shown to be be
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only sufficient. More precisely, the following is proved in [2, Proposition
38]forl <p,q < oc:

(1.3)
If —=n < a-+1/p <1, then the Berezin transform is bounded on K»*.

In this note we show that the above parameter range is also necessary and,
in addition, we extend the parameter q to the full range 0 < ¢ < oo.

Theorem 1.1. Let 1 < p < oo and « be real. Given 0 < g < oo, the
Berezin transform is bounded on K?* if and only if —n < a+1/p < 1.

For 1 < p < oo, all the parameters of Herz spaces that are contained
in L', so that the Berezin transform is well defined on those spaces, is

described in (2.3) in the next section. Our second result is the following

growth estimate of the Berezin transform on such Herz spaces.

Theorem 1.2. Let 1 < p < 0o and « be real. Assume oo+ 1/p < 1. Then
there exist constants C = C(p,a) > 0 such that the following inequalities
hold for x € B and measurable functions f > 0 on B. '

(@) Ifa+1/p < 1, then

B (1~ lal) /o= if o> -n(l+1/p)
f@) < Cllfllegs x { 1=l (1+1og ) i @=-n(1+1/p)
(1-Jal)" if o <-n(l+1/p)

(®) Ifa+1/p=1,then
F(@) < Cllflige(1 — |a]) ==/,

In Section 2 we briefly review some basic properties of Herz spaces,
which we need in later sections. In Section 3 we prove the sufficiency of
Theorem 1.1. In Section 4 we prove the necessity of Theorem 1.1, either by
providing concrete counter-examples or proving some general fact. Finally,
in Section 5, we prove Theorem 1.2.

Constants. Throughout the note the same letter C' will denote various
positive constants, which may change at each occurrence. The constant
C may often depend on the dimension n and some other allowed parame-
ters, but it will be always independent of particular functions, measures and
points. We will often abbreviate inessential constants involved in inequal-
ities by writing X < Y or Y 2 X for positive quantities X and Y if the
ratio X/Y has a positive upper bound. Also, we write X ~ Y if X Y
and X 2 Y.
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2. PRELIMINARIES

In this section we recall some basic properties of Herz spaces. Given
positive measurable functions f and g on B, note that an application of
Holder’s inequality yields

/B jpav=3 / 19 < T ixnlloxnlr

forl1 <p S oo. Here, and in what follows, p’ denotes the conjugate index
of p,ie., 1/p+ 1/p' = 1. Now, another application of Holder’s inequality
leads to Holder’s inequality for the Herz spaces as follows:

@1 [ 1V < Iilgeloly -

for 1 < p,q < oo and arbitrary o real. We remark in passing that this
Holder’s inequality actually leads to dualities between Herz spaces; see [4,
Theorem 2.1 and Corollary 2.7] for details.

Given 0 < p < 00, note that we have ||xm|lze &~ 2~™P form > 0. It
follows that the space K7»* contains constants if and only if

either « > —1/p and ¢ arbitrary; or a=-1/p and ¢ = co.

Thus,if 1 < p < coand a < z%’ then K22 C L! by (2.1). Similarly, if

l1<p<xanda= ;}1—,,then K%* < L. Consequently, if 1 < p < oo and
if

either a+1/p<1 and q arbitrary;
or a+1/p=1and 0<qg<1,

then the space ICf;’“ is contained in L!. It turns out that (2.2) is also neces-

sary for the containment K2 C L* for the full range 0 < p < 0. To see
this, consider the function fz., on B defined by

, 1 1 7
T2 () = Ty (1 tlog |x|>

where (§ and y are given real numbers. Note that
for(z) = 2™ (1+m)™,  z€A,

(2.2)

and thus
Q_ma“fﬁﬂXmHLP ~ 2—m(a+1/p—ﬂ)(1 + 77?,)_7

for all m > 0. From this we immediately deduce the following for arbitrary
parameters.

Lemma 2.1. fg, € K& if and only if one of the following conditions
holds: |



) a+1/p>p;

(i) a+1/p=LFandy>0=gq;

(iii) a+1/p=0and0 < 1/y < q < oo,
(iv) a+1/p=0,v7>0and q = oc.

In particular, when ¢ < oo, we have fgo € KP® if and only if § <
a+ 1/p. Also, fso € K2 if and only if 8 < a + 1/p. Thus, since
fso € L' if and only if 8 < 1, we have Kb C L* for some g only when
a+1/p < 1. Now, assume o + 1/p = 1. Note f;, € L! if and only if
v > 1. Thus, f1; € K§* C K&*but f;; ¢ L'. Also, for0 < ¢ < oo,
we have KB C L' only when q < 1, because fiy € K%< if and only if
v>1/q.

Summarizing the above observations, we have

(2.3) KPe C L' <= (2.2)
for1 <p<oo.

3. SUFFICIENCY

This section is devoted to the proof of Theorem 1.1. The hard part is to
extend (1.3) to p = oo; the extension to 0 < ¢ < 1 is an easy modification
of the proof given in [2]. To motivate the approach in this note for p =
o0, consider an arbitrary measurable function f > 0 on B. Since f =
Z;’,f:O fXm, we have by the monotone convergence theorem

: (31) f: Z };’; S Zim”me”Lw- |

m=0 m=0

This suggests that we need to estimate the Berezin transforms of the charac-
teristic functions of annuli. To this end, we need some preliminary integral
estimates involving the kernel function.

Let S = OB be the unit sphere in R™. Note that each function R(z, ),
z € B, continuously extends to S. Given creal, let

I@) = [ IR@ QM dolo),  weB
s
where o is the surface area measure on S. Note that we have
(3.2) R(z,r¢) = R(rz, ()

forz € B,0 <r <1land( € S. Thus, when estimating integrals involving
the kernel function by means of integration in polar coordinates, the next
lemma is quite useful. In case ¢ > 0, the upper estimate is contained in [3,
Lemma 3.2(d)] and [5, Lemma 6].
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Lemma 3.1. Given c real, the following estimate holds for x € B:
1 if c<0
Jo(z) = 1+log1—_1|—5c—| ifc=0
(1—|z|)~ if ¢>0.
The constants suppressed above depend only on n and c.

Before proceeding to the proof, we recall the slice integration formula
(see, for example Corollary A5 of [1]):

(33) / h(n - ()do c,,/ )(1 —r?)"T dr

for any n € S and measurable function A > 0 on (—1,1). The constant ¢,
above is determined by taking h = 1.

Proof. We provide a proof of the lower estimate for ¢ > 0; the upper esti-
mate is easier. Let - € B. We may further assume |z| > 1/2. Let

p(z,r) = (1 - |z))* + 2Jz|(1 - 7)
forz € Bandr € [-1,1]. Note, if z = |z|np withn € S, then
[z,¢* =z = (P = (1 = |z])* + 2Jz|(1L = - ¢) = p(z,n-¢)
for ( € S. Thus, we have by (1.1) and (3.3)
(34
J(2) = =5 / (L= (= Ja)? 4|
‘ wit @D o(z, 7)== | pla,T) n

Assume |z| is sufficiently close to 1 and consider  such that 1 —r > (8n —
1)(1 — |z|)2. Then we have p(z,7) > 8n(1 — |z|)? > 2n(1 — |z|?)? and
therefore

dr.

a? Qe 11 _ 1
n o(z,r) “n 2n  2n
Thus, we see from the representation (3.4)
, o a-n%
JC(:B) Z n—1
ait2en-1 [(1— [z])2+ (1 — )]

n—-3

2(1-|z|)~2 1t
—(1- |m|)-c/ LI
8

0 (L4

(1-fa)~2
~(1— |x|)*0/ t~271 dt.
8

n-1
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Now, the rest of the proof is an elementary calculation. The proof is com-
plete. 0

Remark. Given —1 < a < oo and creal, let

Lnel(@) = /B |R(z, y)[*He+In (1 — [y])° dy

for z € B. One may apply Lemma 3.1 to the representations of these
integrals in polar coordinates and get the following estimate for z € B:

1 if c<0
(3.5) Ioc(z)~ 1+log iy if c=0
(1—lz|)~° if c>0

This estimate is already noticed in [2, Lemma 3.5] with a much more com-
plicated proof.

Lemma32. Let A= {r € B:0< a < |z| <b< 1} be an annulus in B.
Given c > 0, there exists a constant C = C(n, c) > 0 such that

Cc-! 1 C
< L(e=1)/n gy, <
A—all)yr ~b—a f ()] W< Tty
forx € B.

Proof. Let z € B. By (3.2) and Lemma 3.1 we have

b )
/A IR(z, )|~/ dy = / [5 IR(rz, Q)€ D/n do (¢) dr

b n—1
r
~ [ - _ar
./a (1 —rlz|)e

which implies the lemma. This completes the proof. | O

We are now ready to prove the sufficiency of Theorem 1.1.

Theorem 33. Let1 < p< ooandabereal. If -n < a+ 1/p < 1, then
the Berezin transform is bounded on K8 for all 0 < ¢ < oo.

Proof. Assume —n—a < 1/p < 1—a andlet f > 0 be a given measurable
function. For 1 < p < oo, it is shown in the proof of [2, Theorem 3.6] that
there exist positive constants § = §(p, o) and C = C(p, &) such that

o

Ckan S z—ma Xm
(3.6) 27 fxelle <C D 26|IIn{——k| Iz

m=0
for all k£ > 0. Here, we show that this estimate still holds for p = oo. So,
assume p = 00, in which case our parameter range reduces to —n < o < 1.
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By (3.1) we have

275 Fxillze < ) 20Xkl e - 27 f x| e

m=0
for each k. Meanwhile, we have by Lemma 3.2
2—m
(1 = fa] + 27m|z|)m+t’

Xm(z) = (1 - |z|)" zeB

and thus |

9—m—kn 2(1—-a)(k—m)
2(m—k)a ~ Mree < 2(m—k)a —
“XkaHL ~ (2—k + 2—-m)'n+1 (1 + 2k—m)n+1

for all m and k. If m > k, then
9(1—a)(m—k) o(1—a)(m—k) 1
(1 + 2m—k)n+1 ~ 9(n+1)(m~k) = 9(n+a)lm—kl"

If m < k, then

1-a)(m—k
207 g—amk) _ 1

(1+2m—k)n+1 2(1—a)|lm—k|"

So, taking § = min{l — &, n + a} > 0 and combining all these estimates,
we conclude (3.6) for p = co.
Now, we have by (3.6) and Young’s inequality

Ifllze < C ( > 2"5"“') 1f i

k=—00

for 1 < g < oo. Meanwhile, for 0 < ¢ < 1, we have by (3.6)

= >0 o 2*—77'&(1”](‘ ” q
Flge <003 (Z "l Lp>

k::O m=0
2797| fxm|| 70
< quzoz:o 298|m—k| -
<1 ( Z z—qslkl) ”f”}c”“‘
_ k=—c0

and therefore

00 1/(]
[fllze <C ( > 2""”"") 1l
k=—o00



Finally, we consider the case ¢ = 0. Assume f € KJ'® and let an integer
k > 0 be given. Then we have by (3.6)

o0

ke T 9—ma e
2k Pl S 3 e Xl

28|m—k|

m=0

-4y

m>d m<d

< sup 27| fxmllio + 1 Fllees Y 5
m>d

m<d

for each integer d > 1‘. Now, taking the limit & — oo (with d fixed), we
obtain

lim sup Tka”kaHLP < sup 27| f x| e
k—oo m>d

for all d. So, taking another limit d — oo, we conclude f € K5*. The
proof is complete. O

4. NECESSITY

Throughout this section we consider parameters 0 < p < ocand o real
such that

4.1) either a+1/p<-n; or a+l/p>1
In order to prove the necessity of Theorem 1.1, we need to prove:
Given 0 < q < 00, there exists some [ € Kg"’ but fgé IC{I’"‘.

We will prove this for general p, which is not necessarily greater than or
equal to 1.

The source of our examples is the collection of functions f5, introduced
in Section 2. So, before proceeding, we introduce some notation for sim-
plicity. Given 3 and ~ real, let |

| 1 1\
so that

for(@) = hoo(lz)), z€B.

We separately consider two cases in (4.1) for convenience.
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4.1. The Case o+ 1/p < —n. We further split this case into the following
four subcases:

(1) a + 1/p < —n with q arbitrary;

(2) a+1/p=—nwithg = 0;

3) a+1/p=-—-nwith0 < g < o0;

4) a+1/p=—nwithqg =00
- Note that the characteristic function of a compact set belong to all Herz
spaces. Thus the next example covers the subcases (1) and (2).

Example 4.1. If (1) or (2) holds, then X 4 ¢ Kb for any compact annular
region A C B.

Proof. Assume that (1) or (2) holds and let A C B be an arbitrary compact
annular region. By Lemma 3.2 we have

Xa(z) 2 (1 —|z))" = fno(z)
for z € B. Under the condition (1) or (2), we have f_, o ¢ K2 by Lemma
2.1 and thus X4 ¢ K2&. | a
For the subcase (3) we have the following example.

Example 4.2. If (3) holds, then f_,, € KB but f_n., g Kb for all v
withy > 1/q.

Proof. Assume that (3) holds and let v > 1/q. Then we have f_, , € K*®
by Lemma 2.1.

Now, we estimate f_m. Let x € B and assume |z| > 1/2. Note that
(4.2) 1—rlzf=(1- o) +]z|1—-r)~ (1 —|z])+ (1 -7)
for|z| >1/2and 0 <r < 1.

Thus, integrating in polar coordinates, we have by (3.2) and Lemma 3.1

Fomn(@) ~ (1 = ol / G

~ (1 _ [p\P henn(T) :
~ (1 =le) / A=)+ - ¥

= (1~ fal)" / 7 o (1-logt)™dt

— |z 4+ t)n+?
> (1= lal)” | (1 o8 4
> Qe

That is, we have

f—n,’r(x) 2 f—-n,O(x)



for |z| > 1/2 and thus for all z € B. Since we have f_n,o ¢ K2 by ()
and Lemma 2.1, we conclude f ¢ Kp:e, The proof is complete. O

Finally, for the subcase (4), we have the following example.
Example 4.3. If (4) holds, then f_n o € KB but f_no ¢ K22

Proof. Assume that (4) holds. Then we have f_, o € K2 by Lemma 2.1,
Also, we have by (3.5) .

Foala) (1= )" (14 108 17 ) = fomme)

for z € B. Since we have f_n,_l ¢ KP by (4) and Lemma 2.1, we
conclude f_, o & KB, O

While explicit examples are provided fbr the subcases (1)-(3), those ex-
amples are actually special cases of a general fact, Theorem 4.6 below. With
that in mind we introduce more notation. Given ¢ > 0 and 6 > 1/2, let

Qe(a)={z € B:la—z| <e€(l —|a’) and |z| < |al},
Ts(a) = {z € B : |al|z|[a,z] < 6(1 - |al*|z*)},

and

Es(a) ={¢ € S:lalla—¢| <8(1~1al*)}

for a € B. For a = |a|(, we always have {( € Es(a) and r¢{ € I's(a) for
0 < r < 1. In particular, 's(a) and E;(a) are nonempty open subsets of B
and S, respectively; this is the reason why we make the restriction on the
parameter J to be greater than 1/2. The regions I's(a) and Es(a) are closely
related in the sense that 7{ € I's(a) if and only if { € E5(ra). We need a
couple of lemmas concerning these regions.

Lemma4.4. Lete > 0andé > 1/2. Then Q.(a) C Teys(z) fora € B and
z € Ts(a).

Proof. Using the identity [z,y] = |z/|z| — y|z||, one can easily verify the
inequality

|z, 2] = [z, y]| < |zlly — 2| < |y — 2|
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for all z,y,z € B. Now, leta € B,z € T's(a) and y € Qc(a). Since
ly| < |a|, we have by the above inequality

1zl|yl[z, y] < lzlla|[z,a] + |a —y]
< 6(1 = |al*lz|?) + (1 — |af*)
< 6(1 - |zPlyl?) + e(1 — Jy[?)
< (e48)(1 = |z*lyl?),
which completes the proof. O

Note that if |a| < 6/(1 + §), then Es(a) = S and thus o[E5(a)] = o(9).
As |a| — 1, one can expect o[Es(a)] = (1 — |a|?)"~?, because Ej(a)
gets close roughly to a ball in S of radius proportional to §(1 — [a|?). The
following lemma shows this expectation by an accurate computation.

Lemma 4.5. Given § > 1/2, the ratio o[Es(a)]/(1 — |a|?)""! converges to
a finite positive limit as |a| — 1.

Proof. Let 6 > 1/2 be given. Let a = |a|n where n € S and assume that
|a| is sufficiently close to 1. Note that { € Es(a) if and only if

5(1 ~ laf?) > laly/T—2a-C + JaP |
= lalv/{T—Ta? + a1 =7-0),

or equivalently,
1-7n-¢<u(lal)

o= { [ )

for 0 < t < 1. Note u(t) > 0 for all ¢, because § > 1/2. Also, note

u(t) < 1 for ¢ sufficiently close to 1. Thus, by the slice integration formula
(3.3), we have

cn'o[Es(a)] = /11 (1= dr

where

1 ' ‘
. n-— n~— (n—
= ()T [ 6" 2 u(la))s) T ds.
0
Now, a little manipulation yields

(n=1)
b _OlBs(@)]  _ 425 1) =
laj—1 (1 — |a?|)1 - n—1




which completes the proof. 0

We are now ready to prdve the next theorem describing a pathological
behavior of the Berezin transform.

Theorem 4.6. Let 1 > 0 and u(B) > 0. Then the following statements
hold: :
@ fp< —(a+1)/n,then i ¢ LE.
(b) Ifa+1/p < —n, then i ¢ K.
©) Ifa+1/p=—n,thenpp ¢ K5*.

Proof. Let p, be the restriction of 4 to 5 B. First, consider the case y;(B) >
0. Note that 1f|y| < 1/3,then

1 JoPly\” _ 4lzPlyl? | : |
22U S 2 25
(== > (- el - LS 2o = s

forallz € B It follows from this and (1.1) that

@3 B@2 0=l [ |RE9P ) 2 (- o) k(B)
3L
for all z € B. This yields (a). Also, we have (b) and (c) by Lemma 2.1.
Next, consider the case y;(B) = 0. Fix e > 0 and § > 1/2 such that
€+ 0 < /n/2. Since u(B) > 0 by assumption, we have u[Q.(a)] > 0 for
some a € B. Let z € T's(a) and assume |z| > 1/2. We have by (1.1)

s 1
FEWR G (<e+5>2 )2

for y € T'y5(2) with |y| > 1/3. Since p is supported on B \ 3B, we deduce
from the above that

(44) wz) 2 (1 - |z))"ul2s(z)] = (1 - |z|)"u[Qs(a)]

for z € Ts(a) with |z| > 1/2. We may assume u[Q;(a)] = 1 for simplicity.
Let 0 < p < oo. Using (4.4) and integrating in polar coordinates, we
have

1

72, 2 / (1 laly™ede~ [ (1= r)P™eo[Es(ra)]dr.
Ts(a),|z]>1/2 1/2

Meanwhile, by Lemma 4.5, we have o[Es(ra)] = (1 — rja))*! > (1 -
la])*~! for all 0 < r < 1. Combining these observations, we have

1
a2 2 (1 —ry"*edr = oo
1/2

for pn + a < —1 where N= (1 — |a|)™!. Thus (a) holds.
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In order to prove (b) and (c), we first estimate || x| z-. Let m > 1 so
that r,,, > 1/2. Proceeding as above, we have

Tm+1
HI‘I’X'ITL”LP ~ N/ 1 — ,r)’np d,r ~ N2-7n(1+np)

so that
g—am ”ﬁXm ” I & Nl/pz—m(a+1/p+n)

for all m > 1. Moreover, this estimate remains vaiid for p = oo by (4.4).

This yields (b) and (c). The proof is complete. O

Since KP* C K§® C KB for any 0 < ¢ < oo, we have the folloWing
consequence of Theorem 4.6(b), which also takes care of the subcases (1)-

3).

Corollary 4.7. If either one of (1)-(3) holds, then f ¢ Kb for any f € K2
with f > 0and f # 0.

4.2. The Case a + 1/p > 1. We further split this case into the following
three subcases:

(5) o+ 1/p > 1 with g arbitrary;
6) a+1/p=1withl <g<ooorqg=0;
M a+1l/p=1with0<g<1.

The next example covers the subcases (5) and (6).
Example 4.8. If (5) or (6) holds, then f,1 € K2 but fi; = oo on B.

Proof. Under the condition (5) or (6), we have f,; € KI** by Lemma 2.1.
Note that Ay ; is not integrable near r = 1. Thus, following the proof of
Example 4.2, we have by Lemma 3.1

ﬁl(x) ~ (11— |x|)n/0 1 fl;-llg%nﬂ dr > (1- |$|)n/0 hi(r)dr = oo

for all z € B, as desired. O

In case of (7), we have Kf* C L' by (2.3) so that Berezin transform
is well defined on that space. So, one cannot expect an example whose
Berezin transform blows up as in Example 4.8.

Example 4.9. If (7) holds, then f, ., € K2 but f, & K2 for all y with
1/g<v<1/g+1.

Proof. Assume that (7) holds andlet1/qg <y <1/qg+1. Sincel / q<,
we have f,, € K7 by Lemma 2.1.

34



Now, we estimate ﬂ,,. Let z € B and assume |z| > 1/2. Following the
proof of Example 4.2, we have

I ~ n ' h’l,’Y(’r)
le) > (L=l [ et dr

B . 1 (1=logt)™™ dt
= (1 - |z|) /(; L= Jz[+ ) ¢t

1-|z| —logt)™
G-l [ g T

1—|z| +¢t)"* ¢

1 1=z dt
> _ —y O
2 1"|33I‘/0 (1 —logt) ,

Evaluating the integral above, we obtain

Y

~ 1=y
fin(z) 2 T:I_FBT (1 + log T:l_lz_|) = fln—l(?)

for |z| > 1/2 and thus forallz € B. Note0 < 1/g—1<v-1< l/q

Thus, by (7) and Lemma 2.1, we have f; -1 & K& and thus fin & Kpe
The proof is complete.

5. GROWTH ESTIMATES

Throughout this section we restrict the range of pto 1 < p < o0. Sup-
pose parameters p, g and « satisfy (2.3) so that the Berezin transform is well
defines on Herz spaces with such parameters. In this section we prove point-
wise growth estimates of Berezin transforms in two cases: () a + 1/p < 1
and ¢ = 1 and (ii) o + 1/p = 1 and ¢ = oo. In what follows, we let
R, = R(z,-).

The starting point is Holder’s inequality. Namely, given a measurable
function f > 0 on B, we have by (2.1)

(5.1) fla) S(1- D" 1 f ezl Rellgsr-er € B

for 1 < g < oo. Recall that p’ denotes the conjugate index of p. So, we
need to estimate the growth rate of Herz norms of R2.

Lemma 5.1. Let 1 < p < oo and o be real. Assume a > —1/p. Then there

exist constants C = C(p,a) > 0 such that the following inequalities hold
forx € B.
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@) Ifo > —1/p, then

1 if a>n(2-1/p)
|RZ|lxg= < C x q 1+log =7 if a=n(2-1/p)
(1 - |z|)~2 /Pt if o <n(2-1/p).

(b) Ifa = —1/p, then
| R2|lkge < C(1 = |z|)72ntin=D/7,

Proof. Fix z € B. We may further assume |z| > 1/2. We first estimate
| B2 ]| ». For p < 0o, we have by Lemma 3.2 and (4.2)

T - Tm 9-m
1R2 Xl S e A
(1 = rmpafz])?Pr-n+l (1 — |z| 4 2-m)2m-n+l
and therefore
-m(a+1/p)
(52) 2ma|| Ry e < 2T
(1 — iml + 2—m)2n—-(n—1)/p

for all m. Since

1 1 1
|R(z,y)| S [

< ~
zy* ~ A —lzllyh) (1= Jel) + (1 = [yD]
for y € B by (1.1) and (4.2), the estimate (5.2) remains valid even for
p = 00.
Clearly, (b) holds by (5.2). We now prove (a). So, assume o > —1/p. If
1 — |z| < 27™, then we have by (5.2)

o—m(a+1/p)
—m — (2n—n/p—
2 °‘||R Xmlle S S—mEn—(n=1)/7) om(2n—n/p—a)

Meanwhile, if 1 — |z| > 2™, then we have by (5 2)

9—m(a+1/p)
(= o7

2—ma“R Xm“Lp ~

It follows from these estimates that

IR we S > 2m@nnipee)
m<logy (1-|z|)~?
+ 1 Z 2—-m(a+1/p)

- 2n—(n-1)/p
(1 lTl) m>logy(1—|x()~!

=1+1I
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It is not hard to verify the following estimate:
1 if a>n(2-1/p)
I = 1+log1—}|;| if a=n(2-1/p)
(1= |z]|)~2tn/pte if o < n(2 - 1/p).
Also, since a + 1/p > 0, we have
Z 2—-m(d+1/p) ~ (1 _ lxl)aﬂ/p
m>log,(1—|z|)—1

and thus
IT m (1 — |g|)72tn/rte.

Now, putting the estimates of I and /] together, we conclude (a). The proof
is complete. O

Proof of Theorem 1.2. The theorem follows from (5.1) and Lemma 5.1. [J
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