Polynomials having leading terms over \mathbb{C}^2 in the Fock space

Kei Ji Izuchi (泉池 敬司)
Department of Mathematics, Niigata University (新潟大学・理学部)
Kou Hei Izuchi (泉池 耕平)
Guraduate School of Sci. and Tech., Niigata University (新潟大学・大学院自然科学研究科)

1. Introduction

Let $\mathcal{C} = \mathcal{C}(\mathbb{C}^2)$ be the set of polynomials and $\operatorname{Hol}(\mathbb{C}^2)$ be the space of entire functions on \mathbb{C}^2 . We denote $L_a^2(\mathbb{C}^2)$ by the Hilbert space of functions $f \in \operatorname{Hol}(\mathbb{C}^2)$ satisfying

$$||f||^2 = \int_{\mathbb{C}^2} |f(z,w)|^2 e^{-\frac{|z|^2 + |w|^2}{2}} dA/(2\pi)^2,$$

where dA denotes the Lebesgue measure on \mathbb{C}^2 . It is easy to see that $\|z^n w^m\|^2 = 2^{n+m} n! m!$, $\{z^n w^m / \|z^n w^m\|\}_{n,m}$ is the orthonormal basis of $L_a^2(\mathbb{C}^2)$, and \mathcal{C} is dense in $L_a^2(\mathbb{C}^2)$. The space $L_a^2(\mathbb{C}^2)$ is called the Fock space or the Segal-Bargmann space. The Fock space has arrested much attention because of the closed relationship between the operator theory on it and the Weyl quantization.

In [9], Guo and Zheng showed that if M is a non-zero closed subspace of $L_a^2(\mathbb{C}^2)$, then there are no non-constant multipliers of M, that is, if $\varphi M \subset M$ and $\varphi \in \operatorname{Hol}(\mathbb{C}^2)$ then φ is constant. So, in the Fock space we can not consider "invariant subspaces" for the multiplication operators T_z and T_w . As an appropriate substitution, Guo and Zheng defined "quasi-invariant subspaces". Let M be a closed subspace of $L_a^2(\mathbb{C}^2)$. M is called quasi-invariant if $pM \cap L_a^2(\mathbb{C}^2) \subset M$ for each polynomial p. They proved that for each finite codimensional ideal I of the polynomial ring \mathcal{C} , the closure of I is quasi-invariant. In [7], Guo proved that if $p \in \mathcal{C}$ is homogeneous, then $[p] = \overline{p\mathcal{C}}$ is quasi-invariant. As Douglas and Poulsen [4] and Guo [5, 6, 7, 8], it is natural to classify all quasi-invariant subspaces in a reasonable sense.

Let M_1 and M_2 be quasi-invariant subspaces of $L_a^2(\mathbb{C}^2)$. A bounded linear operator $T: M_1 \to M_2$ is called a quasi-module map if T(pf) = pT(f) whenever $pf \in M_1, p \in \mathcal{C}$, and $f \in M_1$. We say that M_1 and M_2 are similar if there exists an invertible quasi-module map $T: M_1 \to M_2$

 M_2 such that $T^{-1}: M_2 \to M_1$ is a quasi-module map. Also we say that M_1 and M_2 are quasi-similar if there exist quasi-module maps $T_1: M_1 \to M_2$ and $T_2: M_2 \to M_1$ with dense range. In the case of the one dimensional Fock space, Chen, Guo, and Hou [2] showed that [p] is quasi-invariant and determined the similarity orbit of [p] for every $p \in \mathcal{C}$. In the multi-dimensional case, Guo [7] determined the similarity orbit of [p]. For the Fock space, see also [1, 3].

Let $p \in \mathcal{C}$ and $p(z, w) = \sum_{i=0}^{d(p)} p_i(z, w)$ the homogeneous expansion of p, where d(p) denotes the homogeneous degree of p. We note $p_{d(p)} \neq 0$. When

$$p_{d(p)}(z,w) = a_{n,m}z^nw^m$$
 and $p(z,w) = \sum_{i \le n, j \le m} a_{i,j}z^iw^j$,

Guo and Hou [8] said that p has a leading term $z^n w^m$. And they showed that if p has a leading term $z^n w^m$, then [p] is quasi-invariant, and a quasi-invariant subspace M is similar to [p] if and only if M = [q] for some $q \in \mathcal{C}$ having the same leading term as p. In the definiton due to Guo and Hou, the set of polynomials having leading terms $z^n w^m$ is a fairly restricted class. So in this paper, we generalize the concept of "leading terms" replacing $a_{n,m}z^nw^m$ by a general homogeneous polynomial.

Let P be a homogeneous polynomial. We can write P as

(1.1)
$$P(z,w) = aw^{l_0} \prod_{j=1}^{k} (z - \alpha_j w)^{l_j},$$

where $a, \alpha_j \in \mathbb{C}, \alpha_i \neq \alpha_j$ for $i \neq j$. We note $d(P) = \sum_{j=0}^k l_j$. Associate with P, let

$$A = \{\alpha_j; 1 \le j \le k\}$$

and we define domains by

$$\Omega_{A,r} = \bigcup_{j=1}^k \{(z,w) \in \mathbb{C}^2; |z - \alpha_j w| < r\},$$

for every r > 0. Let q be another polynomial with $d(q) \le d(P)$. If q has the following form

$$q(z,w) = \sum_{l'_i \le l_j} a_{(l'_0,\cdots,l'_k)} w^{l'_0} \prod_{j=1}^k (z - \alpha_j w)^{l'_j},$$

q is said to be dominated by P, and we write as $q \ll P$. If p is a polynomial and $p \ll p_{d(p)}$, we say that p has a leading term $p_{d(p)}$.

Generally some polynomials may not have leading terms. But the set of polynomials having leading terms is a fairly big class in C. In this paper, we study polynomials having leading terms and prove the same type of assertions given by Guo and Hou in [8].

In Section 2, under the condition $l_0 = 0$ in (1.1), we characterize $q \in \mathcal{C}$ satisfying $q \ll P$.

Even if $p_{d(p)} = P$ and $l_0 = 0$, p may vanish in $\mathbb{C}^2 \setminus \Omega_{A,r}$ for every r > 0. In Section 3, we characterize polynomials p satisfying |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some r > 0.

Let \mathcal{C}_A be the set of homogeneous polynomials q such that

$$q(z,w) = aw^{i_0} \prod_{j=1}^k (z - \alpha_j w)^{i_j}, \quad a \neq 0.$$

In Section 4, we prove that p has a leading term $p_{d(p)}$ in \mathcal{C}_A if and only if |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some r > 0.

In Section 5, we study functions $f, g \in \text{Hol}(\mathbb{C}^2)$ satisfying $|f| \leq K|g|$ on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some K, r > 0.

In Section 6, we study the case $l_0 \neq 0$ in (1.1) using unitary transformations.

So far we studied function theoretic properties of polynomials having leading terms. Applying them, we study quasi-invariant subspaces in the Fock space. In Section 7, we show that if $p \in \mathcal{C}$ has a leading term $p_{d(p)}$, then [p] is quasi-invariant, and in Section 8, we prove that a quasi-invariant subspace M is similar to [p] if and only if M = [q] for some $q \in \mathcal{C}$ having the same leading term as p.

This is a summary of the paper [10].

2. Dominated Polynomials

Let $\mathcal{C}_h = \mathcal{C}_h(\mathbb{C}^2)$ be the sets of homogeneous polynomials on \mathbb{C}^2 . Let $p \in \mathcal{C}_h$. If we set $\zeta = z/w, w \neq 0$, then p has the form as

$$p(z,w) = w^{d(p)}p(\zeta,1) = aw^{d(p)}\prod_{j=1}^{k}(\zeta - \alpha_j)^{l_j} = aw^{l_0}\prod_{j=1}^{k}(z - \alpha_j w)^{l_j},$$

where $a, \alpha_j \in \mathbb{C}$, $\alpha_i \neq \alpha_j$ for $i \neq j$, $l_j \in \mathbb{Z}_+$, and $d(p) = \sum_{j=0}^k l_j$. By this fact, for $s, t \in \mathbb{Z}_+$ with s+t=d(p), there exist $p_1, p_2 \in \mathcal{C}_h$ such that $p=p_1p_2 \in \mathcal{C}_h$, $d(p_1)=s$, and $d(p_2)=t$. Let $q \in \mathcal{C}$ with $d(q) \leq d(p)$. If q has the following form

$$q(z,w) = \sum_{l'_{i} \leq l_{j}} a_{(l'_{0},\cdots,l'_{k})} w^{l'_{0}} \prod_{j=1}^{k} (z - \alpha_{j} w)^{l'_{j}},$$

q is said to be dominated by p, and write as $q \ll p$. In this section, we characterize q satisfying $q \ll p$ under the condition $l_0 = 0$. The following is the main theorem in this section.

Theorem 2.1. Let $\{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $p \in \mathcal{C}_h$ be such that

$$p(z,w) = \prod_{j=1}^{k} (z - \alpha_j w)^{l_j}$$

and $l_j \geq 1$ for ever $1 \leq j \leq k$. Let $q \in \mathcal{C}$ and $q = \sum_{i=0}^{d(q)} q_i$ be the homogeneous expansion of q with $d(q_i) = i$ if $q_i \neq 0$. Then $q \ll p$ if and only if $d(q) \leq d(p)$ and

$$q_{d(p)-i} = q' \prod_{j=1}^{k} (z - \alpha_j w)^{(l_j - i)_+}$$

for every i with $0 \le i < \max_{1 \le j \le k} l_j$ and $q' \in C_h$.

To prove our theorem, we need some lemmas. It is not difficult to prove the following.

Lemma 2.1. Let $p_1, p_2 \in C_h$ and $q_1, q_2 \in C$.

- (i) If $q_1 \ll p_1$ and $q_2 \ll p_1$, then $q_1 + q_2 \ll p_1$.
- (ii) If $q_1 \ll p_1$ and $q_2 \ll p_2$, then $q_1q_2 \ll p_1p_2$.
- (iii) If $q_1 \ll p_1$ and $p_1 \ll p_2$, then $q_1 \ll p_2$ and $q_1 + p_2 \ll p_2$.

Lemma 2.2. Let $\{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $p \in \mathcal{C}_h$ be such that

$$p(z,w) = \prod_{j=1}^{k} (z - \alpha_j w)^{l_j}$$

and $l_j \geq 1$ for every $1 \leq j \leq k$. If $q \in C$ and $d(q) \leq d(p) - \max_{1 \leq j \leq k} l_j$, then $q \ll p$.

For each integer m, let $m_+ = \max\{m, 0\}$.

Lemma 2.3. Let $\{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $p \in \mathcal{C}_h$ be such that

$$p(z, w) = \prod_{j=1}^{k} (z - \alpha_j w)^{l_j}$$

and $l_j \geq 1$ for every $1 \leq j \leq k$. Let i_0 be an integer with $0 \leq i_0 < \max_{1 \leq j \leq k} l_j$. Let $q \in \mathcal{C}_h$ with $d(q) = d(p) - i_0$. Then $q \ll p$ if and only if

$$q = q' \prod_{j=1}^{k} (z - \alpha_j w)^{(l_j - i_0)_+}$$

for some $q' \in C_h$.

Combining Lemmas 2.2 and 2.3, we can get Theorem 2.1.

3. ZEROS OF POLYNOMIALS IN TWO VARIABLES

Let $A = {\alpha_j}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. For r > 0, let

$$\Omega_{\alpha_j,r} = \Omega_{(\alpha_j,r)} = \{(z,w) \in \mathbb{C}^2; |z - \alpha_j w| < r\}$$

and

$$\Omega_{A,r} = \Omega_{(A,r)} = \bigcup_{j=1}^k \Omega_{\alpha_j,r}.$$

In this section, we prove the following.

Theorem 3.1. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $p \in \mathcal{C}$ be such that $d(p) \geq 1$ and

$$p_{d(p)} = \prod_{j=1}^k (z - \alpha_j w)^{l_j}.$$

Then |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some r > 0 if and only if there exists r > 0 such that

$$\limsup_{|w| \to \infty} \frac{\sup_{z \in D^1_{(\alpha_j, r)}(w)} |p(z, w)|}{|w|^{d(p) - l_j}} < \infty$$

for every $1 \leq j \leq k$.

To prove our theorem, we need some lemmas. For each fixed w, |w| > 1, let

$$D^1_{\alpha_j,r}(w) = D^1_{(\alpha_j,r)}(w) = \{ z \in \mathbb{C}; |z - \alpha_j w| < r \},$$

$$D_{\alpha_{j},r}^{2}(w) = D_{(\alpha_{j},r)}^{2}(w) = \{ \zeta \in \mathbb{C}; |\zeta - \alpha_{j}| < r/|w| \},$$

$$D_{\alpha_{j},r}^{3}(w) = D_{(\alpha_{j},r)}^{3}(w) = \{ z \in \mathbb{C}; |z - \alpha_{j}w| < r|w| \},$$

and

$$D_{\alpha_j,r}^4 = D_{(\alpha_j,r)}^4 = \{ \zeta \in \mathbb{C}; |\zeta - \alpha_j| < r \}.$$

Then $D^1_{\alpha_j,r}(w) \subset D^3_{\alpha_j,r}(w)$ and the mappings

$$(3.3) D^1_{\alpha_j,r}(w) \ni z \to \zeta = z/w \in D^2_{\alpha_j,r}(w),$$

(3.4)
$$D_{\alpha_j,r}^3(w) \ni z \to \zeta = z/w \in D_{\alpha_j,r}^4$$

are one to one and onto. It is not difficult to show the following.

Lemma 3.1. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$ and r > 0. Then we have the following.

- (i) For a large w, $D^1_{\alpha_i,r}(w) \cap D^1_{\alpha_i,r}(w) = \emptyset$ for $i \neq j$.
- (ii) If $|\alpha_i \alpha_j| > r_0 > 0$, then for a large w, $D^1_{\alpha_j,r}(w) \subset D^3_{\alpha_j,r_0}(w)$ and $D^1_{\alpha_i,r}(w) \cap D^3_{\alpha_j,r_0}(w) = \emptyset$.
- (iii) If $\alpha \in \mathbb{C} \setminus A$, then for a large w, $(\alpha w, w) \in \mathbb{C}^2 \setminus \Omega_{A,r}$.
- (iv) $(z, w) \in \Omega_{A,r}$ if and only if $z \in \bigcup_{j=1}^k D^1_{\alpha_j,r}(w)$.

Lemma 3.2. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $p \in \mathcal{C}$ be such that

$$p_{d(p)} = \prod_{j=1}^k (z - \alpha_j w)^{l_j}.$$

Let $r_0 > 0$ be such that $2r_0 < \min_{i \neq j} |\alpha_i - \alpha_j|$. Then for each j with $1 \leq j \leq k$, we have the following.

- (i) For a large w, the function $p(\zeta w, w)/w^{d(p)}$ in ζ has l_j -zeros in $D^4_{\alpha_j,r_0}$ counting multiplicites.
- (ii) For a large w, the function p(z, w) in z has l_j -zeros in $D^3_{\alpha_j, r_0}(w)$ counting multiplicites.

Proposition 3.1. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $p \in \mathcal{C}$ be such that

$$p_{d(p)} = \prod_{j=1}^k (z - \alpha_j w)^{l_j}.$$

Then for each j with $1 \leq j \leq k$, we have the following.

(i) If |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some r > 0, then for a large w the function p(z,w) in z has l_j -zeros in $D^1_{\alpha_j,r}(w)$ counting multiplicites for every $1 \leq j \leq k$.

Conversely, for r > 0 and a large w, the function p(z, w) in z has l_j -zeros in $D^1_{\alpha_j,r}(w)$ counting multiplicites for every $1 \leq j \leq k$, then there exists $r_1 > 0$ such that |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r_1}$.

(ii) If |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some r > 0, then for a large w the function $p(\zeta w, w)$ in ζ has l_j -zeros in $D^2_{\alpha_j,r}(w)$ counting multiplicites for every $1 \leq j \leq k$.

Conversely, for r > 0 and a large w, the function $p(\zeta w, w)$ in ζ has l_j -zeros in $D^2_{\alpha_j,r}(w)$ counting multiplicites for every $1 \leq j \leq k$, then there exists $r_1 > 0$ such that |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r_1}$.

For R > 0, let

$$B_R = \{(z, w) \in \mathbb{C}^2; |z|^2 + |w|^2 < R^2\}.$$

Lemma 3.3. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $p \in \mathcal{C}$ be such that

$$p_{d(p)}(z,w) = \prod_{j=1}^{k-1} (z - \alpha_j w)^{l_j}$$

and $l_j \geq 1$ for every $1 \leq j \leq k-1$. Then we have the following.

(i)

$$\limsup_{\substack{|w|\to\infty}} \frac{\sup_{z\in D^1_{(\alpha_k,r)}(w)}|p(z,w)|}{|w|^{d(p)}}<\infty.$$

(ii) |p| > 0 on $\Omega_{\alpha_k,r} \setminus B_R$ for some r, R > 0.

Remark 3.1. By the proof, if

$$p_{d(p)} = \prod_{j=1}^k (z - \alpha_j w)^{l_j}$$

and |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r}$, then

$$\limsup_{\substack{|w|\to\infty}} \frac{\sup_{z\in D^1_{(\alpha_j,r)}(w)}|p(z,w)|}{|w|^{d(p)-l_j}} < \infty.$$

If $r_1 > r$, then $\mathbb{C}^2 \setminus \Omega_{A,r_1} \subset \mathbb{C}^2 \setminus \Omega_{A,r}$, so that |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r_1}$. Hence

$$\limsup_{|w|\to\infty} \frac{\sup_{z\in D^1_{(\alpha_j,r_1)}(w)}|p(z,w)|}{|w|^{d(p)-l_j}}<\infty.$$

If $r_2 < r$, then $D^1_{\alpha_j,r_2}(w) \subset D^1_{\alpha_j,r}(w)$, so that

$$\limsup_{|w| \to \infty} \frac{\sup_{z \in D^1_{(\alpha_j, r_2)}(w)} |p(z, w)|}{|w|^{d(p) - l_j}} < \infty.$$

Hence if |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some r > 0, then

$$\limsup_{|w|\to\infty} \frac{\sup_{z\in D^1_{(\alpha_j,r)}(w)}|p(z,w)|}{|w|^{d(p)-l_j}}<\infty.$$

for every r > 0.

4. Leading terms

The following is the main theorem in this section.

Theorem 4.1. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Further we assume that $\alpha_j \neq 0$ for every j. Let $p \in \mathcal{C}$ be such that $d(p) \geq 1$. Then the following conditions are equivalent.

- (i) p has a leading term $p_{d(p)}$ such that $p_{d(p)} \in C_A$.
- (ii) There exist $c_1, c_2 > 0$ such that $c_1 < |p/p_{d(p)}| < c_2$ on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some r > 0.
- (iii) |p| > 0 on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some r > 0.

5. Partial order in $Hol(\mathbb{C}^2)$

Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. For $f, g \in \operatorname{Hol}(\mathbb{C}^2)$, we write $f \preceq_A g$ if $|f| \leq M|g|$ on $\mathbb{C}^2 \setminus \Omega_{A,r}$ for some M, r > 0. Then $\operatorname{Hol}(\mathbb{C}^2)$ is a partially ordered set with \preceq_A . First we prove the following theorem.

Theorem 5.1. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $p, q \in \mathcal{C}(\mathbb{C}^2)$ be such that p, q do not have common factor. Then $q \preceq_A p$ if and only if $p_{d(p)} \in \mathcal{C}_A$, $p \ll p_{d(p)}$, and $q \ll p_{d(p)}$.

To prove our theorem, we need some lemmas. In [2], Chen, Guo, and Hou proved the following.

Lemma 5.1. Let $f, g \in \text{Hol}(\mathbb{C})$. Then $|f(z)| \leq M|g(z)|$ on $\{|z| > r\}$ for some r, M > 0 if and only if there exist $p, g \in \mathcal{C}(\mathbb{C})$ with $d(q) \leq d(p)$ such that f/g = q/p.

In [6], Guo proved the following.

Lemma 5.2. Let f(z,w) be in the Nevanlinna class on the polydisk \mathbb{D}^2 . Suppose that the slice function $f_{(z,w)}(\lambda) = f(\lambda z, \lambda w)$ is rational in λ for almost all $(z,w) \in \mathbb{T}^2$. Then f is a rational function.

Lemma 5.3. Let f = q/p be a rational function, where p and q have no common factor. If f is analytic in $\Omega \subset \mathbb{C}^2$, then $Z(p) \cap \Omega = \emptyset$.

The following is the main theorem in this section.

Theorem 5.2. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $f, g \in \text{Hol}(\mathbb{C}^2)$. Then $f \preceq_A g$ if and only if there exist $p, q \in \mathcal{C}$ such that f/g = q/p, $p_{d(p)} \in \mathcal{C}_A$, $p \ll p_{d(p)}$, and $q \ll p_{d(p)}$.

6. Unitary transformations

In Sections 2-5, we studied the case $l_0 = 0$ in (1.1) In this section, we study the case $l_0 \neq 0$. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $\tilde{\mathcal{C}}_A$ be the set of $p \in \mathcal{C}_h$ such that

$$p(z,w) = aw^{l_0}\prod_{j=1}^k(z-lpha_jw)^{l_j}, \quad a\in \mathbb{C}$$

and

$$\tilde{\Omega}_{A,r} = \tilde{\Omega}_{(A,r)} = \{(z,w) \in \mathbb{C}^2; |w| < r\} \cup \Omega_{A,r}$$

for r > 0. For each $\alpha \in \mathbb{C}$ with $\alpha \neq 0$, let

$$A_{\alpha} = \left\{ \frac{\alpha_j - \alpha}{1 + \bar{\alpha}\alpha_i} \right\}_{j=1}^k$$

and

$$\tilde{A}_{\alpha} = \left\{ \frac{1}{\bar{\alpha}}, \frac{\alpha_j - \alpha}{1 + \bar{\alpha}\alpha_j} \right\}_{j=1}^k.$$

For $\alpha \in \mathbb{C}$, let

$$\begin{pmatrix} z \\ w \end{pmatrix} = U_{\alpha} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{1}{\sqrt{1+|\alpha|^2}} \begin{pmatrix} 1 & \alpha \\ -\bar{\alpha} & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

Then U_{α} is a unitary transformation on \mathbb{C}^2 . If $p \in \mathcal{C}$, then $p \circ U_{\alpha}$ is a polynomial in variables u and v. It is not difficult to show the following.

Lemma 6.1.

- (i) $U_{\alpha}^{-1} = U_{-\alpha}$.
- (ii) $d(p) = d(p \circ U_{\alpha})$ for $p \in \mathcal{C}$.
- (iii) Let $p \in C_h$ and $q \in C$. If $q \ll p$, then $q \circ U_{\alpha} \ll p \circ U_{\alpha}$.
- (iv) Let $p \in C$. Then p has a leading term $p_{d(p)}$ if and only if $p \circ U_{\alpha}$ has a leading term $(p \circ U_{\alpha})_{d(p)}$.
- (v) If $\alpha \neq 0$, then

$$U_{\alpha}^{-1}(\{(z,w);|w|< r\}) = \Omega_{\left(\frac{1}{\alpha},\frac{r\sqrt{1+|\alpha|^2}}{|\alpha|}\right)}.$$

(vi) If $\bar{\alpha}\beta \neq -1$, then

$$U_{\alpha}^{-1}(\Omega_{\beta,r}) = \Omega_{\left(\frac{\beta-\alpha}{1+\alpha\beta}, \frac{r\sqrt{1+|\alpha|^2}}{|1+\alpha\beta|}\right)}.$$

- (vii) If $\bar{\alpha}\alpha_j \neq -1$ for every $1 \leq j \leq k$, then $p \in \mathcal{C}_A$ if and only if $p \circ U_{\alpha} \in \mathcal{C}_{A_{\alpha}}$, and $p \in \tilde{\mathcal{C}}_A$ if and only if $p \circ U_{\alpha} \in \mathcal{C}_{\tilde{A}_{\alpha}}$.
- (viii) $C_{\tilde{A}_{\alpha}} \circ U_{-\alpha} = \tilde{C}_A$.

Applying Lemma 6.1, we give generalizations of results proved in the previous sections. The following is a generalization of Theorem 2.1.

Theorem 6.1. Let $p \in \tilde{\mathcal{C}}_A$ be such that

$$p(z, w) = w^{l_0} \prod_{j=1}^{k} (z - \alpha_j w)^{l_j}.$$

Let $q \in \mathcal{C}$ and $q = \sum_{i=0}^{d(q)} q_i$ be the homogeneous expansion of q with $d(q_i) = i$ if $q_i \neq 0$. Then $q \ll p$ if and only if $d(q) \leq d(p)$ and

$$q_{d(p)-i} = q'w^{(l_0-i)_+} \prod_{j=1}^k (z - \alpha_j w)^{(l_j-i)_+}$$

for every i with $0 \le i < \max_{0 \le j \le k} l_j$ and $q' \in C_h$.

Corollary 6.1. Let $p \in \tilde{\mathcal{C}}_A$ be such that

$$p(z,w) = w^{l_0} \prod_{j=1}^k (z - \alpha_j w)^{l_j}$$

and $l_j \leq 1$ for every $0 \leq j \leq k$. Then $p_1 \ll p$ for every $p_1 \in \mathcal{C}$ with $d(p_1) < d(p)$.

Corollary 6.2. Let $p \in \tilde{C}_A$ be such that

$$p(z, w) = w^{l_0} \prod_{j=1}^{k} (z - \alpha_j w)^{l_j}.$$

Then $p_1 \ll p$ for every $p_1 \in \mathcal{C}$ with $\deg p_1 < \deg p - \max_{0 \leq j \leq k} l_j$.

The following theorem shows the most easy way to check whether $q \ll p$ or not.

Theorem 6.2. Let $p \in \tilde{\mathcal{C}}_A$ be such that

$$p(z,w)=w^{l_0}\prod_{j=1}^k(z-lpha_jw)^{l_j}$$

and let $q \in \mathcal{C}$. Then $q \ll p$ if and only if $d(q) \leq d(p)$ and the following three conditions hold.

- (i) $d_z(q) \le d(p) l_0$.
- (ii) If $\alpha_{j_0} = 0$ for some $j_0, 1 \leq j_0 \leq k$, then $d_w(q) \leq d(p) l_{j_0}$. (iii) Suppose that $\alpha_m \neq 0, 1 \leq m \leq k$. Then $d_v(q \circ U_{\alpha_m}) \leq d(p) l_m$.

The following is a generalization of Theorem 3.1.

Theorem 6.3. Let $p \in \tilde{\mathcal{C}}_A$ be such that $d(p) \geq 1$ and

$$p_{d(p)}(z,w) = w^{l_0} \prod_{j=1}^k (z - \alpha_j w)^{l_j}.$$

Then |p| > 0 on $\mathbb{C}^2 \setminus \tilde{\Omega}_{A,r}$ for some r > 0 if and only if there exists r > 0 such that

$$\limsup_{|w| \to \infty} \frac{\sup_{z \in D^1_{(\alpha_j,r)}(w)} |p(z,w)|}{|w|^{d(p)-l_j}} < \infty$$

for every $1 \le j \le k$, and

$$\limsup_{|z|\to\infty} \frac{\sup_{|w|< r} |p(z,w)|}{|z|^{d(p)-l_0}} < \infty.$$

The following is a generalization of Theorem 4.1 and [8, Proposition 2.4].

Theorem 6.4. Let $p \in C$ be such that $d(p) \geq 1$. Then the following conditions are equivalent.

- (i) p has a leading term $p_{d(p)}$ such that $p_{d(p)} \in \tilde{\mathcal{C}}_A$.
- (ii) There exist $c_1, c_2 > 0$ such that $c_1 < |p/p_{d(p)}| < c_2$ on $\mathbb{C}^2 \setminus \tilde{\Omega}_{A,r}$ for some r > 0.
- (iii) |p| > 0 on $\mathbb{C}^2 \setminus \tilde{\Omega}_{A,r}$ for some r > 0.

For $f, g \in \text{Hol}(\mathbb{C}^2)$, we write $f \preceq_{\tilde{A}} g$ if $|f| \leq M|g|$ on $\mathbb{C}^2 \setminus \tilde{\Omega}_{A,r}$ for some M, r > 0. The following is a generalization of Theorem 5.1.

Theorem 6.5. Let $p, q \in C$ be such that p, q do not have common factor. Then $q \preceq_{\tilde{A}} p$ if and only if $p_{d(p)} \in \tilde{C}_A$, $p \ll p_{d(p)}$, and $q \ll p_{d(p)}$.

The following is a generalization of Theorem 5.2 ang [8, Theorem 2.5].

Theorem 6.6. Let $f, g \in \text{Hol}(\mathbb{C}^2)$. Then $f \preceq_{\tilde{A}} g$ if and only if there exist $p, q \in \mathcal{C}$ such that f/g = q/p, $p_{d(p)} \in \tilde{\mathcal{C}}_A$, $p \ll p_{d(p)}$, and $q \ll p_{d(p)}$.

Combine with Theorems 6.3 and 6.4, we have the following.

Corollary 6.3. Let $p \in C$ be such that $d(p) \geq 1$. Then the following conditions are equivalent.

- (i) p has a leading term $p_{d(p)}$ such that $p_{d(p)} \in \tilde{\mathcal{C}}_A$.
- (ii) |p| > 0 on $\mathbb{C}^2 \setminus \tilde{\Omega}_{A,r}$ for some r > 0.

(iii) $p_{d(p)} \in \tilde{\mathcal{C}}_A$ and there exist $c_1, c_2 > 0$ such that $c_1 \leq |p/p_{d(p)}| \leq c_2$ on $\mathbb{C}^2 \setminus \tilde{\Omega}_{A,r}$ for some r > 0.

(iv) $p_{d(p)} = aw^{l_0}(z - \alpha_1 w)^{l_1}(z - \alpha_2 w)^{l_2} \cdots (z - \alpha_k w)^{l_k}, \ a \neq 0, \ and$ there exists r > 0 such that

$$\limsup_{|w|\to\infty}\frac{\sup_{z\in D^1_{(\alpha_j,r)}(w)}|p(z,w)|}{|w|^{d(p)-l_j}}<\infty$$

for every $1 \leq j \leq k$, and

$$\limsup_{|z|\to\infty} \frac{\sup_{|w|< r} |p(z,w)|}{|z|^{d(p)-l_0}} < \infty.$$

7. Quasi-invariant subspaces

Let $p \in \mathcal{C}$. If $p \ll p_{d(p)}$ holds, we say that p has a leading term $p_{d(p)}$. It is not known whether $[p] = \overline{pC}$ is quasi-invariant for every $p \in C$. It is known that if $p \in \mathcal{C}_h$, then [p] is quasi-invariant, see [1, Proposition 5.5.1]. In Theorem 4.4 of [8], Guo and Hou proved that if $p \in \mathcal{C}$ has a leading term $z^m w^n$, then [p] is quasi-invariant. The following is the main theorem in this section.

Theorem 7.1. Let $p \in \mathcal{C}$ be having a leading term $p_{d(p)}$. Then we have the following.

(i) $[p]/p = [p_{d(p)}]/p_{d(p)}$. (ii) [p] is quasi-invariant.

(iii)
$$[p] = \{ pf \in L_a^2(\mathbb{C}^2); f \in \text{Hol}(\mathbb{C}^2) \} = \{ pf \in L_a^2(\mathbb{C}^2); f \in L_a^2(\mathbb{C}^2) \}.$$

Recall that

$$\Omega_{\alpha,r} = \{(z, w) \in \mathbb{C}^2; |z - \alpha w| < r\}$$

for $\alpha \in \mathbb{C}$ and r > 0. Then $\Omega_{0,r} = \{(z, w); |z| < r\}$. For $R \geq 0$, let

$$\Omega_{0,r,R} = \Omega_{(0,r,R)} = \{(z, w) \in \mathbb{C}^2; |z| < r, |w| \ge R\}.$$

Note that $\Omega_{0,r,0} = \Omega_{0,r}$. For a subset Ω of \mathbb{C}^2 , let

$$||f||_{\Omega}^2 = \int_{\Omega} |f(z,w)|^2 e^{-\frac{|z|^2 + |w|^2}{2}} dA(z,w)/(2\pi)^2.$$

As the proof of Theorem 3.1 in [8], we have the following.

Lemma 7.1. Let $r_1, r_2, r_3 > 0$ and $r_1 < r_2$. Then there exists a constant C > 0, depends on r_1, r_2 , and r_3 , such that

$$||f||_{\Omega_{0,r_2}} \le C||f||_{(\Omega_{(0,r_2,r_3)}\setminus\Omega_{(0,r_1,r_3)})}$$

for every $f \in \text{Hol}(\mathbb{C}^2)$.

Recall that U_{α} , $\alpha \in \mathbb{C}$, are unitary transformations of \mathbb{C}^2 ;

$$\begin{pmatrix} z \\ w \end{pmatrix} = U_{\alpha} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{1}{\sqrt{1 + |\alpha|^2}} \begin{pmatrix} 1 & \alpha \\ -\bar{\alpha} & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

It is easy to see the following.

Lemma 7.2.

- (i) $||f||_{\Omega} = ||f \circ U_{\alpha}||_{U_{\alpha}^{-1}\Omega} = ||f \circ U_{\alpha}^{-1}||_{U_{\alpha}\Omega} \text{ for } \Omega \subset \mathbb{C}^2 \text{ and } f \in \text{Hol}(\mathbb{C}^2).$
- (ii) $U_a(\Omega_{\alpha,r}) = \Omega_{(0,r/\sqrt{1+|\alpha|^2})}$.
- (iii) $\Omega_{\left(0,\frac{r}{\sqrt{1+|\alpha|^2}},t\right)} \subset U_{\alpha}(\Omega_{\alpha,r} \setminus B_t)$, where $B_t = \{(z,w); |z|^2 + |w|^2 < t\}$.

Lemma 7.3. —it For $\alpha \in \mathbb{C}$, $r_2 > r_1 > 0$, and t > 0, there exists a constant C > 0, depends on r_1, r_2 , and t, such that

$$||f||_{\Omega_{\alpha,r_2}} \le C||f||_{(\Omega_{\alpha,r_2}\setminus(\Omega_{\alpha,r_1}\cup B_t))}$$

for every $f \in \text{Hol}(\mathbb{C}^2)$.

Recall that $A = {\{\alpha_j\}_{j=1}^k \subset \mathbb{C}, \ \alpha_i \neq \alpha_j \ \text{for} \ i \neq j, \ \text{and}}$

$$\Omega_{A,r} = igcup_{j=1}^k \Omega_{lpha_j,r} \quad ext{and} \quad ilde{\Omega}_{A,r} = \{(z,w); |w| < r\} \cup \Omega_{A,r}$$

for r > 0. The following lemma is not difficult to prove.

Lemma 7.4. For $\alpha \in \mathbb{C}$ and $r_1 > r > 0$, there exists a large t > 0 such that

$$(\Omega_{\alpha_i,r_1} \setminus (\Omega_{\alpha_i,r} \cup B_t)) \cap (\Omega_{\alpha_i,r_1} \setminus (\Omega_{\alpha_i,r} \cup B_t)) = \emptyset$$

for $i \neq j$ and

$$\Omega_{\alpha_j,r_1} \setminus (\Omega_{\alpha_j,r} \cup B_t) \subset \mathbb{C}^2 \setminus \Omega_{A,r}$$

for every $1 \leq j \leq k$.

Proposition 7.1. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Then for each r > 0, there exists a constant C > 0, depends on r, such that $C||f|| \leq ||f||_{\mathbb{C}^2 \setminus \Omega_{A,r}}$ for every $f \in \text{Hol}(\mathbb{C}^2)$.

Corollary 7.1. Let $A = \{\alpha_j\}_{j=1}^k \subset \mathbb{C}$ be such that $\alpha_i \neq \alpha_j$ for $i \neq j$. Then for each r > 0, there exists a constant C > 0, depends on r, such that $C\|f\| \leq \|f\|_{\mathbb{C}^2 \setminus \tilde{\Omega}_{A,r}} \leq \|f\|$ for every $f \in \text{Hol}(\mathbb{C}^2)$.

The following is a generalization of [8, Theorem 3.1].

Corollary 7.2. Let $f, g \in \operatorname{Hol}(\mathbb{C}^2)$. If $f \preceq_{\tilde{A}} g$ and $g \in L_a^2(\mathbb{C}^2)$, then $f \in L_a^2(\mathbb{C}^2)$.

By Corollary 6.1 and Theorem 7.1, we have the following.

Corollary 7.3. Let $p \in C$. If $p_{d(p)} = aw(z - \alpha_1 w) \cdots (z - \alpha_k w)$ and $\alpha_i \neq \alpha_j$ for $i \neq j$, then [p] is quasi-invariant.

Corollary 7.4. Let $p \in C$ be having a leading term $p_{d(p)}$. Then there exists a similar module map T from $[p_{d(p)}]$ onto [p] such that $Tf = (pf)/p_{d(p)}$ for $f \in [p_{d(p)}]$.

8. Quasi-similarity

If $p \in \mathcal{C}$ is a polynomial with the leading term $p_{d(p)}$, then by Corollary 7.4 [p] and $[p_{d(p)}]$ are similar. The following is the main theorem in this section and a generalization of [8, Theorem 4.7].

Theorem 8.1. Let M be a quasi-invariant subspace of $L_a^2(\mathbb{C}^2)$. Let $p \in \mathcal{C}_h$ be a homogeneous polynomial. Then [p] and M are quasi-similar if and only if M = [q] for some $q \in \mathcal{C}$ having the leading term p.

To prove this, we need some lemmas. The following is proved by Guo and Hou [8, Lemma 4.6].

Lemma 8.1. Let M_1, M_2 be quasi-invariant subspaces of $L_a^2(\mathbb{C}^2)$. Let T be a quasi-module map from M_1 to M_2 . Suppose that $p \in C \cap M_1$ and $p \neq 0$. Let q = Tp. Then q is a polynomial, $d_z(q) \leq d_z(p)$, and $d_w(q) \leq d_w(p)$.

Similarly, we have the following.

Lemma 8.2. Let M_1, M_2 be quasi-invariant subspaces of $L_a^2(\mathbb{C}^2)$. Let $T: M_1 \to M_2$ be a quasi-module map. Suppose that $p \in C \cap M_1$ and $p \neq 0$. Let q = Tp. Then q is a polynomial and $d(q) \leq d(p)$.

The following lemma is obvious. To clear our argument, we give here.

Lemma 8.3. Let $p \in C_h$ and $q \in C$. Then q has a leading term $ap, a \in \mathbb{C}, a \neq 0$, if and only if d(q) = d(p) and $q \ll p$.

For $\alpha \in \mathbb{C}$, let

$$\begin{pmatrix} z \\ w \end{pmatrix} = U_{\alpha} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{1}{\sqrt{1+|\alpha|^2}} \begin{pmatrix} 1 & \alpha \\ -\bar{\alpha} & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix},$$

and we use the same notations as in Section 6. Let M_1, M_2 be quasi-invariant subspaces of $L^2_a(\mathbb{C}^2)$ and

$$M_i \circ U_\alpha = \Big\{ f \circ U_\alpha \binom{u}{v}; f \in M_i \Big\}.$$

Then it is not difficult to see that $M_i \circ U_{\alpha}$ is quasi-invariant in variables u and v. Let $C_{U_{\alpha}}$ be the unitary operator from M_i onto $M_i \circ U_{\alpha}$ defined by

$$(C_{U_{\alpha}}f)\binom{u}{v}=f\circ U_{\alpha}\binom{u}{v}.$$

Let $T: M_1 \to M_2$ be a quasi-module map. Then we have a map

$$M_1 \circ U_{\alpha} \ni g(u,v) \to C_{U_{\alpha}} T C_{U_{\alpha}}^{-1} \in M_2 \circ U_{\alpha}.$$

It is also not difficult to see that $C_{U_{\alpha}}TC_{U_{\alpha}}^{-1}$ is a quasi-module map.

Corollary 8.1. Let M be a quasi-invariant subspace, and let $p \in \mathcal{C}$ be having a leading term $p_{d(p)}$. Then the following conditions are equivalent.

- (i) M is similar to [p].
- (ii) M is quasi-similar to [p].
- (iii) M = [q] for some $q \in C$ having a leading term $p_{d(p)}$.

REFERENCES

- [1] X. Chen and K. Guo, "Analytic Hilbert Modules," Res. Notes in Math. 433, Chapman&Hall/CRC, Boca Raton, 2003.
- [2] X. Chen, K. Guo, and S. Hou, Analytic Hilbert spaces over the complex plane, J. Math. Anal. Appl. 268 (2002), 684-700.

- [3] X. Chen and S. Hou, Beurling theorem for the Fock space, Proc. Amer. Math. Soc. 131 (2003), 2791–2795.
- [4] R. Douglas and V. Paulsen, "Hilbert Modules over Function Algebras," Longman, Harlow, 1989.
- [5] K. Guo, Characteristic spaces and rigidity for analytic Hilbert modules, J. Funct. Anal. 163 (1999), 133–151.
- [6] K. Guo, Equivalence of Hardy submodules generated by polynomials, J. Funct. Anal. 178 (2000), 343-371.
- [7] K. Guo, Homogeneous quasi-invariant subspaces of the Fock space, J. Austral. Math. Soc. **75** (2003), 399-407.
- [8] K. Guo and S. Hou, Quasi-invariant subspaces generated by polynomials with nonzero leading terms, Studia Math. 164 (2004), 399–407.
- [9] K. Guo and D. Zheng, Invariant subspaces, quasi-invariant subspaces, and Hankel operators, J. Funct. Anal. 187 (2001), 308-342.
- [10] K. J. Izuchi and K. H. Izuchi, Polynomials having leading terms over \mathbb{C}^2 in the Fock space, J. Funct. Analy. **225** (2005), 439–479.