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1. INTRODUCTION

Let C = C(C?) be the set of polynomials and Hol(C?) be the space
of entire functions on C2. We denote L2(C?) by the Hilbert space of
functions f € Hol(C?) satisfying

1917 = [ 15w aaany,

where dA denotes the Lebesgue measure on C2. It is easy to see that
|lzrw™||2 = 27" ™nim!, {z"w™/|z"w™||}snm is the orthonormal basis
of L2(C?), and C is dense in L2(C?). The space L2(C?) is called the
Fock space or the Segal-Bargmann space. The Fock space has arrested
much attention because of the closed relationship between the operator
theory on it and the Weyl quantization.

In [9], Guo and Zheng showed that if M is a non-zero closed subspace
of L2(C?), then there are no non-constant multipliers of M, that is,
if oM C M and ¢ € Hol(C?) then ¢ is constant. So, in the Fock
space we can not consider “invariant subspaces” for the multiplication
operators T, and T,. As an appropriate substitution, Guo and Zheng
defined “quasi-invariant subspaces”. Let M be a closed subspace of
L2(C?). M is called quasi-invariant if pM N L2(C?) C M for each
polynomial p. They proved that for each finite codimensional ideal I
of the polynomial ring C, the closure of I is quasi-invariant. In {7}, Guo

proved that if p € C is homogeneous, then [p] = pC is quasi-invariant.
As Douglas and Poulsen [4] and Guo [5, 6, 7, 8], it is natural to classify
all quasi-invariant subspaces in a reasonable sense.

Let M; and M, be quasi-invariant subspaces of L2(C?). A bounded
linear operator T : My — M, is called a quasi-module map if T(pf) =
pT(f) whenever pf € My,p € C, and f € M;. We say that M; and M;
are similar if there exists an invertible quasi-module map T : M; —



M, such that 7! : My — M, is a quasi-module map. Also we say
that M; and M, are quasi-similar if there exist quasi-module maps
Ty : My — M; and T, : My — M, with dense range. In the case of the
one dimensional Fock space, Chen, Guo, and Hou [2] showed that [p]
is quasi-invariant and determined the similarity orbit of [p] for every
p € C. In the multi-dimensional case, Guo [7] determined the similarity
orbit of [2"]. It is open to determine the similarity orbit of [p]. For the
Fock space, see also [1, 3].

Let p € C and p(z,w) = Zfﬁ’g pi(2z, w) the homogeneous expansion of

p, where d(p) denotes the homogeneous degree of p. We note py() # 0.
When

Pip) (2, W) = apmz"w™ and p(z,w) Z a; j2'w,
i<n,j<m
Guo and Hou (8] said that p has a leading term z"w™. And they showed
that if p has a leading term z"w™, then [p] is quasi-invariant, and a
quasi-invariant subspace M is similar to [p] if and only if M = [g] for
some q € C having the same leading term as p. In the definiton due
to Guo and Hou, the set of polynomials having leading terms z"w™
is a fairly restricted class. So in this paper, we generalize the con-
cept of “leading terms” replacing a, »2"w™ by a general homogeneous
polynomial.
Let P be a homogeneous polynomial. We can write P as

k
(1.1) P(z,w) = aw® H(z — ajw)lf,

j=1

where o, a; € C, a; # a; for i # j. We note d(P) = z;“zo l;. Associate
with P, let

A={0;1<j<k}
and we define domains by

k
Qar= U{(z,w) € C% |z — qjw| < 7},

j=1

for every r > 0. Let ¢ be another polynomial with d(q) < d(P). If ¢
has the following form

k

a(zw) =Y agy.. gywd [J(z = ajw)s,

l’<l] j=1

q is said to be dominated by P, and we write as ¢ < P. If pis

a polynomial and p < pgp), we say that p has a leading term pyp,).
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Generally some polynomials may not have leading terms. But the set
of polynomials having leading terms is a fairly big class in C. In this
paper, we study polynomials having leading terms and prove the same
type of assertions given by Guo and Hou in [8].

In Section 2, under the condition Iy = 0 in (1.1), we characterize
q € C satisfying ¢ < P.

Even if pgy = P and lp = 0, p may vanish in C*\ Q4 for every
r > 0. In Section 3, we characterize polynomials p satisfying |p| > 0
on C?\ Q4 for some 7 > 0.

Let C4 be the set of homogeneous polynomials g such that

k
q(z, w) = aw™ H(z — ow)¥, a#0.
i=1
In Section 4, we prove that p has a leading term py() in C4 if and only
if |p| > 0 on C%\ Q4 for some r > 0.
In Section 5, we study functions f, g € Hol(C?) satisfying |f| < K|g]|
on C?\ Qg for some K,r > 0.

In Section 6, we study the case [y # O in (1.1) using unitary trans-
formations.

So far we studied function theoretic properties of polynomials having
leading terms. Applying them, we study quasi-invariant subspaces in
the Fock space. In Section 7, we show that if p € C has a leading
term pyp), then [p] is quasi-invariant, and in Section 8, we prove that
a quasi-invariant subspace M is similar to [p] if and only if M = [g] for
some ¢ € C having the same leading term as p.

This is a summary of the paper [10].

2. DOMINATED POLYNOMIALS

Let Cy, = C»(C?) be the sets of homogeneous polynomials on C?. Let
p € Cp. If we set ( = z/w,w # 0, then p has the form as

k k

p(z,w) = w*®p((,1) = aw?® H(C — ;) = aw® H(z — ajw),
where a,a; € C,q; # a; for i # j, l; € Z4, and d(p) = E;’:olj- By
this fact, for s,t € Z, with s+t = d(p), there exist p;, p; € C, such that

p=pip2 € Cp, d(p1) = s, and d(p;) = t. Let g € C with d(q) < d(p). If
q has the following form

k
o -
E Qg 1 )yWwo Hz oW

l' <l j=1
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q is said to be dominated by p, and write as ¢ < p. In this section,
we characterize ¢ satisfying ¢ < p under the condition ly = 0. The
following is the main theorem in this section.

Theorem 2.1. Let {o;}.; C C be such that o; # a; fori # j. Let
p € Cy be such that

k

— !

= H(z — aw)"
7=1

and [; > 1 for ever 1 < j < k. Let g € C and q = Zfﬁ(ng be the

homogeneous expansion of q¢ with d(g;) = i if ¢ # 0. Then q < p if

and only if d(q) < d(p) and

e

Gag)—i = q/ H(z _ aj,w)(lj—i)+
Jj=1

 with 0 < 4 : ' € Ch.
for every i wzthO_z<1nS1?S>§clJ and ¢’ € Cy,

To prove our theorem, we need some lemmas. It is not difficult to
prove the following.

Lemma 2.1. Let py,p; € C, and q1,q2 € C.

(1) If ¢ € p1 and g2 K p1, then ¢ + g2 K p1.
(ii) If g1 < p1 and g2 < p2, then qiqz K p1p2.
(i) If ¢ € p1 and p1 K D2, then q1 K p2 and g1 + Pz K pa.

Lemma 2.2. Let {o;}5_, C C be such that o; # a; for iv# j. Let
p € Cp, be such that

k
Hz"av

and l; > 1 for every 1 < j < k. Ifg € C and d(g) < d(p)—lrga;cklj,
then ¢ < p.

For each integer m, let m; = max{m, 0}.
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Lemma 2.3. Let {a;}i_; C C be such that o # o fori # j. Let
p € Cy, be such that

:j»

7 — ag
J=1
and l[; > 1 for every 1 < j < k. Let iy be an integer with 0 < i <

1r21a<xkl Let g € Cy, with d(q) = d(p) —i0. Then g <K p if and only if
<i<

k
= q’ H(z — ajw)(lj_i0)+
j=1

for some ¢’ € C,.

Combining Lemmas 2.2 and 2.3, we can get Theorem 2.1.

3. ZEROS OF POLYNOMIALS IN TWO VARIABLES
Let A = {a;}¥_; C C be such that o; # a; for i # j. For r >0, let

Qajr = Uoymy = {(2,0) € C% |z — ajw| < r}
and

k
QA,‘T = Q(A,r) = U Qaj,r'

: Jj=1
In this section, we prove the following.

Theorem 3.1. Let A = {a:,-};?__.l C C be such that a; # o fori # j.
Let p € C be such that d(p) > 1 and

k

Py = | [ (2 — ajw)".

i=1

Then |p| > 0 on C%\ Q4 for some r > 0 if and only if there exists
r > 0 such that

sup  |p(z, w)|
y ED(laj’,_)(w)
1m sup < o0
fwl—c0 jw| 4P

for every 1 < j < k.

To prove our theorem, we need some lemmas. For each fixed w, |w| >
1, let

Dy, - (w) = Dio, »(w) = {2 € C; |2 — ayu| <7},
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Dg, () = D, ry(w) = {¢ € G [¢ ~ o] < v/ Juwl},

ng,r(w) D(a nw) ={z € C|z — ojw| < rlul},
and
Dyr =D, ={C€CGI¢ — oy <1}
Then D (w) C D3, .(w) and the mappings

(3.3) Déj’r(w) dz—o(=z/we Dijyr(w),

(3.4) DS ,(w)3z—(=z/weDt,

are one to one and onto. It is not difficult to show the following.

Lemma 3.1. Let A = {a;}}_; C C be such that o; # o; fori # j and
r > 0. Then we have the following.
(i) For a large w, Dy, (w) N Dy, (w) =0 fori # j.
(i) If oy — aj] > 7o > 0, then fo'r a large w, D (w) C Da o(W)
and Dy, (w)N D3 . (w) =0.
(iii) Ifa € C \ 4, then for a large w, (aw,w) € C?\ Q4.
(iv) (z,w) € Qa, if and only if z € U;;l D, (w).

Lemma 3.2. Let A = {o;}5_; C C be such that o; # ; fori # j. Let
p € C be such that
k

Pd(p) = H(z — ajw)b.

j=1

Let ro > 0 be such that 2rg < rgéi.r.l{a,- — aj|. Then for each j with
177 ) .

1 < j <k, we have the following.

(i) For a large w, the function p({w,w)/w¥®) in ¢ has l;-zeros in
D3, ., counting multiplicites.

(ii) For a large w, the function p(z,w) in z has l;-zeros in Df, 7o(wW)
counting multiplicites. :

Proposition 3.1. Let A = {a;}j_; C C be such that o; # o for
t # j. Let p € C be such that

k
Pd(p) =HZ‘O‘J

Then for each j with 1 < j < k, we have the following.



(1)

If Ip| > 0 on C%\ Qg4 , for some r > 0, then for a large w the
function p(z,w) in z has l;-zeros in D})‘j’,(w) counting multi-
plicites for every 1 < j < k.

Conversely, for r > 0 and a large w, the function p(z,w)
in z has l;-zeros in D} r(w) counting multzplzcztes for every
1 <5< k then there exists ry > 0 such that |p| > 0 on
C2\ Qay, -

If Ip| > 0 on C%\ Qq, for some r > 0, then for a large w
the function p(Cw,w) in ¢ has lj-zeros in Df, +(w) counting
multiplicites for every 1 < j < k.

Conversely, for r > 0 and a large w, the function p(Cw,w)

in ¢ has lj-zeros in Df, ~(w) counting multiplicites for every

1 < j <k, then there exists ry > 0 such that |p| > 0 on
C2\ \ Qanr.

For R > 0, let

Br = {(z,w) € C% |2|*> + |w|* < R?*}.

Lemma 3.3. Let A = {a;}5_; C C be such that a; # o fori # j. Let
p € C be such that

k-1

Pagp) (2, w) = H(z — ajw)

j=1

and l; > 1 for every 1 < j <k —1. Then we have the following.

(1)

(i)

sup  |p(z, w)
e'D(lczk ) (w)

lim sup w0

jw|—o0

< 0.

lp] > 0 on Qq, » \ Br for some r,R > 0.

Remark 3.1. By the proof, if

k

pap = [ [(z — ayw)"

j=1
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and |p| > 0 on C?\ Q4,, then

sup  |p(z, w)|
2€D,, (@)

lim sup lw |d(p)—lj |

fw|—o0

< oQ.

If 1 > r, then C*\ Q4,, C C?\ Qu,, so that [p| > 0 on C?\ Qq,,.
Hence

sup  [p(z,w)|
y zED(laJ_!rl)(w)
im su < 00.
MR EORE
If ro <, then D} ., (w) C Dg_ .(w), so that
sup  |p(z,w)]
. GDEG‘jx"z)(w)
T <

Hence if |p| > 0 on C?\ Qg4 for some r > 0, then

sup  |p(z, w)|

zeD(la " (w)

|w{d(p)—lj

lim sup

|w|—o0

< 00.

for every r > 0.

4. LEADING TERMS

The following is the main theorem in this section.

‘Theorem 4.1. Let A = {o;};_; C C be such that o; # o fori # j.
Further we assume that a; # 0 for every j. Let p € C be such that
d(p) = 1. Then the following conditions are equivalent.

(i) p has a leading term pyy,) such that pap) € Ca.

(ii) There exist c1,ca > 0 such that ¢; < |p/pawp)| < c2 on C*\ Qa4
for some r > 0.

(iii) |p| > 0 on C*\ Q4. for some r > 0.

5. PARTIAL ORDER IN HOL(C?)

Let A = {o;}5_; C C be such that oy # o; for i # j. For

f,g € Hol(C?), we write f <4 g if |f| < Mlg| on C?\ Q4 for some
M,r > 0. Then Hol(C?) is a partially ordered set Wlth <4. First we
prove the following theorem.



Theorem 5.1. Let A = {a;}¥_; C C be such that o; # oy for i # j.
Let p,q € C(C?) be such that p,q do not have common factor. Then
q 24 p if and only if pap) € Ca, p K Pap), and ¢ K Py(p)-

To prove our theorem, we need some lemmas. In [2], Chen, Guo,
and Hou proved the following.

Lemma 5.1. Let f,g € Hol(C). Then |f(2)| < Mlg(z)| on {|z| > r}
for some r, M > 0 if and only if there exist p, g € C(C) with d(q) < d(p)
such that f/g = q/p.

In [6], Guo proved the following.

Lemma 5.2. Let f(z,w) be in the Nevanlinna class on the polydisk
D?. Suppose that the slice function f(,.)(A) = f(Az, Aw) is rational in
A for almost all (z,w) € T?. Then f is a rational function.

Lemma 5.3. Let f = q/p be a rational function, where p and q have
no common factor. If f is analytic in Q C C?, then Z(p) N Q = 0.

The following is the main theorem in this section.

Theorem 5.2. Let A = {a;}5_; C C be such that a; # o for i # j.
Let f,g € Hol(C?). Then f <4 g if and only if there exist p,q € C such
that /9 = q/p, Paw) € Ca, P < Pa), and ¢ <K Pa)-

6. UNITARY TRANSFORMATIONS

In Sections 2-5, we studied the case Iy = 0 in (1.1) In this section,
we study the case lp # 0. Let A = {o;}*_; C C be such that o; # o;

for i # j. Let C4 be the set of p € C such that

k
p(z,w) = aw® H(z —aw)¥, a€C
j=1

and :
| QA,,,‘ = Q(A‘,.) = {(Z,’U)) € Cz; l'U)I < ’I"} U QA,r
for r > 0. For each a € C with a # 0, let

Ao = {2z}
1+aaj Jj=1
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and

Aa:{%_v ajta }k
| a 1+ aa;)j=1
For a € C, let

() =5() = 7 (2 1) ()

Then U, is a unitary transformation on C2. If p € C, then po U, is a
polynomial in variables u and v. It is not difficult to show the following.

Lemma 6.1.
) Ut=U_q -
(ii) d( y=d(poU,) forp eC.
(i) Let pe Cr and g € C. If g < p, then qo U, <<poU
(iv) Let p € C. Then p has a leading term py(p if and only if po U,
has a leading term (p o Uy)a(p).-
(v) If a # 0, then

U7 ({(z,w); lw| < r}) = Q(
(vi) If @B # —1, then
U;lﬂ.rzﬂ —a ryl4]a :
(02r) = e T
(vil) If aa; # —1 for every 1 < j < k, then p € C4 if and only if

, polU, €Ca,, and p € Ca if and only if poUs € Cy_.
(Viii) CAQOU_Q ——-CA.

\/H_af)

[A]

Qttl-

Applying Lemma 6.1, we give generalizations of results proved in the
previous sections. The following is a generalization of Theorem 2.1.

Theorem 6.1. Let p € éA be such that
p(z,w) = w" H(Z - oW

Let g € C and q = Zf(%) g; be the homogeneous ea:pahsion of ¢ with
d(g;) =1 if ¢ #0. Then g K< p if and only if d(q) < d(p) and
: k
Qap)-i = ¢ W [ (2 — ajw) b+
Jj=1



for every ¢ with 0 < i < max l; and ¢’ € Cy.
0<j<k

Corollary 6.1. Let p € C4 be such that

k

p(z,w) = w' H(Z — ajw)lj

j=1

and l; <1 for every 0 < j < k. Then py K p for every p; € C with
d(p1) < d(p).

Corollary 6.2. Letp € C A be such that

k
p(z,w) = wh H(z — ajw)l.
j=1

Then p, <K p for every py € C with degp, < degp — Orgagilj.
SRS

The following theorem shows the most easy way to check whether
q <X p or not.

Theorem 6.2. Let p € C4 be such that

k

p(z,w) = w' H(z — ojw)"

j=1

and let ¢ € C. Then q¢ < p if and only if d(q) < d(p) and the following
three conditions hold.

(1) dz(q) < d(p) - bo. |
(ii) If ajo = O for some jo,1 < jo < k, then dy(q) < d(p) — L.
(iii) Suppose that oy, # 0,1 <m < k. Thend,(qoUy,,) < d(p)—ln.

The following is a generalization of Theorem 3.1.

Theorem 6.3. Let p € C4 be such that d(p) > 1 and

k

Pap) (2, w) = wh H(z — ajw)l.
j=1
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Then |p| > 0 on C?\ Qa, for some r > 0 if and only if there evists
r > 0 such that

sup  |p(z, w)|
zED(laj‘r) (w)

lim sup MER=

lw}—o00

for every 1 < j <k, and
sup |p(z, w)|

|wj<r

lim sup 2P

2|00

< ©0.

The following is a generalization of Theorem 4.1 and [8, Proposition
2.4].

Theorem 6.4. Let p € C be such that d(p) > 1. Then the following
conditions are equivalent.
(i) p has a leading term pyep) such that pyyp) € Ca.

(i) There ezist c1,co > 0 such that ¢ < |p/pa)| < cz on C?\ 9) Ar
for some r > 0.

(iii) |p| > 0 on C2\ Qa, for somer > 0.

For f,g € Hol(C?), we write f <4 g if |f] < M|g| on C%\ Q,, for
some M,r > 0. The following is a generalization of Theorem 5.1.

Theorem 6.5. Let p,q € C be such that p,q do not have common
factor. Then g <4 p if and only if pap) € Ca, P K Pagy, and ¢ K Py(p)-

The following is a generalization of Theorem 5.2 ang [8, Theorem -

2.5].

Theorem 6.6. Let f,g € Hol(C?). Then f %4 g if and only if there
exist p,q € C such that f/g = q/p, Paw) € Ca, P K Pd(p), and ¢ K Pa(y)-

Combine with Theorems 6.3 and 6.4, we have the following.

Corollary 6.3. Let p € C be such that d(p) > 1. Then the following
conditions are equivalent.

(i) p has a leading term pq(p) such that pay) € Ca.
(ii) |p| > 0 on C?\ Q4 for some r > 0.
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(iil) pagp) € Ca and there ezist c1,cy > 0 such that c1 < |p/Pap)| < c2
on C%\ QA,T for some r > 0.

(iv) pa) = awb(z — ayw)'(z — aw)2 - -+ (z — agw)**, a # 0, and
there exists r > 0 such that

sup  |p(z, w)|
zED%ﬂj,r) (w)

lim su < 00
le_mp [w[d@5
for every 1 < j <k, and
sup |p(z, w)]
lim su fwl<r o0
|z|—-*oop lzld(p)—lu .

7. QUASI-INVARIANT SUBSPACES

Let p € C. If p < pq(p) holds, we say that p has a leading term py(p).
It is not known whether [p] = pC is quasi-invariant for every p € C. It
is known that if p € Cp, then [p] is quasi-invariant, see [1, Propoisition
5.5.1]. In Theorem 4.4 of [8], Guo and Hou proved that if p € C has
a leading term z™w", then [p] is quasi-invariant. The following is the
main theorem in this section.

Theorem 7.1. Let p € C be having a leading term pyp). Then we have
the following.

(1) [pl/p = [Paw))/Paw)-

(ii) [p] s quasi-invariant. v
(i) [p] = {pf € L3(C?):;f € Hol(C)} = {pf € LACHif €
Li(C)}. |
Recall that
Qo = {(z,w) € C?|z — aw| < 7}
for « € C and 7 > 0. Then Qp, = {(z,w); |2] < r}. For R >0, let
Qorr = Qorr = {(z,w) € C%|2| < r,|w| > R}.

Note that Qg0 = Qo . For a subset {2 of C? let

IFI2 = /Q £ (2, w)2e 5L 4 A(2, w) /(2 )2,

As the proof of Theorem 3.1 in [8], we have the following.
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Lemma 7.1. Let ry,72,73 > 0 and 1 < ro. Then there exists a
constant C > 0, depends on ry,r9, and r3, such that

”fHQO,rz S C”f“(Q(O,rz,r3)\Q(0,r1,r3))
for every f € Hol(C?).

Recall that Uy, a € C, are unitary transformations of C?;

() =5) -7 (= 1) C)

It is easy to see the following.

Lemma 7.2.

@) [Iflle = lIfo Ua“U;‘Q = |If o U v,a for Q@ C C? and f €
Hol(C?).

(i) Ua(Qar) = Lo, /17am) |
(iii) Q(o ) C Ua(Qar \ B:), where By = {(z,w); |2|* + |w|* <

t}.

Lemma 7.3. —it For o € C,ry > 71 > 0, and ¢t > 0, there exists a
constant C > 0, depends on 71,79, and ¢, such that

I fllRar, < CllFIl(Qars\@ar UBe)
for every f € Hol(C?).

Recall that A = {o;}5_; CC, a; # o; for i # j, and

k
Qar = U Qq,;r and QA,,. = {(z,w);|w| < r}UQsr
i=1 -

for r > 0. The following lemma is not difficult to prove.

Lemma 7.4. For oo € C and r;y > r > 0, there exists a larget > 0
such that

(Qaim \ (Qai,r U Bt)) N (Qaj,n \ (Qa,-,r U Bt)) = (b

fori+# 3 and
Qujm \ (Qoyr U By) € CP\ Qo
for every 1 < j < k.
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Proposition 7.1. Let A = {a;}}_; C C be such that o; # «a; for
i # j. Then for each r > 0, there ezists a constant C > 0, depends on
r, such that C||f|| < ||fllca\q,, for every f € Hol(C?).

Corollary 7.1. Let A = {a;}5_, C C be such that o # o; for i # j.
Then for each v > 0, there exists a constant C > 0, depends on r, such
that C||fl| < |fllcava,, < IfIl for every f € Hol(C?).

The following is a generalization of [8, Theorem 3.1].

Corollary 7.2. Let f,g € Hol(C?). If f <45 g and g € L2(C?), then
f e Li(C?). |

By Corollary 6.1 and Theorem 7.1, we have the following.

Corollary 7.3. Let p € C. If pap) = aw(z — qqw) - -+ (2 — oqw) and
a; # oy for i # j, then [p] is quasi-invariant.

Corollary 7.4. Let p € C be having a leading term paey. Then there
exists a similar module map T from [pay)] onto [p] such that Tf =

(f)/Paw) for f € [paw))-

- 8. QUASI-SIMILARITY

If p € C is a polynomial with the leading term py(y), then by Corollary -

7.4 [p] and [pqg(y)] are similar. The following is the main theorem in this
section and a generalization of [8, Theorem 4.7].

Theorem 8.1. Let M be a quasi-invariant subspace of L2(C?). Let
p € Cp, be a homogeneous polynomial. Then [p] and M are quasi-similar
if and only if M = [q] for some q € C having the leading term p.

To prove this, we need some lemmas. The following is proved by
Guo and Hou (8, Lemma 4.6)].

Lemma 8.1. Let My, M, be quasi-invariant subspaces of L3(C?). Let
T be a quasi-module map from M, to M,. Suppose that p € C N M,
and p # 0. Let ¢ = Tp. Then q is a polynomial, d,(q) < d.(p), and
du(q) < du(p).

Similarly, we have the following.
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Lemma 8.2. Let M,, M, be quasi-invariant subspaces of L2(C?). Let
T : M; — M, be a quasi-module map. Suppose that p € C N My and
p#0. Let ¢ =Tp. Then q is a polynomial and d(q) < d(p).

The following lemma is obvious. To clear our argument, we give
here.

Lemma 8.3. Let p € C, and ¢ € C. Then q has a leading term
ap,a € C,a # 0, if and only if d(q) = d(p) and ¢ K p.

For a € C, let

()=o) =7 (L 1) 0)

and we use the same notations as in Section 6. Let M;, M, be quasi-
invariant subspaces of L2(C?) and

M,—an={fan(Z);feM,:}.

Then it is not difficult to see that M;o U, is quasi-invariant in variables
u and v. Let Cy, be the unitary operator from M; onto M;oU, defined

by
Co.n)(2) = roun(2).

Let T : M; — M; be a quasi-module map. Then we have a map
M; o U, 3 g(u,v) — C’UQTC(}'Q1 € MyoU,.

It is also not difficult to see that CUQTC’EC} is a quasi-module map.

Corollary 8.1. Let M be a quasi-invariant subspace, and let p €
C be having a leading term pyyp). Then the following conditions are
equivalent.
(i) M is similar to [p]. |
(ii) M 1is quasi-similar to [p].
(i) M = [q] for some q € C having a leading term pyy).
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