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1. INTRODUCTION

We cxplain a complexfication of the Hopf bundle on the complex projcctive space. The
base space is isomorphic to the punctured cotangent bundle of the complex projective
space and the total space is an open subset of the cotangent bundle of the sphere, both
of which are Kahler manifolds whose Kihler forms coincide with the natural symplectic
forms respectively. Then we define Hilbert spaces on both of the base space and the
total space consisting of L,-holomorphic functions with respect to measures depending
on certain parameters. The main purpose is to give a relation among the measures when
the pull-back operator by the projection map of this principal bundle has a close image
and show that the comparison operator of the quantization operator constructed by fiber
integrations and that through the complexfied Hopf fiberation is a zeroth order pseudo-
differential operator on the complex projective space.

2. HILBERT SPACE ON QUADRICS

Let S = {(zo,**- ,zn) € R™?| 322 = 1} be the n-dimensional sphere with the
standard Riemann mctric induced from the Euclidean metric on R™!. Wo identify the
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tangent bundle T'(S™) and the cotangent bundle 7*(S™) by this motric and realize them
as a subspace in R"t! x R+

T(Sn)* a5 T(Sn)

= {(g:,y) € R™*! x R"“IN/Zxk =z =1, (z,y) = szyk =0}.

The symplectic form wg and the canonical one form 65 on T*(S™) are then the re-
n

. n
strictions of the symplectic form Y dy; A dz;, and the canonical one form 3" yrdzy on
k=0 k=0
T*(R™1) = R™1 x R™*! respectively.

Let T5(S") = Eg ={(z,y) € T(S") | y # 0} be the punctured cotangent bundle, and
define the map ' ‘
| Ts - ES —_ Cn+1\{0}s (a:,y) = Zz= Hyll:c + v —'ly-
The map 75 gives a diffeomorphism with the space

Xs={zeC™ | =Y =02 40}

and through this map the canonical one form 6y is expressed as

o o5 =15 (Gl - Bkl

and so the symplectic form wg is expressed as
ws = dfs = v=2d0||z|| = vV-289)z||.

Let dvols be the Riemann volume form on the sphere, then it is expressed as

dvolg = Z(—l)kxkdaso A ANdTg N+ Az,
k=0

Now we introduce inner products on the space of polynomials on C™*! restricted to a
quadric Xg depending on two parameters (h, N), h > 0 and N > —n as follows:

(2.2) < P1ype >awy= /x P (2)pal@)e Ml |2 Vs,
S

where (25 = ("—12'%%403 is the Liouville volume form.
When we decompose the quadric Xg as

X5 2 R, x 5(S), £(S) = Xsn{z € C**1 | |l =1},
the Liouville volume form {2 is decomposed as
Qs = t"1dt A dvg(s)(a’), (t, 0') e R, x E(S)

with a nowhere vanishing (2n — 1)-form dvgs) on £(S) (volume form on Z(S)) which is
invariant under the action (lifted to Xs) of the orthogonal group O(n). By the condition

N > —n, all polynomials (restricted to Xg) are square-integrable with respect to the
measure dm, ny(z) = e M| 2|V Qg(2). '

Definition 2.1. We denote the Hilbert space taken the completion from the space of
polynomials with respect to this inner product < e, e > (h,N) by ’Hz(Xs,dm(h,N)(z))

Next we introduce an operator T("fl w) in terms of the fiber integration from H?(Xs, dm, vy (2))
to Lz(Sn):
2
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Definition 2.2.
T(%,N)(‘P)(f‘?)dvds(x) = (ms 0 75 )u(@(2)dmp ) (2)), 75077 (2) = 1.

Proposition 2.3. Let n > 2, then there are no bounded holomorphic functions on the
quadric Xg.

Also we note

Proposition 2.4. The function ¢ € H*(Xs, dmn n)(2)) has the expansion of the form
o0

©(2) = Y pr(2) with k-th order polynomials py.
k=0

Then we have an expression of the norm of a function ¢ in H?(Xg, dma,ny(2)): let

o(z) = ’icpk(z) € H*(Xs, dmuny(2)), then

Il = [ 1(a)Pdman(@) |
%) * 00 '

=y /E " |ox(0) | *dvys) (o) x /O 2| P+ N+n=1hlzl g |
k=0

“T2k+N+n
= Z ( h2k+N+n ) /E © ,Wk(o)lzdvz(S)(U)
k=0

By this expression we have

Proposition 2.5. Let —n < N < N, then

(2.3) 'HQ(XS, dmp,ny(2)) — H"’(Xg,dm(hﬁ)(z))

and the inclusion map is continuous.

Theorem 2.6. Let 2hy = h and N = 2N, + n/2 then the operator
Tione) - H2(Xs, dmp ) (2)) — La(S™)

s an isomorphism.

Let Py be the space of homogeneous polynomials of degree k on C™*1. If it is considered
on Xg, then we denote it by Pr(Xs).

Let Sy, = Sp(R™*!) be the space of harmonic polynomials of degree k on R™*! and when
we consider their restrictions to the sphere, it is well known that this space is an eigenspace
of the Laplacian on the sphere with the eigenvalue A\, = k(k+n-1),k=0,1,--- and
the dimension is given by

P(k+n—-1)(2k+n—1)
k! (n—1)!
For each k € N, let Af : S; — P be a map defined by the integral

dim Sk =

A (F)(z) = . f(2) < z,2 >* dvolg(z),

n
where < z,z >= ) z,; is the bilinear form.
1=0
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Also for each k, lot B(5,L7 nik) De a map from Py (Xs) to Sy defined by
Bfy, v (p)(z) = /x p(z) <,z >* e M2V Q5 (2).
S

Remark 2.7. Let A be the Laplacian on R™*!, then for z € X we have A(< x,Z >F) = 0,
which shows that the polynomial defined by the above integral is a harmonic polynomial.

Let C{, n.x) be a map from Py(Xs) to Py(Xs) defined by the integral

CE wi@)(A) = / p(2) < A > e M2 N s (2), (N > —n).

Xs

Among these operators we have the following relations:

B,wm © Af = af(h, N),

ni,N;k) o A = b (ho, No),

Chm = (b, N4,
especivally, we have

s _ bi(ho,No) g
(k) = "G5 N Bloiby

The explicit values of the constants a3 (h, N), b5 (ho, Ny) and cf(h, N) are given as
I'(n)Vol(Z(S))Vol(S™?) y

hntN
. I'(k+1)°T'(2k+ N +n)
25 h%*(2k+n—1)I(k+n—-1)I(k+ (n+1)/2)’

a;(h,N) =

g 1 ' ['(k+ Np +n)
bk, (hO; NO) = dlmSk VOI(E(S)) (\@)k . hl‘;:+No+n.
1 I'(2k+ N +n)
S —
¢k (h, N) = dms, Vol(E(8)) =z

where the constant Vol(£(S)) is the volume of X(S) with respect to the volume form
dvg(s). )

Remark 2.8. All thesc opcrators T(io,No) : H3(X's, dM(2hg 2Np+n/2)) — L2(S™) are not
unitary, but each restriction on Pi(Xg) is a constant multiple of a unitary operator.

Theorem 2.9. Let N > N > —n, and put ho = h/2, Ny = 1/2(N — n/2) and N, =

1/2(N —n/2), then the operator T i © Do+ La(S™) = Ly(S™), ie.

-1

n T(io-No) 2 2 . v T(io,ﬁo)
L2(S ) —_— H (Xs,dm(h’N)(Z)) — H (Xs,dm(hﬁ)(z)) —_— L2(S“)

is a pseudo-differential operator of order %(1\7 —~ N).

Corollary 2.10. Let —n < N < N, then the inclusion map (2.8) is compact.
4
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Corollary 2.11. Let N — N > 2n, then the operator T(io ) © T(“ZO NO)"I is a trace class

operator and the trace is given by

-1 _fy2 =Tk + N/2 + (3n) /4
(T 5 © Ty ) = (/200 S e 22 B0
k=0

k+ N/2+ (3n)/4)

dim Sk.

For each N > N, the operator T(io,ﬁo) maps the space H?(Xg, dm; vy (2)) onto the

Sobolev space on S* of order (N — N)/2, we have
Corollary 2.12. The projective limits
| lim H2(Xs, dmp,nr) (2)) 2 [V HA(Xs, dmgs,nn(2))
v .

is mapped onto the space C*(S™) by the map T(io No)» Where hg > 0 and N, > -3n/4.

For the proof of Theorem 2.9 we employ a criterion for an operator defined by func-
tional calculus of a positive selfadjoint elliptic pseudo-differential operator to be a pseudo-
differential operator. Here we state the theorem (cf. [Ta)):

Theorem 2.13. Let A be a first order positive elliptic pseudo-differential operator of
classical type defined on a closed manifold M and let

A= [ AEsN)
0

be the spectral decomposition of A with the spectral measure {E4()\)}. Let f € ™ (R)
(m € R) be in the symbol class of Hormander, that is function f satisfies

&
D] < G+ ey
for any £ with constant C; > 0. Then

(2:4) f(4) = +cmf(/\)dEA(A) = (2r)Y/? /_ " FltyevTAgs

0
is o pseudo-differential operator in the class L{"y(M), where

o0

f(t) = (2#)‘1/2/ e“‘/:ft’f(x)dx

~00
is the Fourier transformation of f.

3. REPRODUCING KERNEL

In this scction we give a formula of the reproducing kerncl of the Hilbert space H?
(Xs, dm(s,n)(2)) and state an asymptotic property of it. Then as an application of the
operator T(ﬁ, N) and the existence of the reproducing kernel, we give an interpretation of
a quantization of a free particle in the sense of classical mechanics.

By the properties listed in the preceding section we know that the Hilbert space
H?(Xs, dmn,n(2)) has the reproducing kernel Ith, (2, A) (=K5(z, A), when the param-
eters (h, N) are fixed) which we can express in the form of power series:

(3.1) K5 A) =3 e < 2, X 5



S 1 ko o T Sk
Zzaf(h,N)/n<m’z> <z, >" dvols(z).

k=0
Note that for each k, we have
1 k T <k 1 T <k
— <z,z>°<x,A>" dvolg(x) = <z, A>
50 s )= W)

and the series converges on the whole space C**! x C*t1,
We also give an integral representation of the reproducing kernel IC(h N)(z, A) for N > 0:

’C(h,N) (2,2)

1 -
=C(h,n,N)-2-h*. 1 !

2/AT(NTT) Tz < 2>

/// = 1(1—31N:(j t)N‘mh(\/;' (1-8)-t-u-(2h)2-<z,X>)dsdtdu

1 1 1 1
) I‘(N) o T

/ / / - u(l _lu“) f)N-1 cosh (\/3 (I=s)-t-u-(2h)% < z‘,X >) d;dtdu,

where the constant C(h,n, N) is

+ C(h,n,N) - (n -

hn+N

Vol(Z(S)) - T(n)’

C(h,n, N) =

Since cosh is an even function, the function cosh \/ s-(1 -vs) tou-(2h)2- <z, A >)

can be defined for any z € C and A € C without ambiguity.

As an application of the fact that the series (3.1) converges for any z and A € C"+1,
every function in H*(Xg, dm, ny(2)) can be extended to the whole complex plane: let
Holo(C™**) be the space of holomorphic functions on C*+! with the topology of the locally
uniform convergence, then for f € H%(Xg, dm v)(2)), by the expression

(N =< £(),K5(0, A ><hm~2 / £(2) <z"> et Mg ),

we have

Proposition 3.1.
'H2(Xs,dm(h,N)(z)) — HOlO(CnH)
18 continuous.

In the case of the Segal-Bargmann space H?2 (C", ;rl;e‘”zwﬂm)
H? (Cn, ie—llzll’gk>
7T'n

N {f | is holomorphic on C* and |7 ~ ;1—/ |£(2) e 117 Qg < oo}
Cr

6

43



44

(Qr denotes the Liouville volume form on T*(R™) 2 C", or the Lebesgue measure on
R?7), the reproducing kernel is K®(z, ) = e<**> and the product

KR, Ve PO = 0g

returns to the Lebesgue measure on R?".

We state here a corresponding property of the product of the reproducing kernel re-
stricted to the diagonal and the weight function of the volume form for defining the Hilbert
space H? (X, dm,n)(2)):

Theorem 3.2. For N > —n, rational number (this assumption would be removed),
’C(Sh,N)()H Ae MAIMN = 0(1).
Let {g:}ter be the geodesic flow action on H?*(Xg, dms a)(2)), i.e.

o0
for p = Z(pk(z) € H*(Xs, dms,ny(2)) with homogeneous ¢y, of degree k,
k=0

9(p)(2) = p(eV - 2) = Y eV Ty (2).
Then we have

Theorem 3.3. .
(3.2) T(“Z,N) og = e tV=I(n—1)/2 /=Tty /A+((n—1)/2)2 o T&N).

Since the Hilbert space H*(Xs, dm, n)(2)) has the reproducing kernel, for each point
z € Xg, we can assign a function g,(z) € L(S™) in such a way that

Tio (NG = [ T ()O) - N o)

=< faom= [ f@uEols(),

and gq; is given by ‘
oo
1

:2Z)=) ———<z,z>".
Dy

Then the function g, can be seen as a quatization of a classical free particle and we have
a correspondence of classical and quantum paths:

Proposition 3.4.
dvore, = et\/:_l(n—l)/2e—\/—_1t\/A+((n—1)/2)2 (g:).

4. COMPLEX PROJECTIVE SPACE

In this scction we explain a corresponding Theorem to Theorem 2.6 and rclating The-
orems for the case of complex projective space P"C.
Let Xc be the space in the (n+ 1) x (n + 1) complex matrices defined by

(4.1) Xc ={A€M(n+1;C) A?=0, rankA=1}.

In the paper [FT] we constructed an isomorphism between the space X¢ and the punctured
(co)tangent bundle Tj (P"C) of the n-dimensional complex projective space.
7
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First, we describe this isomorphism and the complexfied Hopf fiber bundle mostly by
following [F'Y] to state our main theorems 4.8, 4.9 and 4.16 in this sction.
We identify R?"*2 = C**! through the correspondence:

R**2 5 2= (20,1, * , Tny Tt "+ » T2n41)
— (#a") o o + /T
= (@0 + V-1Zp41, s Tn + V— 122041
= (pO’ e ,pn) =p e Cn+1'

C™*! is equipped with the Hermitian inner product < p,g >= > pg; and the inner
product on R**2 is defined by

2n+1

Re<p,g>= Y zwi=<gz,y >,
i=0

where p; = i + V=1Zn1144, G =Yi +V—1Ynt146, 7= (@, ,Tn)-
Let my be the projection map (Hopf fiberation):

T+ $2 1 — P"C.

We introduce the Riemann metric on P"C by descending the standard Riemann metric
on the unit sphere S*™** = {z € C"*'|||2|| = 1} through this map my, and identify the
tangent bundle T(P"C) and the cotangent bundle 7*(P™C) by this metric. Then the
cotangent bundle T*(P™C) = T(P"C) is rcalized in the matrix space as follows:

T*(P"C) = T(P"C)
*{(P.Q) e Mn+1,0) x M(n+1,€) | PP = P, tx(P) =1, PQ+QP = Q,
P=P, Q=q},
where we put the inner product on the matrix space M(n + 1,C) by
tr(A- B*).

We denote a subspace in this space with the condition @ # 0 by Ec and let Eg =
Tp(S°*1) = Ty (S?™*1) be the punctured (co)tangent bundle of the sphere

Ty(S7"+)
~Eg ={(x',:c”; y,y") € R™! x R*! x R x Rt l
<d¥'>+<a 2 >=1, <2y >+<2y >=0, ¢ + V-1y' =q# 0}.
Also let ES be a subspace in Eg such that
E ={(x’,:v”;y’,y”) ER™ | <z2' >+ <22 >=1,
<y >+<2"y' >=0 g+ <pg>p# 0},
The last condition says that the tangent vector (=, 2";y',y") € Tz o (S**1) is not

parallel to (z',z"; ~z", ') € T(m’,z”)(szﬂ-H)
The differential of the map (e

dry : B > Ec
8



gives
dry(2', 2"y, y") = dmy(p, q) = ( Q)

P =(p¢p—j), Q =(q¢ﬁ,) (pzq,) Q#0.
We denote the image 75(2’, ";9/,y") as

rs(7, 2" ¢,9") = (lall2’ + vV-1¢/, llglla” + V-1y") = (u,v) € C*** x C™*,

and put X% = 75(EY).
Let a be the map

o X% — X,
X% 3 (u,v) > A =(aij),4 aij = (u; + vV =1v)(u; — vV~1v;),

then it will be easily seen that a o 75(z', 2", ¢/, y") € Xc.
Now let v be a map

i O™ x C™H —, O x O+
(w,v) — (z,w), z=u+vV~1v, w=u— v=1v,
and §: C"*! x C"*! - M(n+1,C)
B(z, w) = (a,]), a;j = ziwj,

then,

1K) ={(zw) €€ x| 240, w0, Bz,w) = 3z = 0}
and '

Boy=a.

By this relation, we return back the obvious C*-action on 4(X%) to the space X2,
the action is expressed as

(4.2)

and we have
Proposition 4.1. o : X% — X¢ is a C*-principal bundle.

We call this the complexified Hopf bundle.
Next let 7¢ be a map

¢ : Ec — X¢
(P,Q) — A e Xc

A=|QI*P-Q*+ EHQIIQ, QI = y/tr(QQ*),

and let E¥ be a subspace in E$ such that
s s
Ef ={(p,q) €E§| <p,7>=0},
9

then
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then dry(EY) = Ec¢ and the following diagram is commutative:

T
Eg—S—*XS

(4‘3) dm,l la

Ec — X,
T

and we know that the map ¢ is a diffeomorphism between E¢ and Xc.
Note that the diagram

0 s, 0
ES XS

@ i |-

EC — XC7
T

is not commutative.
The inverse map 75" is given as

¢ (4) =(P, Q),
A+A* A-A*+A*-A
P = + ,
2|l A| 2||AJf2
A — A*

v=2-TA]
Remark 4.2. Let (p,q) € E¥, ie. (p,q) € TpS™*' = Eg and assume < p,g >= 0, then
for P =(piﬁj), Q =(piqj)+(qipj) and A = ¢(P, Q)

(4.5) 2lgl* =11QI* = 14| = 4/tr(44%).

Proposition 4.3. The canonical one form ¢ and the symplectic form wc on the cotangent
bundle of the complex projective space is expressed on the space X¢ as follows ([FT]):

tc = |5 0V TAT 3y TAT),
we = dc = V—280+/[ 4]
We denote the Liouville volume form on T (P™C) with the samc notation Q¢ (Qc(P, Q),
or {ic(A), A € X¢) under the identification T3 P"C = E¢ = X¢ and by the decomposition
Ec =R, (Ec[Y{(P.Q) | P, @€ M(n+1,C), Q] =1})

> Xc &R, X ({A € M(n+1,C) | 4] = 1}ﬂxc) =R, x £(C),
&, P,Q/IQI) «— (s, A/||A]) € Ry x Z(C)
s=t* A=1°(PQ),

we can decompose ()¢ as

Q=

46)  Qc(A) = %s”"lds Advsc)(0), A= (|All, A/IAll) = (s,0) € Ry x %(C)

with a (nowhere vanishing) (4n—1)-form dvgc)(c) on {A € M(n+1,C) l Al =1} N Xc.
10 .



48

Let P, = P, (M (n+1, C)) be the space of homogeneous polynomials on the matrix
space M(n+1,C) of degree k, and denote the space of their restrictions to X¢ by Pr(Xc).
Let h > 0 and N > —n. For cach fixed (h, N), let

(@.7) dm,ny(A) = e VI AN g (4)

be a volume form on the space X¢ and we define an inner product on the space Y ®P:(Xe)
by the integral

(4.8) <@, P >hn= /XC p(A)Y(A)dmp,n)(A).

Then for each k # ¢, the spaces Py(Xc) and P,(Xc) are orthogonal. We denote the

completion of } 3 &Py (Xc) with respect to the norm ||e||, ) defined by this inner product
by

(4.9) H*(Xc, dmg, vy (A)).

Proposition 4.4. There are no bounded holomorphic functions on X¢ (n>1).
Proposition 4.5. The function p(A) € H*(Xc,dmny)(A)) has the ezpansion of the
form p(A) = li(,ok(A) with k-th order homogeneous polynomials i (A) on M (n+1,C).

Then we have an expression of the norm of a function ¢(4) in H?(Xc, dmg, ny(A)): let
¢(A) = 3_ ¢r(A) € H*(Xc, dmg,n)(A)), then
k=0

1l = /x |o(A) Pdmsx (A)
C

"X

, *1
[or(o) Py (o) x [ - Al Nt g
0

I'(4k + 2N + 2n) /
- : [x(0) Pdvsicy (o)
kZ:O h4k+2N+2 £(0) (
Proposition 4.6. Let N < N, then
(4.10) H*(Xc, dmp,ny(A)) = H* (X, dm(h,j\'r) (4))

and the inclusion map is continuous.

For a positive integer k > 0, let S, be the space of harmonic polynomials on R2+2 o
C™*! which are invariant under the action of U(1) (and necessarily of even degree), that
is, harmonic polynomials of the variables piP;, and we denote the space of their descends
to the complex projective space by EF. Then
Proposition 4.7. Ef is an eigenspace of the Laplacian A on P"C with the eigenvalue
(4.11) Ax = 4k(n + k)
and its dimension is given by

(412)  dim ES = n(n + 2k) (n(" 1) k,(" Tk l)>2 = n(n + 2K)

(of [BGMY)). |

I'(n + k)?
T(n)2T(k + 12’

11
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Next we define an operator T,EN from functions on X¢ with a suitable integrability
condition to functions on P"C.

For a function ¢(A) on X¢, we denote the distribution on P"C
C=(Pe)3 £ = [ (reo75') (1)(A) w(A)e VT4 c(4)
. Xc
by
(reomst) (v(e)- VT o ¥0c(s)),
i.e. a distribution defined by the fiber integration of a 4n-degree form
Y(4) - eVl 41 ¥c(4)

along the fiber of the map rco7g! : X¢ — P"C. The resulting form is a smooth 2n-degree
form on P"C. We denote this form as

(4.13) TC(¥)(P)dvole(P),

where dvolc(P) is the Riemann volume form on P"C. So we define the operator
Tin(4) : Y &Pi(Xc) — C2(P"C),

and consider their extensions to H*(Xc, dm, v (A)).
Theorem 4.8. Let 2hy = h and 2N, + g = N > —n, then

T, No(A) : HA(Xe, dmn)) — La(P"C)

is an isomorphism (but not unitary).
Theorem 4.9. Let —n < N < N and put N, = (N —n/2)/2 and N, = (ﬁ—n/2)/2 then
-1 n
T(ﬁ/z,ﬁof(Tﬁ/zNo)) : Loy(P"C) — Ly(P"C),
18 an pseudo-differential operator € Lfo’ N(PrC), i.e.

TC

< )7 o
Ly(P"C) (Th2p) H2(Xe, dmep,m(A4)) — H* (X, dmy, 7,(4)) 239 Ly(PmC)

18 a pseudo-differential operator of order N =N on the complex projective space.

Corollary 4.10. For —-n < N < N , the inclusion map (4.10) is a compact operator.

We introduced the family of the volume form dmn,n)(A) on Xc with parameters (h, N)
as we did for the sphere case. The form of the weight function is taken from that in the
paper [FY] (see also [Ful]) where we determined it by means of the pairing polarizations
on Xc¢ (wvertical polarization on X¢ and the Kéhler polarization given by the realization
of the punctured cotangent bundle T (P"C) as the space Xc). Here we allow, as for the
case of the sphere, all positive values of h and the ezponent N > —n. The proof of this
theorem 4.8 is done along the same line with that given in the papers [Ra2], [Ful] and
[FY].

Although we do not give the proofs here (cf. [BF2]), we introducc the opcrators A€,
B, w.xy and C§, v, corresponding to the operators A, Bg, wxy and Cf, v, for the sphere
casc and state their relations, some of which we need in the last section.

12
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Definition 4.11.
AS Ef — Py,
.y AC _

fim s = [
B, n.xy :Pe(Xc) — EE,

¥ Bn(P) = [ 9()(er(P- 4%)) VIR a0 a),
C‘(%,N;k) Pk(xC) — Pk(XC)a

i @A) = [ 9(8)(tx(a- B)) VP51 0c(B).

£(P) (bx(P - 4)) “duole(P),

Let’s T v denote the restriction of the operator T§; , to the space P4(Xc), then

Proposition 4.12.

(4.14) BS, ny © AS = af(h, N)I4d,
and
(4.15) TG.nx) © Af = b (h, N)Id,

with the constants aS(h, N) > 0 and b$(h, N) > 0.

Proposition 4.13. The operator C&,N;k) is a constant multiple of the identity operator
with a constant cE(h, N).

The constants a$ (h, N), b (h, N) and cC(h, N) are given as follows:

c . pc_ ml(n-1I(k+1)% a3y TN + 4k +2n)
ag(h,N)-dim E; = 2 Tkt D) Vol(§*3) . N - Vol(Z(C)),

i I'(2N + 2k +2n
b (b, N) - dim B = —=ommae ). Vol(2(C)),

T'(2N + 4k + 2n)
h2N+4k+2n

cg(h,N) - dim ES = Vol(2(C)) -

Next we represent the reproducing kernel IC& N)(A, B) of the Hilbert space
H*(Xc, dmny(A)) and state the asymptotic behaviour ”/}'ilm IC?,,’ ~(4; A). Since both

1
of the operators WA% o BS,, Nk and WO&’ N;k) are the identity operator on
the space PE(Xc), their kernel functions coincide:

Proposition 4.14.

TN (}i " /P N (tr(P L A) - tr(P- B*))kdvolc(P) - E;c(:—(—}:—’—m(tr(A : B*))k.

Then the power serics

in(n+2k)_(n(n+1)---(n+k—1))2 pL ‘
2 K T'@N + 4k + 2n)
13




converges for any A € C, we can cxpress the reproducing kernel ICSL, N) (A, B) of the Hilbert

space H*(Xc, dm,n)(A)) in the form of infinite series with the explicit expression of the
constants dim ET, aS(h, N) and cC(h, N):

oo 1 . k
Kfi,vy(4, B) = k;) W(“M B ))
paN+m Din+k) \2 itk Ry
= Vo=@ ; n(n + 2k)- (I‘(n)F(k T 1)) TN + 4k + 2n) (br(4-BY))

- g m/mc (tr(P - A))k(tr(P : B*))kdvolc(P).

Note that the reproducing kernel K, v\ (4, B) is defined for any 4, B € M(n + 1,C),

holomorphic with respect to the variable A € M(n + 1,C) and anti-holomorphic with
respect to the variable B € M(n + 1,C). Especially

KE \(4,0) = & = i = KE
EMAD = € 7 VoI(S(C))T@2N +2n) ¢

Proposition 4.15. Any function in H*(Xc, dm, ) (A)) can be extended to a holomorphic
function on M(n +1,C).

0, B).

prop
Theorem 4.16. Let N > —n be rational number, then

KG, ny(4, A)emVIAN) ¥

h2N +2n n

~ Vo(Z(C))T(n)

2)(

2k
(n+2k)T(n+ ke (P14])
> F(dk+2N +2n) (k)2

Remark 4.17. This property gives us the Hilbert-Schmidt-ness of Hankel opcrator on
Xc (and also X) following a theory in the paper [Bau] and [BF1]. These aspects will be
discussed more precisely in the paper [BF3] together with a study of invariant functions
under Berezin transformation.

e VIAA4N < 0(1).

Finally in this section we state a corresponding theorem to Theorem 3.3.
Let {gf}ier be the geodesic flow action (cf. [FT]) on H* (X, dmp,ny(4)), ie.

for p = Z‘Pk(A) € H*(Xc, dmq,ny(A)) with homogeneous . of degree k,
k=0

IL(P)(A) = eVt A) = 3 /7Tty (4).
Then we have
Theorem 4.18.
(4.16) TE vy 0 g1 = e~V 2W/TT0/2V Boncid
14
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Also for cach point A € X, let ¢§(P) € Ly(P"C) be the function given by the Riesz’
representation theorem:

T ™ (DA = [ T ()(B) - KAL) - dm(5)

=< f,45 >nm= Cf(P)QS(P)dUOlC(P),
pn
then,
- S 1 * k
qA(P) = ;_0 bg(h, N)tr(A . P) ,

where P =(p,rﬁj), p € C"* ||p|| = 1. Now we have

Proposition 4.19.

= VBT )

5. COMPLEXFIED HOPF FIBERATION AND QUANTIZATION OPERATOR
Recall the C*-principal bundle
(83 ng - Xc.

We called it complexfied Hopf bundle. In this section first we determine the fiber integral
of the measure .

N
o, (e'h N (M N T S) ,
and then we give a sufficient condition under which the image of the operator
o : Hz (Xc, dm(hc,Nc) (A)) — H2 (Xs, dm(hs,Ns)(u, ’U)) .

is a close subspace in H? (X, dms ng)(u,v)) .
We work on

B :y(EY) ={(z,w) € C*! x C**! | z#0, w#O,Ez,-w.i =0} — Xg,
B (z,w) H( 2,W; )

Proposition 5.1.

(5.1) A (/NW (L bel? “w“"’) ; m) (4)

T . ont+l

= LA (A0 (4),
where

0141 = [ e VT 4 ) S on

The formula (5.1) above is given in the paper [FY]. Here we give it again in a simple
way for the sake of the completeness of this note. We denote the Liouville volume form
Qs (resp. €c) and its pull-back by the map (rs o '7)_1 (resp. (Tc)—l) with the same
notation always. Also note that 2(||ull* + [[v/|%) = ||2||% + ||lw]||? for Y(u,v) = (z,w).

15
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Proof. Since the unitary group U(n +1) acts on X¢ ({4 € M(n+1,C)| tr(A- A*) = 1}
transitively (adjoint action : A — UAU*, U € U(n + 1)) and the Liouville volume form
()¢ is invariant under this action together with the equivariance between the Liouville
volume form on Xs under the action of the unitary group U(n + 1) on C*! x C*+1 by
(z,w) = (U(2), U(w)), it is enough to determine the fiber integration on the points

0 ¢t 0 O
Ai=1. . . .|€Xct>0.
0 -« -~ 0

Note that the space X§ is invariant under the action (z, w) — (U(z), U(w)).
Then we take a local coordinate system on X¢ which together gives a local trivialization
of B : ‘

CxC*xC*xC! —— X¢

! s

CrxC*xCv1  —— Xg,

such that s>
()‘127?-0) —_— (A: )\Zl,' ,/\Zm_"—&;v-:u—;‘l, ’%n)
l ls
(2, w) — A e Xg,

where < z,w >= Eziw,- and

- <z,w>  w Wy -+ Wy
-1 <zZ,W> W Wy -+ Z1W,
A= : . .
—2n < Z,W > ZpW ZpWy -*+ ZpWp

In terms of these coordinates
_ 2 2
ws = /=198 (\/|A|2 (1+ |22 + (S22 > 2+ u] )
and at the point (A, z, w1, ws, - -+ ,w,) = (,0,¢,0,---,0), if we put

4-(|/\[2 + &%)3/2 - Wg

= agodA AN+ ) aordZi AdA+ Y boxdi A dA

+ D G0N Ndz + Y asdz Adz + Y by kdi A dz;

+ Y BosdX Adw; + 3 by jdz A dw; + ) cikdi A duw;.
then the values ay ;, b ; and Cx,j are given as follows:

612 ¢
agp = ‘M2+TX|—2+W, a0k=0 (kZ 1),

b —--t——(3|A12+i) box =0 (k > 2
01 — AlA‘z IA|2 y Vok = ( = )‘)

16
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2 \2
any =2(A + 1) e =2+ wz)""” D), ajx =0 (k#3),
: t2 t2 1
be; =0 (Vk >1,V5>1), ciy =2+W, Ckk=2(|)\12+—)'_ (k = 2),

A2/ A2
cik =0 (k # j).
Put

[ Qoo Gor -+ Qgn Dbo1 --- bOn\

G A ' Gip big e bln

D(/\, t) = g-fOfn a:1n o gnn bnl ot bnn

bor b - b e o cin
KEOn El'n e Enn Eln e Crm/

Now we have an expression of the Liouville volume form £2g by the coordinates (A, z,w):

(___1)-n(2n+1)

_ 2n+1
s = @n+1) 5
2n+1
—1)n2n+1) 1
(=1) (1)Y= -(2n+1)!- des D(), ¢)

T @n+1)l (IAI |/\|2)3/2

dXNAAANdZy Nd2y A+ NdZn Adzy A dTy Adwy A -+ A dB, A dus,

2n+1

1

4(I)\‘2+ﬁ5)3/2 | l
X -((W + % + |§4|6) (2 + lf\%) I/\T‘* (3|A|’-’ |A2|2)2) «
cx(ore o) () (o 25) )

dX/\d,\/\d—l/\dzl/\---/\d‘n/\dzn/\dwl/\dwl/\---/\d—n/\dw,,

n—-1/2
_ VA 1 !
= 22n+2|}\'2 !’\I2+ﬁ5

| dX/\d,\/\dzl/\dzl/\---/\dzn/\dzn/\dwl/\dwl/\---/\d‘w,,/\dwn.

= V1.

Hence at the point
0 0

A, € X¢, t>0.

Il

17
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the push-forward of the (2n + 1)-form e #VIMP+IMZ (1412 + ||v)|2) Y2 Qg by the map 3 is
B, (e—h\/l}UIF“Hlle (||u||2 + Hv”2) N/2 Qs) (At)

(5.2) =_7T_./0°°l (__}W)H/Z b VB (7‘ + (t/r) )

22n r \r? + (
dzy Ndzy N -+« ANdZ, Adz, A 1/\dw1/\---/\d7{u‘n/\dw,,.

N
2

On the other hand, the Liouville volume form

0c = = 1()"(;”“1’ (v-230y/Ta] )
is expressed around the point (0,---,0,w;,0---,0) (we put wy =t > 0) in the local
coordinates (2, w) as
Qc(A)
(6.3) = ﬁn_:ll—?dgl A dz /\---/\dE,,,/\dzn/\d'u_)l/\dwl/\-.--/\dw,,/\dwn.
By comparing (5.2) and (5.3) we have (5.1). o

Let f € Py(Xc), a polynomial of degree k of the variable A € M(n + 1,C), then
a*(f)(u,v) is a 2k-degree polynomial on C**! x C**!, The Lo- -norm of o*( f)( V) =

v*(B*(f))(u,v) with respect to a measure e hm(”unz ol ) .
P VIFTEE (julf + o) 0
X3
::/‘kf“”%JW%m:HFOWW+wwW)TQS
Xs
= £ [ [Tlrafiar e ST 2 a0 L oo
=FoM) [ |FANIAD s (o)
Z(C)
X / / t2k T e—%m . ('r2 + (t/,r)z)uzil—n ) tn-—ld"' A dt
0 Jo

=mmN»/ |F(A/IA] P dvscey(0) x
I(C)

HIN-D/2 9% 4k 420+ N 4+ 1) - T'(k + n)?

X

HEniNAl Ak ~ T(2k+2n)
(5.4)
22k 4dk+2n+ N +1) -T'(k+n)?
G(n,N) - / f(A/|Al) | dvz(C) o) Y o 1“(2k+231) - ,
Lon gn+(N-1)/2

where we put F(n, N) = 2N/2 and G(n,N) = F(n, N) -

18
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Next we give an expression of the Ly-norm of a degree k polynomial f € Py(M(n+1,C)
with respect to a measure e™"VI4l|| 4|V Q)¢

|f(A)Pe"VI4l AN Qe
Xc

2 - T(4k + 2n + 2N)
(5.5) =ﬁﬁm3éwuwnmmxw~ .

From these we have

Theorem 5.2. Let hg = he > 0 and Ng = 2N¢ — % with Nc > —n, Ng > ~2n—1, then
the map

o HZ(XC’dm(hC,Nc)(A)) - Hz(xs’ dmng,n) (U, v))
is continuous, and the image o* (H*(Xc, dmpne ne))) is a closed subspace of
H2 (Xs, dm(hs,Ns) (u, ’U)) ‘
Proof. The square root of the ratio of (5.4) by (5.5) does not depend on the poly-
nomials f € Py(Xc), and so it equal to the norm ”aFPk(Xc)” of the operator a* re-
stricted on each subspace Pi(Xc), which maps Px(Xc) onto the subspace Py (Xg) C
H3*(Xs, dmng,ng)(u,v)), we know that klirgo ||a,*,,k(xc)|| is finite and non-zero by applying

Stirling formula of the Gamma function, when hg = h¢ and Ng = 2N¢ — % 0

Again let f € P(M(n+ 1,C)), then

Proposition 5.3. The pull-back of the function f by the map a, o*( u,v), is a 2k-
degree polynomial on C"*! x C"*1 and the function

B o (@ () (@, 2")
2k N
= / a*(f)(u, v)( <z a>+<z"v >) e-hx/llu||2+llv|t’(”u“2 N “U”z) ® s, )
Xs

is_a U(1)-invariant harmonic function. So that, its descend to P"C (we denote its by
B&’N;zk)( f)) is an eigenfunction € Ef of the Laplacian on P*C. (It does not coincides
with B&’,N’;k)(f)')

Conversely, let g(z) € S2,(C™*!) be a harmonic polynomial of the variables PiD;, Le. it
can be descended to the complex projective space, then

Proposition 5.4.

Awmmm=/

2%
) 1g(ar:)( <ziu>+<z"v >) dvolg
gen+

can be descended to Xc, that is, A3,(g) is invariant under the action (4.2).
Theorem 5.5. Let Ng = 2N¢ — 1/2, N¢ > —n, then the operator
T(i/z,Nc-(nH)M) oa” : H*(Xc, dmn,ne) (A)) — Ly(P"C)

is an isomorphism and the operator

S : -1
T(r/2,Ne~(ns1)/a) © @" 0 T((l:z/ZNc/2—n/4)

is a zeroth order elliptic pseudo-differential operator in LY ,(P"C).
19
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Here the function T(“Z /2, N~ (n+1)/4) © @ (f) should be understood as a function descended
to complex projective space according to Proposition 5.3.

Remark 5.6. Although the determinations of the values Ng and N¢ (also hg and hc¢)
by pairing polarizations (cf. [Ra2] and [FY]) are done independently in each case, they
satisfy the relation above. ‘
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