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On rational torsion points of central Q-curves
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1 Introduction

Let E be an elliptic curve over a number field k& of degree d. Let E(k) be
the group of k-rational points on E and let Eyors(k) be its torsion subgroup.
When k is the rational number field Q, Mazur [12] shows that Eiors(Q) is
isomorphic to one of 15 abelian groups. Kunku-Momose [10] and Kamienny
[9] generalize the result of Mazur to the case where k is a quadratic field.

Assume that the degree d is greater than one. Then Merel [15] shows that
each prime divisor of the order §E;.s(k) is less than d34*. Merel’s bound is
effective, but it is large.

In this paper we discuss about prime divisors of the order #Eiors (k) in
case where we restrict E to a central Q-curve over a polyquadratic field k.
Our results assert that each prime divisor of §F;.rs(k) is less than or equal
to 13 or that it belongs to a finite set of prime numbers depending on k.

In Section 2, we review some known results on Eiors(k). In Section 3,
we give the definition of central Q-curves and we introduce our results. In
Sections 4-6, we give outline of proofs of our results.

2 Known Results

Let E be an elliptic curve over a number field k. Let E(k) be the group
of k-rational points on E.

Theorem 2.1 (Mordell-Weil Theorem). The group E(k) is a finitely gen-
erated abelian group. Specially, E;ors(k) is a finite abelian group.

When k is equal to either Q or a quadratic field, the group structure of
Eiors(k) is completely determined.

Theorem 2.2 (Mazur [12]). Assume that k is equal to Q. Then the group
Eors(Q) is isomorphic to one of the following 15 abelian groups.

Z/NZ (1< N <10, N=12)
Z/2Z x Z/2NZ (1< N < 4)
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Specially, each prime divisor of §E;..s(Q) is less than or equal to 7. For
each group G in Theorem 2.2, Kubert [11] gives a defining equation param-
eterizing elliptic curves F such that Ei,.s(Q) contains G. For example, if
Ei0rs(Q) contains Z/6Z, E is isomorphic to

y? 4+ (1 = s)zy — (s> + 8)y = 2° — (s* + )2

for some s in Q such that A = s5(s +1)3(9s + 1) # 0. Then the point (0, 0)

is of order 6. | |

. The existance of an elliptic curve over Q with a Q-rational torsion of order
N is equivalent to that of a non-cuspidal Q-rational point of the modular

curve X;(N).
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Theorem 2.3 (Kenku-Momose [10], Kamienny [9]). Let k be a quadratic

field. Then the group Eiors(k) is isomorphic to one of the following 25 abelian

groups.
Z/NZ (1< N <14, N =16,18)

Z/2Z x Z/2NZ (1< N £ 6)
Z/3Z x Z/3NZ (N =1,2) (k=Q(v-3))
Z/4Z x Z/4Z (k= Q(v/-1)) . |
Specially, each prime divisor of §E;ors(k) is less than or equal to 13. For
elliptic curves over number fields of degree greater than two, there exist some
reuslts on the group structure of E(k)srs under some conditions (cf. e.g. [6],
[21]).
Merel [15] obtains an effective upper bound for prime divisors of §E¢or, (k)
depending only the degree d of k over Q.

Theorem 2.4 (Merel [15]). Let k be a number field of degree d > 1. Each
prime divisor of §Ezors(k) is less than d°.

Theorem 2.4 implies the following corollary (cf. e.g. [2]), what is called,
the universal boundness conjecture.

Corollary 2.5. Let d be a positive integer. Then there exists a constant Cy
depending only on d such that §E;.rs(k) < Cy for any number field k of degree
d and for any elliptic curve E over k.

3 Our Results

The Merel’s bound d3¢° is effective, but it is large. For example, when d = 2,
we have d3¢" = 212 = 4096. We want to improve Merel’s bound in case where
we restrict F to central Q-curves.



Definition 3.1. We call a non-CM elliptic curve E over Q a Q-curve if
there exists an isogeny ¢, from °E to E for each o in the absolute Galois
group Gg of Q. Furthermore, we call a Q-curve E' central if we can take an
isogeny ¢, with square-free degree for each o in Gg.

Let X§(N) be the quotient curve of the modular curve Xo(N) by the
group of Atkin-Lehner involutions of level N. Let 7 be the natural projection
from Xy(N) to X§(IN). The isomorphism classes of central Q-curves are
obtained from 7~!(P) where P is a non-cuspidal non-CM point of X§(N)(Q)
and N runs over the square-free integers.

Theorem 3.2 (Elkies [3]). Each Q-curve is isogenous to a central Q-curve
- defined over a polyquadratic field.

Let E be a central Q-curve. As below in this paper we always assume
that E is defined over a polyquadratic field k of degree 2¢ and that ¢, = &,
if and only if o = 7.

Since F is a central Q-curve, there exists an isogeny ¢, from °E to E
with square-free degree d, for each o in Gg. We put |

c(o,7) = ¢:°¢-¢; for each 0,7 in Gg. (1)

T

Then a mapping c is a two-cocycle of GQ with va.lues in Q*. By taking
the degree of both sides, we have ¢(o, 7') = d,d,d;}. Since it follows from
H'(Gq, Q") = {1} that there exists a mapping 3 from Gq to Q such that

c(a, 7) = B(0)B(7)B(c7)™" for each o, 7 in Gy, (2)
we see that |
do
(o) = o ®

is a character of Gg. We obtain:

Theorem 3.3. If a prime number N divides ﬁEms(k) then N satisfies at
least one of the following conditions. ,

i) N <13,
(i) N=2m*241, 3.2™*2+1 for somem < d.

(iii) € is real quadratic and N divides the generalized Bernoulli number By .
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The condition (iii) depends on the definition field k of E. If the scalar
restriction of E from k to Q is of GLy-type with real multiplications, we have
e = 1 and thus N is bounded by the constant depending only on the degree

of k.
Furthermore, under the assumption that each d, divides fE;ors(k), We

completely determine the square-free divisor of Eyors(k).

Theorem 3.4. Assume that each d, divides §E¢,.,(k). Let N be the product
of all prime divisors of §Eiors(k). Then [k : Q] and N satisfy the following.

[k : Q] N
1 1,2,3,5,6,7,10
2 2,3,6,14
4 , 6
> 8 empty

We note that each case in the above list occurs. Specially, there is a family
of infinitely many Q-curves with rational torsion points corresponding to each
element in the above list except for N = 14. In the case of [k : Q] =1 it is
given by Kubert [11]. In the case of [k : Q] = 2 and N = 2,3 it is given by
Hasegawa [5]. For example, when [k : Q] = 4 and N = 6, E is isomorphic to

y? + (1 —8)zy — (8% + 8)y = 2% — (s* + s)z?

s = 1—12(\/5+ V4 +a)(3va+ v4 + 9a)

for a in Q such that A = s8(s +1)3(9s + 1) # 0.
When N = 14, there is only one Q-curve corresponding to the above list.
More precisely, k = Q(+/—7) and F is defined by the global minimal model:

¥+ 2+ V-TNzy+ 5+ V-Ty=2*+ (6 +V-T)z*.

Furthermore E is a Q-simple factor of J3**(98) and there exists an isogeny
of degree 2 between E and its non-trivial Galois conjugate curve.

Let 7 be the natural projection from X;(N) to X§(N) via Xo(N). Each
element in the list of Theorem 3.4 corresponds to the existance of a non-
cuspidal non-CM point of X3 (N)(k) X x, 1)@ 7™~ X¢(M)(Q), where M is the
least common multiple of d,, which is a divisor of N by the assumption of
Theorem 3.4.
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4 Central Q-curves over polyquadratic fields

Let notations and assumptions be the same as in the previous section. We
denote the group of N-torsion points on E by E[N]. We take a Z/NZ-basis
{Q1, @} of E[N] such that Q; is k-rational. Let G be the Galois group of k
over Q.

If Q, is in the kernel of ¢, for some o in Gg, we can see that the N-th
root (y of unity is in the definition field of ¢,. Thus we have:

Proposition 4.1. If N divides d, for some o in Go, then N is either 2 or
3. :

As below we assume that N > 3. Then Q; is not in the kernel of ¢, for
any o in Go. Using the fact that ¢, induces the isomorphism from ? E[N] to
E[N], we have Propositions 4.2 and 4.3.

Proposition 4.2. ¢, is defined over k for each o in Gg. Specially, E is
completely defined over k.

Proposition 4.3. The 2-cocycle ¢ is symmetric. That is, ¢(o,7) = ¢(7,0)
for each o, T in Gg.

Since ¢ is symmetric and G is commutative, we may consider that 3 is a
mapping from G to Q@ (cf. e.g. [7]). By (3) the character ¢ is either trivial
or quadratic. Since we can see ¢,’ ¢, = £(0)d,, we have:

Proposition 4.4. The character € is even, that is, e(p) = 1, where p is the
complex conjugation.

We denote by F the extension of Q adjoining all values B(c). Since
B(o) = £+/e(0)ds, F is a polyquadratic field. We denote by A the scalar
restriction of E from k to Q. Since E is a central Q-curve completely defined
over k, A is an abelian variety of GL,-type with End%A = F. By using the
isomorphisms l-adic (M-adic) Tate modules, Vi(4) = ®,;Va(A) and Vi(4) =
®regVi("E), we have:

Proposition 4.5. Let k. be a field corresponding to the kernel of €. If E is
semistable, k is an unramified extension of k..

By the definition of the scalar restriction, A(Q) and E(k) are bijective.
Since (x is not in k, the group of k-rational N-torsion points on E must be
(Q;). Thus A has the unique Q-rational N-torsion group (R;). There exists
the unique prime X of F' dividing N such that R; is in A[)].

Proposition 4.6. k(E[N]) = k(A[X]).
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For 7 in Gg we have

1 *
TR ,R = |R ’ R y
Rl = B[y o)
where x is the cyclotomic character modulo N. Thus k.(A[A])/k.({n) is an
ex " l-extension (cf. [8], p.547). By modifying Herbrand’s Theorem (cf. e.g.
[20], p.101), we have:

Proposition 4.7. Ifk(E[N])/k({n) is unramified and N does not divide the
generalized Bernoulli number B, ., then k(E[N]) = k({n).

5 Proof of Thebrem 3.3

Throughout this section we always assume the following:
(i) N>13
(i) N#£2m24+1, 3-2m2 41
(iii) N1t B

In this section we give a proof of Theorem 3.3 by modifying the result of
Kamienny [8].

Let S be the spectrum of the ring of integers in k. Let p be a prime ideal
of k above a prime integer p.

Proposition 5.1. E is semistable over S.

Proof. Let k, be the completion of k at p and let O, be its ring of inte-
gers. Let E/o, be the Néron model of E, over Spec O,. By the universal
property of Néron models the morphism from Z/NZ, to E/x, extends to
a morphism from Z/NZ», to E;o, which maps to the Zariski closure in
Ejo, of Z/NZ, C Es,. This group scheme extension H,o, is a separated
quasi-finite group scheme over O, whose generic fibre is Z/NZ. Since it ad-
mits a map from Z/NZ,s, which is an isomorphism on the generic fibre, it
follows from that H,e, is a finite flat group scheme of order N. Since k is
polyquadratic and N is odd, the absolute ramification index e, over Spec Z
is equal to 1 or 2. Since e, is less than N — 1, by the theorem of Raynaud
[17, Cor. 3.3.6] we have H/p, = Z/NZ,0,. Therefore we shall identify H,e,
with Z/NZ/OP. .

Suppose that the component (E,)° is an additive group. Then the index
of (E),)° in E)y is less than or equal to 4. It follows that Z/NZ, C (Ej,)°.
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Thus, the residue characteristic p is equal to N. By Serre-Tate [18] there
exists a field extension k) /k, whose relative ramification index is less than or
equal to 6, and such that Ey; possess a semi-stable Néron model £/, where
O, is the ring of integers in k;,. Then we have a morphism ¢ from Eo, to
/0, which is an isimorphism on generic fibres, using the universal Néron
property of £0,. The mapping 9 is zero on the connected component of the
special fibre of Eo; since there are no non-zero morphisms from an additive
to a multiplicative type group over a field. Consequently, the mapping
restricted to the special fibre of Z/NZo, is zero. Using Raynaud [17, Cor.
3.3.6], again, we see that this is impossible. Indeed, since k is polyquadratic
and N is odd, the absolute ramification index of k/ is less than or equal to
12, which leads to a contradiction to the assumption N — 1 > 12. O

Proposition 5.2. Assume that p is neither 2 nor 3. Then p a multiplicative
prime of E. Furthermore the reduction (), does not specialize mod p to

(E/p)o-

Proof. If p is a good prime of E, then E), is an elliptic curve over O/p
containing a rational torsion point of order N. By the Riemann hypothesis
of elliptic curves over the finite field O/p, N must be less than or equal to
(1+ p%#/2)2, where f, is the degree of residue field. Since k is polyquadratic,
we have f, = 1,2. Thus we have (1+p”#/2)? 2 16. Since N is prime, N > 17
follows from the assumption N > 13. Hence this is impossible, and E has
multiplicative reduction at p. 4

Suppose that @, specialize to (E/,)°. Over a quadratic extension k of
O/p we have an isomorphism E/; & Gp,/k, so that N divides the cardinality
of k*. Since it follows from f, = 1,2 that the cardinality of ¥* is one of
3,8,15,80, this is impossible by the assumption N > 13. O

The pair (E, (Q;)) defines a k-rational point on the modular curve Xo(N)q.

If p# N, we denote by /, the image of z on the reduced curve Xo(N)/0,/p)
When p is a potentially multiplicative prime of F, we know that z,, = oo,
if the point ); does not specialize to the connected component (E‘/,i,)0 of the
identity (cf. [8], p.547).

We denote Jo(NN) g the jacobian of Xo(N)q. The abelian variety Jo(N)
is semi-stable and has good reduction at all primes p # N ([1]). We denote by
J/q the Eisenstein quotient of Jy(V),q. Then Mazur [13] shows that J(Q) is

finite of order the numerator of (N —1)/12, which is generated by the image

of the class 0 — oo by the projection from Jo(N) to J

Proposition 5.3. Assume that N is not of the form 2™2 41, 3-2m+2 41,
If p is any bad prime of E, then Q, does not specialize to (E),)°.
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Proof. Define a map g from Xo(N)(k) to Jo(N)(Q) by g(z) = 3_,eq “T—d 00,
where d := [k : Q). Let f be the composition of g with the projection A from
“Jo(N) to J. Then f(z) is a torsion point, since J(Q) is a finite group and
f(z) is Q-rational. By Proposition 5.2 we have “z/, = 0oy, for each o and p
dividing 2, so we have

f@)p = h(}: “zpp —d-0op) =0,
oeCG
so f(z) has order a power of 2. However, f(z), = 0 for p dividing 3 by the
same reasoning. Thus, f(x) has order a power of 3, and so f(z) = 0.

If p is a bad prime of E which Q; does not specialize to (E)°, then
z/, = 0y,. By Proposition 5.2 we may assume that the residue characteristic
pis not 2, 3 or N. Since F is a Q-curve completely defined over k, we have
’x, = 0, for each o. Thus,

f(@)e =h(>_ s —d-00s) = h(d(0 ~ 00)) .
oce@
Since k(0 — oo) is Q-rational point, the order of A(0 — oo) divides d. Since
the order of (0 — o0) is equal to the numerator of (N —1)/12, N is of the
form 2™+2 4+ 1, 3-2™+2 + 1, which is impossible by the assumption. = U

Proposition 5.4. k(E[N])/k({n) is everywhere unramified.

Proof. If E has good reduction at p and p # N, then k(E[N])/k((n) is
unramified at the primes lying above p (cf. Serre-Tate[18]).

If E has good reduction at p and p = N, then E[N] is a finite flat group
scheme over ©,. Then there is a short exact sequence of finite flat group

schemes over O,:
0 —Z/NZ — E[N]— un — 0.

However, E[N] also fits into a short exact sequence
0 — E|N]° = E[N] = E[N]¥* -0,

where E[N]° is the largest connected subgroup of E[N] and E[N 1 is the
largest étale quotient (cf. [14], p.134-138). Clearly we have E[N]® = uy, and
this gives us splitting of the above exact sequences. Since [k(E[N]) : k((n)]
divides N, the action of the inertia subgroup for p in G, on E[N] is trivial.
Namely, k(E[N])/k(¢{n) is unramified at the primes lying above p.

Assume that F has bad reduction at p. Since Jo(NN) is semistable , E[N],
is a quasi-finite flat group scheme over O, (cf. [4]), and fits into a short exact

sequence
0 - Z/NZ — E[N] = Ty — 0,
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where Jiy is a quasi-finite flat group with generic fibre isomorphic to pun.
Since @, does not specialize to (E/,)°, we see that the kernel of multiplication
by N on (E),)° maps injectively to fiy. Thus, fiy is actually a finite flat group
scheme. If p # N, then E[N] is étale, and so k(E[N])/k({nx) is unramified
at the primes above p. If p= N, then uy = iy by Raynaud [17, Cor. 3.3.6]
and ey <2 < N — 1. We see that E[N]/0, = Z/N & uy, so k(E[N])/k((n)
is unramified at the primes above p. 0

By Propositions 4.7 and 5.4, we see that k(E[N]) = k({nx). Thus (Q) is
k-rational.

Proposition 5.5. The quotient curve E/(Q,) is again a central Q-curve
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over k with N-rational torsion point. Furthermore the image of @1 is N-

rational point of E/(Q2) and

°E %, E

*(B/Q)) - E/<¢Q2)
(51@0)

Proof. Since (Qs) is k-rational, the quotient curve E/(Qs) is a Q-curve over
k. We show that ¢,(°Q:) C (Qs). We may put ¢,(°Qz) = aQ1 + bQ2.
Since @, is k-rational, ¢;("°Qs) = aQ; + b™Q, for each 7 € Gy. Since (Q2)
is k-rational, a # 0 implies "Q; = @, and thus k(E[N]) = k. Since k is
polyquadratic and N > 3, this leads to contradiction.

Since ¢, (°Q,) C (Q,), we have the above diagram. Specially E/(Q2) is
again central Q-curve. O

Proof of Theorem 3.3. By Proposition 5.5 we get a sequence central
Q-curves over k

E - EO o E® — EO® -

each obtained from the next by an N-isogeny, and such that the original
group Z/NZ maps isomorphically into every EU). '

It follows from Shafarevic theorem that among the set of EV) there can
be only a finite number of k-isomorphism class of elliptic curve represented.
Consequently, for some indecies j > j' we must have EV¥) & EU). But EG)
maps to EU") by nonscalar isogeny. Therefore EV) is a CM elliptic curve and
so is E. This contradicts to the assumption that E is non-CM. O



6 Proof of Theorem 3.4

We recall that each element in the list of Theorem 3.4 corresponds to exis-
tance of a non-cuspidal non-CM point of X1(N)(k) x x,1yq) 7~ X3 (M)(Q).
By Proposition 4.1 we have M = 2,3. By using Theorem 3.3 and Proposi-
tion 4.5 we see that each divisor of N less than or equal to 13. Thus there
are only finite couples (N, M) such that X1(N)(k) X x, 1)@ 7' X5(M)(Q)
has a non-cuspidal non-CM point. For such (N, M), by computing defin-
ing equations, we check whether there is a non-cuspidal non-CM point of

X1 (N)(k) X xoy@ ™ X5 (M)(Q) or not.
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