On rational torsion points of central Q-curves

Fumio Sairaiji (Hiroshima International University) Takuya Yamauchi¹ (Hiroshima University)

1 Introduction

Let E be an elliptic curve over a number field k of degree d. Let E(k) be the group of k-rational points on E and let $E_{tors}(k)$ be its torsion subgroup. When k is the rational number field \mathbb{Q} , Mazur [12] shows that $E_{tors}(\mathbb{Q})$ is isomorphic to one of 15 abelian groups. Kunku-Momose [10] and Kamienny [9] generalize the result of Mazur to the case where k is a quadratic field.

Assume that the degree d is greater than one. Then Merel [15] shows that each prime divisor of the order $\#E_{tors}(k)$ is less than d^{3d^2} . Merel's bound is effective, but it is large.

In this paper we discuss about prime divisors of the order $\#E_{tors}(k)$ in case where we restrict E to a central Q-curve over a polyquadratic field k. Our results assert that each prime divisor of $\#E_{tors}(k)$ is less than or equal to 13 or that it belongs to a finite set of prime numbers depending on k.

In Section 2, we review some known results on $E_{tors}(k)$. In Section 3, we give the definition of central Q-curves and we introduce our results. In Sections 4-6, we give outline of proofs of our results.

2 Known Results

Let E be an elliptic curve over a number field k. Let E(k) be the group of k-rational points on E.

Theorem 2.1 (Mordell-Weil Theorem). The group E(k) is a finitely generated abelian group. Specially, $E_{tors}(k)$ is a finite abelian group.

When k is equal to either \mathbb{Q} or a quadratic field, the group structure of $E_{tors}(k)$ is completely determined.

Theorem 2.2 (Mazur [12]). Assume that k is equal to \mathbb{Q} . Then the group $E_{tors}(\mathbb{Q})$ is isomorphic to one of the following 15 abelian groups.

$$\mathbb{Z}/N\mathbb{Z} \qquad (1 \le N \le 10, \ N = 12) \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z} \quad (1 \le N \le 4)$$

¹The auther is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

Specially, each prime divisor of $\#E_{tors}(\mathbb{Q})$ is less than or equal to 7. For each group G in Theorem 2.2, Kubert [11] gives a defining equation parameterizing elliptic curves E such that $E_{tors}(\mathbb{Q})$ contains G. For example, if $E_{tors}(\mathbb{Q})$ contains $\mathbb{Z}/6\mathbb{Z}$, E is isomorphic to

$$y^{2} + (1 - s)xy - (s^{2} + s)y = x^{3} - (s^{2} + s)x^{2}$$

for some s in \mathbb{Q} such that $\Delta = s^6(s+1)^3(9s+1) \neq 0$. Then the point (0,0) is of order 6.

The existance of an elliptic curve over \mathbb{Q} with a \mathbb{Q} -rational torsion of order N is equivalent to that of a non-cuspidal \mathbb{Q} -rational point of the modular curve $X_1(N)$.

Theorem 2.3 (Kenku-Momose [10], Kamienny [9]). Let k be a quadratic field. Then the group $E_{tors}(k)$ is isomorphic to one of the following 25 abelian groups.

$$\begin{array}{ll} \mathbb{Z}/N\mathbb{Z} & (1 \leq N \leq 14, \ N = 16, 18) \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z} & (1 \leq N \leq 6) \\ \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3N\mathbb{Z} & (N = 1, 2) \quad (k = \mathbb{Q}(\sqrt{-3})) \\ \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} & (k = \mathbb{Q}(\sqrt{-1})) \end{array}$$

Specially, each prime divisor of $\#E_{tors}(k)$ is less than or equal to 13. For elliptic curves over number fields of degree greater than two, there exist some reuslts on the group structure of $E(k)_{tors}$ under some conditions (cf. e.g. [6], [21]).

Merel [15] obtains an effective upper bound for prime divisors of $\#E_{tors}(k)$ depending only the degree d of k over \mathbb{Q} .

Theorem 2.4 (Merel [15]). Let k be a number field of degree d > 1. Each prime divisor of $\sharp E_{tors}(k)$ is less than d^{3d^2} .

Theorem 2.4 implies the following corollary (cf. e.g. [2]), what is called, the universal boundness conjecture.

Corollary 2.5. Let d be a positive integer. Then there exists a constant C_d depending only on d such that $\#E_{tors}(k) < C_d$ for any number field k of degree d and for any elliptic curve E over k.

3 Our Results

The Merel's bound d^{3d^2} is effective, but it is large. For example, when d = 2, we have $d^{3d^2} = 2^{12} = 4096$. We want to improve Merel's bound in case where we restrict E to central Q-curves.

Definition 3.1. We call a non-CM elliptic curve E over \mathbb{Q} a \mathbb{Q} -curve if there exists an isogeny ϕ_{σ} from ${}^{\sigma}E$ to E for each σ in the absolute Galois group $G_{\mathbb{Q}}$ of \mathbb{Q} . Furthermore, we call a \mathbb{Q} -curve E central if we can take an isogeny ϕ_{σ} with square-free degree for each σ in $G_{\mathbb{Q}}$.

Let $X_0^*(N)$ be the quotient curve of the modular curve $X_0(N)$ by the group of Atkin-Lehner involutions of level N. Let π be the natural projection from $X_0(N)$ to $X_0^*(N)$. The isomorphism classes of central Q-curves are obtained from $\pi^{-1}(P)$ where P is a non-cuspidal non-CM point of $X_0^*(N)(\mathbb{Q})$ and N runs over the square-free integers.

Theorem 3.2 (Elkies [3]). Each \mathbb{Q} -curve is isogenous to a central \mathbb{Q} -curve defined over a polyquadratic field.

Let *E* be a central Q-curve. As below in this paper we always assume that *E* is defined over a polyquadratic field *k* of degree 2^d and that $\phi_{\sigma} = \phi_{\tau}$ if and only if $\sigma_{|k} = \tau_{|k}$.

Since E is a central Q-curve, there exists an isogeny ϕ_{σ} from ${}^{\sigma}E$ to E with square-free degree d_{σ} for each σ in $G_{\mathbb{Q}}$. We put

$$c(\sigma,\tau) = \phi_{\sigma}{}^{\sigma}\phi_{\tau}\phi_{\sigma\tau}^{-1} \quad \text{for each } \sigma,\tau \text{ in } G_{\mathbb{Q}}.$$
 (1)

Then a mapping c is a two-cocycle of $G_{\mathbb{Q}}$ with values in \mathbb{Q}^* . By taking the degree of both sides, we have $c(\sigma, \tau)^2 = d_{\sigma}d_{\tau}d_{\sigma\tau}^{-1}$. Since it follows from $\mathrm{H}^1(G_{\mathbb{Q}}, \overline{\mathbb{Q}}^*) = \{1\}$ that there exists a mapping β from $G_{\mathbb{Q}}$ to $\overline{\mathbb{Q}}$ such that

$$c(\sigma,\tau) = \beta(\sigma)\beta(\tau)\beta(\sigma\tau)^{-1} \quad \text{for each } \sigma,\tau \text{ in } G_{\mathbb{Q}}, \tag{2}$$

we see that

$$\varepsilon(\sigma) := \frac{d_{\sigma}}{\beta(\sigma)^2} \tag{3}$$

is a character of $G_{\mathbb{Q}}$. We obtain:

Theorem 3.3. If a prime number N divides $\#E_{tors}(k)$, then N satisfies at least one of the following conditions.

- (i) $N \leq 13$.
- (ii) $N = 2^{m+2} + 1$, $3 \cdot 2^{m+2} + 1$ for some $m \leq d$.

(iii) ε is real quadratic and N divides the generalized Bernoulli number $B_{2,\varepsilon}$.

The condition (iii) depends on the definition field k of E. If the scalar restriction of E from k to \mathbb{Q} is of GL₂-type with real multiplications, we have $\varepsilon = 1$ and thus N is bounded by the constant depending only on the degree of k.

Furthermore, under the assumption that each d_{σ} divides $\sharp E_{tors}(k)$, we completely determine the square-free divisor of $E_{tors}(k)$.

Theorem 3.4. Assume that each d_{σ} divides $\#E_{tors}(k)$. Let N be the product of all prime divisors of $\#E_{tors}(k)$. Then $[k:\mathbb{Q}]$ and N satisfy the following.

$[k:\mathbb{Q}]$	N
1	1, 2, 3, 5, 6, 7, 10
2	2, 3, 6, 14
4	6
≥ 8	empty

We note that each case in the above list occurs. Specially, there is a family of infinitely many Q-curves with rational torsion points corresponding to each element in the above list except for N = 14. In the case of [k : Q] = 1 it is given by Kubert [11]. In the case of [k : Q] = 2 and N = 2, 3 it is given by Hasegawa [5]. For example, when [k : Q] = 4 and N = 6, E is isomorphic to

$$y^{2} + (1 - s)xy - (s^{2} + s)y = x^{3} - (s^{2} + s)x^{2}$$
$$s = \frac{1}{12}(\sqrt{a} + \sqrt{4 + a})(3\sqrt{a} + \sqrt{4 + 9a})$$

for a in \mathbb{Q} such that $\Delta = s^6(s+1)^3(9s+1) \neq 0$.

When N = 14, there is only one Q-curve corresponding to the above list. More precisely, $k = \mathbb{Q}(\sqrt{-7})$ and E is defined by the global minimal model:

$$y^{2} + (2 + \sqrt{-7})xy + (5 + \sqrt{-7})y = x^{3} + (5 + \sqrt{-7})x^{2}.$$

Furthermore E is a $\overline{\mathbb{Q}}$ -simple factor of $J_0^{new}(98)$ and there exists an isogeny of degree 2 between E and its non-trivial Galois conjugate curve.

Let π be the natural projection from $X_1(N)$ to $X_0^*(N)$ via $X_0(N)$. Each element in the list of Theorem 3.4 corresponds to the existance of a noncuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1} X_0^*(M)(\mathbb{Q})$, where M is the least common multiple of d_{σ} , which is a divisor of N by the assumption of Theorem 3.4.

4 Central Q-curves over polyquadratic fields

Let notations and assumptions be the same as in the previous section. We denote the group of N-torsion points on E by E[N]. We take a $\mathbb{Z}/N\mathbb{Z}$ -basis $\{Q_1, Q_2\}$ of E[N] such that Q_1 is k-rational. Let G be the Galois group of k over \mathbb{Q} .

If Q_1 is in the kernel of ϕ_{σ} for some σ in $G_{\mathbb{Q}}$, we can see that the N-th root ζ_N of unity is in the definition field of ϕ_{σ} . Thus we have:

Proposition 4.1. If N divides d_{σ} for some σ in $G_{\mathbb{Q}}$, then N is either 2 or 3.

As below we assume that N > 3. Then Q_1 is not in the kernel of ϕ_{σ} for any σ in $G_{\mathbb{Q}}$. Using the fact that ϕ_{σ} induces the isomorphism from ${}^{\sigma}E[N]$ to E[N], we have Propositions 4.2 and 4.3.

Proposition 4.2. ϕ_{σ} is defined over k for each σ in $G_{\mathbb{Q}}$. Specially, E is completely defined over k.

Proposition 4.3. The 2-cocycle c is symmetric. That is, $c(\sigma, \tau) = c(\tau, \sigma)$ for each σ, τ in G_Q .

Since c is symmetric and G is commutative, we may consider that β is a mapping from G to $\overline{\mathbb{Q}}^*$ (cf. e.g. [7]). By (3) the character ε is either trivial or quadratic. Since we can see $\phi_{\sigma}{}^{\sigma}\phi_{\sigma} = \varepsilon(\sigma)d_{\sigma}$, we have:

Proposition 4.4. The character ε is even, that is, $\varepsilon(\rho) = 1$, where ρ is the complex conjugation.

We denote by F the extension of \mathbb{Q} adjoining all values $\beta(\sigma)$. Since $\beta(\sigma) = \pm \sqrt{\varepsilon(\sigma)} d_{\sigma}$, F is a polyquadratic field. We denote by A the scalar restriction of E from k to \mathbb{Q} . Since E is a central \mathbb{Q} -curve completely defined over k, A is an abelian variety of GL₂-type with $\operatorname{End}_{\mathbb{Q}}^{0}A = F$. By using the isomorphisms *l*-adic (λ -adic) Tate modules, $V_{l}(A) \cong \bigoplus_{\lambda \mid l} V_{\lambda}(A)$ and $V_{l}(A) \cong \bigoplus_{\tau \in G} V_{l}({}^{\tau}E)$, we have:

Proposition 4.5. Let k_{ε} be a field corresponding to the kernel of ε . If E is semistable, k is an unramified extension of k_{ε} .

By the definition of the scalar restriction, $A(\mathbb{Q})$ and E(k) are bijective. Since ζ_N is not in k, the group of k-rational N-torsion points on E must be $\langle Q_1 \rangle$. Thus A has the unique Q-rational N-torsion group $\langle R_1 \rangle$. There exists the unique prime λ of F dividing N such that R_1 is in $A[\lambda]$.

Proposition 4.6. $k(E[N]) = k(A[\lambda])$.

For τ in $G_{\mathbb{Q}}$ we have

$$^{ au}[R_1,R_2] = [R_1,R_2] \begin{bmatrix} 1 & * \\ 0 & arepsilon(au)\chi(au) \end{bmatrix},$$

where χ is the cyclotomic character modulo N. Thus $k_{\varepsilon}(A[\lambda])/k_{\varepsilon}(\zeta_N)$ is an $\varepsilon \chi^{-1}$ -extension (cf. [8], p.547). By modifying Herbrand's Theorem (cf. e.g. [20], p.101), we have:

Proposition 4.7. If $k(E[N])/k(\zeta_N)$ is unramified and N does not divide the generalized Bernoulli number $B_{2,\varepsilon}$, then $k(E[N]) = k(\zeta_N)$.

5 Proof of Theorem 3.3

Throughout this section we always assume the following:

- (i) N > 13
- (ii) $N \neq 2^{m+2} + 1, \ 3 \cdot 2^{m+2} + 1$

(iii) $N \nmid B_{2,\varepsilon}$

In this section we give a proof of Theorem 3.3 by modifying the result of Kamienny [8].

Let S be the spectrum of the ring of integers in k. Let p be a prime ideal of k above a prime integer p.

Proposition 5.1. E is semistable over S.

Proof. Let $k_{\mathfrak{p}}$ be the completion of k at \mathfrak{p} and let $\mathcal{O}_{\mathfrak{p}}$ be its ring of integers. Let $E_{/\mathcal{O}_{\mathfrak{p}}}$ be the Néron model of $E_{/k_{\mathfrak{p}}}$ over Spec $\mathcal{O}_{\mathfrak{p}}$. By the universal property of Néron models the morphism from $\mathbb{Z}/N\mathbb{Z}_{/k_{\mathfrak{p}}}$ to $E_{/k_{\mathfrak{p}}}$ extends to a morphism from $\mathbb{Z}/N\mathbb{Z}_{/\mathcal{O}_{\mathfrak{p}}}$ to $E_{/\mathcal{O}_{\mathfrak{p}}}$ which maps to the Zariski closure in $E_{/\mathcal{O}_{\mathfrak{p}}}$ of $\mathbb{Z}/N\mathbb{Z}_{/k_{\mathfrak{p}}} \subset E_{/k_{\mathfrak{p}}}$. This group scheme extension $H_{/\mathcal{O}_{\mathfrak{p}}}$ is a separated quasi-finite group scheme over $\mathcal{O}_{\mathfrak{p}}$ whose generic fibre is $\mathbb{Z}/N\mathbb{Z}$. Since it admits a map from $\mathbb{Z}/N\mathbb{Z}_{/\mathcal{O}_{\mathfrak{p}}}$ which is an isomorphism on the generic fibre, it follows from that $H_{/\mathcal{O}_{\mathfrak{p}}}$ is a finite flat group scheme of order N. Since k is polyquadratic and N is odd, the absolute ramification index $e_{\mathfrak{p}}$ over Spec \mathbb{Z} is equal to 1 or 2. Since $e_{\mathfrak{p}}$ is less than N - 1, by the theorem of Raynaud [17, Cor. 3.3.6] we have $H_{/\mathcal{O}_{\mathfrak{p}}} \cong \mathbb{Z}/N\mathbb{Z}_{/\mathcal{O}_{\mathfrak{p}}}$. Therefore we shall identify $H_{/\mathcal{O}_{\mathfrak{p}}}$ with $\mathbb{Z}/N\mathbb{Z}_{/\mathcal{O}_{\mathfrak{p}}}$.

Suppose that the component $(E_{/\mathfrak{p}})^0$ is an additive group. Then the index of $(E_{/\mathfrak{p}})^0$ in $E_{/\mathfrak{p}}$ is less than or equal to 4. It follows that $\mathbb{Z}/N\mathbb{Z}_{/\mathfrak{p}} \subset (E_{/\mathfrak{p}})^0$.

Thus, the residue characteristic p is equal to N. By Serre-Tate [18] there exists a field extension k'_p/k_p whose relative ramification index is less than or equal to 6, and such that $E_{/k'_p}$ possess a semi-stable Néron model $\mathcal{E}_{/\mathcal{O}'_p}$ where \mathcal{O}'_p is the ring of integers in k'_p . Then we have a morphism ψ from $E_{/\mathcal{O}'_p}$ to $\mathcal{E}_{/\mathcal{O}'_p}$ which is an isimorphism on generic fibres, using the universal Néron property of $\mathcal{E}_{/\mathcal{O}'_p}$. The mapping ψ is zero on the connected component of the special fibre of $E_{/\mathcal{O}'_p}$ since there are no non-zero morphisms from an additive to a multiplicative type group over a field. Consequently, the mapping ψ restricted to the special fibre of $\mathbb{Z}/N\mathbb{Z}_{/\mathcal{O}'_p}$ is zero. Using Raynaud [17, Cor. 3.3.6], again, we see that this is impossible. Indeed, since k is polyquadratic and N is odd, the absolute ramification index of k'_p is less than or equal to 12, which leads to a contradiction to the assumption N-1 > 12.

Proposition 5.2. Assume that p is neither 2 nor 3. Then \mathfrak{p} a multiplicative prime of E. Furthermore the reduction Q_1 does not specialize mod \mathfrak{p} to $(E_{/\mathfrak{p}})^0$.

Proof. If \mathfrak{p} is a good prime of E, then $E_{/\mathfrak{p}}$ is an elliptic curve over \mathcal{O}/\mathfrak{p} containing a rational torsion point of order N. By the Riemann hypothesis of elliptic curves over the finite field \mathcal{O}/\mathfrak{p} , N must be less than or equal to $(1 + p^{f_{\mathfrak{p}}/2})^2$, where $f_{\mathfrak{p}}$ is the degree of residue field. Since k is polyquadratic, we have $f_{\mathfrak{p}} = 1, 2$. Thus we have $(1 + p^{f_{\mathfrak{p}}/2})^2 \geq 16$. Since N is prime, $N \geq 17$ follows from the assumption N > 13. Hence this is impossible, and E has multiplicative reduction at \mathfrak{p} .

Suppose that Q_1 specialize to $(E_{/\mathfrak{p}})^0$. Over a quadratic extension k of \mathcal{O}/\mathfrak{p} we have an isomorphism $E_{/k} \cong \mathbb{G}_{m/k}$, so that N divides the cardinality of k^* . Since it follows from $f_{\mathfrak{p}} = 1, 2$ that the cardinality of k^* is one of 3,8,15,80, this is impossible by the assumption N > 13.

The pair $(E, \langle Q_1 \rangle)$ defines a k-rational point on the modular curve $X_0(N)_Q$. If $p \neq N$, we denote by $x_{/p}$ the image of x on the reduced curve $X_0(N)_{(\mathcal{O}_k/\mathfrak{p})}$ When \mathfrak{p} is a potentially multiplicative prime of E, we know that $x_{/\mathfrak{p}} = \infty_{/\mathfrak{p}}$ if the point Q_1 does not specialize to the connected component $(E_{/\mathfrak{p}})^0$ of the identity (cf. [8], p.547).

We denote $J_0(N)_{/\mathbb{Q}}$ the jacobian of $X_0(N)_{/\mathbb{Q}}$. The abelian variety $J_0(N)$ is semi-stable and has good reduction at all primes $p \neq N$ ([1]). We denote by $\tilde{J}_{/\mathbb{Q}}$ the Eisenstein quotient of $J_0(N)_{/\mathbb{Q}}$. Then Mazur [13] shows that $\tilde{J}(\mathbb{Q})$ is finite of order the numerator of (N-1)/12, which is generated by the image of the class $0 - \infty$ by the projection from $J_0(N)$ to \tilde{J}

Proposition 5.3. Assume that N is not of the form $2^{m+2} + 1$, $3 \cdot 2^{m+2} + 1$. If \mathfrak{p} is any bad prime of E, then Q_1 does not specialize to $(E_{/\mathfrak{p}})^0$. Proof. Define a map g from $X_0(N)(k)$ to $J_0(N)(\mathbb{Q})$ by $g(x) = \sum_{\sigma \in G} {}^{\sigma}x - d \cdot \infty$, where $d := [k : \mathbb{Q}]$. Let f be the composition of g with the projection h from $J_0(N)$ to \tilde{J} . Then f(x) is a torsion point, since $\tilde{J}(\mathbb{Q})$ is a finite group and f(x) is \mathbb{Q} -rational. By Proposition 5.2 we have ${}^{\sigma}x_{/\mathfrak{p}} = \infty_{/\mathfrak{p}}$ for each σ and \mathfrak{p} dividing 2, so we have

$$f(x)_{/\mathfrak{p}} = h(\sum_{\sigma \in G}{}^{\sigma}x_{/\mathfrak{p}} - d \cdot \infty_{/\mathfrak{p}}) = 0,$$

so f(x) has order a power of 2. However, $f(x)_{\mathfrak{p}} = 0$ for \mathfrak{p} dividing 3 by the same reasoning. Thus, f(x) has order a power of 3, and so f(x) = 0.

If \mathfrak{p} is a bad prime of E which Q_1 does not specialize to $(E_{/\mathfrak{p}})^0$, then $x_{/\mathfrak{p}} = 0_{/\mathfrak{p}}$. By Proposition 5.2 we may assume that the residue characteristic p is not 2, 3 or N. Since E is a Q-curve completely defined over k, we have ${}^{\sigma}x_{/\mathfrak{p}} = 0_{/\mathfrak{p}}$ for each σ . Thus,

$$f(x)_{/\mathfrak{p}} = h(\sum_{\sigma \in G} {}^{\sigma} x_{/\mathfrak{p}} - d \cdot \infty_{/\mathfrak{p}}) = h(d(0-\infty))_{/\mathfrak{p}}.$$

Since $h(0 - \infty)$ is Q-rational point, the order of $h(0 - \infty)$ divides d. Since the order of $h(0 - \infty)$ is equal to the numerator of (N - 1)/12, N is of the form $2^{m+2} + 1$, $3 \cdot 2^{m+2} + 1$, which is impossible by the assumption.

Proposition 5.4. $k(E[N])/k(\zeta_N)$ is everywhere unramified.

Proof. If E has good reduction at \mathfrak{p} and $p \neq N$, then $k(E[N])/k(\zeta_N)$ is unramified at the primes lying above \mathfrak{p} (cf. Serre-Tate[18]).

If E has good reduction at \mathfrak{p} and p = N, then E[N] is a finite flat group scheme over $\mathcal{O}_{\mathfrak{p}}$. Then there is a short exact sequence of finite flat group schemes over $\mathcal{O}_{\mathfrak{p}}$:

$$0 \to \mathbb{Z}/N\mathbb{Z} \to E[N] \to \mu_N \to 0.$$

However, E[N] also fits into a short exact sequence

$$0 \to E[N]^0 \to E[N] \to E[N]^{\text{\'et}} \to 0,$$

where $E[N]^0$ is the largest connected subgroup of E[N] and $E[N]^{\text{ét}}$ is the largest étale quotient (cf. [14], p.134-138). Clearly we have $E[N]^0 = \mu_N$, and this gives us splitting of the above exact sequences. Since $[k(E[N]) : k(\zeta_N)]$ divides N, the action of the inertia subgroup for \mathfrak{p} in $G_{k(\zeta_N)}$ on E[N] is trivial. Namely, $k(E[N])/k(\zeta_N)$ is unramified at the primes lying above \mathfrak{p} .

Assume that E has bad reduction at \mathfrak{p} . Since $J_0(N)$ is semistable, $E[N]_{/\mathfrak{p}}$ is a quasi-finite flat group scheme over $\mathcal{O}_{\mathfrak{p}}$ (cf. [4]), and fits into a short exact sequence

$$0 \to \mathbb{Z}/N\mathbb{Z} \to E[N] \to \overline{\mu}_N \to 0,$$

where $\overline{\mu}_N$ is a quasi-finite flat group with generic fibre isomorphic to μ_N . Since Q_1 does not specialize to $(E_{/\mathfrak{p}})^0$, we see that the kernel of multiplication by N on $(E_{/\mathfrak{p}})^0$ maps injectively to $\overline{\mu}_N$. Thus, $\overline{\mu}_N$ is actually a finite flat group scheme. If $p \neq N$, then E[N] is étale, and so $k(E[N])/k(\zeta_N)$ is unramified at the primes above \mathfrak{p} . If p = N, then $\mu_N = \overline{\mu}_N$ by Raynaud [17, Cor. 3.3.6] and $e_N \leq 2 < N-1$. We see that $E[N]_{\mathcal{O}_{\mathfrak{p}}} = \mathbb{Z}/N \oplus \mu_N$, so $k(E[N])/k(\zeta_N)$ is unramified at the primes above \mathfrak{p} .

By Propositions 4.7 and 5.4, we see that $k(E[N]) = k(\zeta_N)$. Thus $\langle Q_2 \rangle$ is *k*-rational.

Proposition 5.5. The quotient curve $E/\langle Q_2 \rangle$ is again a central Q-curve over k with N-rational torsion point. Furthermore the image of Q_1 is N-rational point of $E/\langle Q_2 \rangle$ and

$$\begin{array}{ccc} {}^{\sigma}E & \xrightarrow{\phi_{\sigma}} & E \\ \downarrow & & \downarrow \\ {}^{\sigma}\left(E/\langle Q_2 \rangle\right) & \xrightarrow{\phi_{\sigma}} & E/\langle Q_2 \rangle \end{array}$$

Proof. Since $\langle Q_2 \rangle$ is k-rational, the quotient curve $E/\langle Q_2 \rangle$ is a Q-curve over k. We show that $\phi_{\sigma} \langle {}^{\sigma}Q_2 \rangle \subset \langle Q_2 \rangle$. We may put $\phi_{\sigma} ({}^{\sigma}Q_2) = aQ_1 + bQ_2$. Since Q_1 is k-rational, $\phi_{\sigma} ({}^{\tau\sigma}Q_2) = aQ_1 + b^{\tau}Q_2$ for each $\tau \in G_k$. Since $\langle Q_2 \rangle$ is k-rational, $a \neq 0$ implies ${}^{\tau}Q_2 = Q_2$ and thus k(E[N]) = k. Since k is polyquadratic and N > 3, this leads to contradiction.

Since $\phi_{\sigma} \langle {}^{\sigma}Q_2 \rangle \subset \langle Q_2 \rangle$, we have the above diagram. Specially $E/\langle Q_2 \rangle$ is again central Q-curve.

Proof of Theorem 3.3. By Proposition 5.5 we get a sequence central \mathbb{Q} -curves over k

 $E \rightarrow E^{(1)} \rightarrow E^{(2)} \rightarrow E^{(3)} \rightarrow \cdots$

each obtained from the next by an N-isogeny, and such that the original group $\mathbb{Z}/N\mathbb{Z}$ maps isomorphically into every $E^{(j)}$.

It follows from Shafarevic theorem that among the set of $E^{(j)}$ there can be only a finite number of k-isomorphism class of elliptic curve represented. Consequently, for some indecies j > j' we must have $E^{(j)} \cong E^{(j')}$. But $E^{(j)}$ maps to $E^{(j')}$ by nonscalar isogeny. Therefore $E^{(j)}$ is a CM elliptic curve and so is E. This contradicts to the assumption that E is non-CM.

6 Proof of Theorem 3.4

We recall that each element in the list of Theorem 3.4 corresponds to existance of a non-cuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1}X_0^*(M)(\mathbb{Q})$. By Proposition 4.1 we have M = 2, 3. By using Theorem 3.3 and Proposition 4.5 we see that each divisor of N less than or equal to 13. Thus there are only finite couples (N, M) such that $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1}X_0^*(M)(\mathbb{Q})$ has a non-cuspidal non-CM point. For such (N, M), by computing defining equations, we check whether there is a non-cuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1}X_0^*(M)(\mathbb{Q})$ or not.

References

- [1] P. Deligne and M. Rapoport, Schémas de modules de courbes elliptiques, Lect. Notes Math. **349**, Berlin-Heiderlberg-New York, Springer (1973).
- [2] B. Edixhoven, Rational torsion points on elliptic curves over number fields, Séminaire Bourbaki, 46ème année, 1993-94, n° 782, 209-227.
- [3] N.D. Elkies, On elliptic K-curves, Modular curves and abelian varieties., ed. J. Cremona etc, progress in math 224, Birkhäuser, 81-91.
- [4] A. Grothendieck, Groupes de monodromie en géometrie algébrique, Lecture Notes in Mathematics 288, 340, 1972/3.
- [5] Y. Hasegawa, Q-curves over quadratic fields, Manuscripta Math. 94 (1997), no. 3, 347–364.
- [6] D. Jeon, C.H. Kim and A. Schwezer, On the torsion of elliptic curves over cubic number fields, Acta Arithmetica 113 (2004), 291-301.
- [7] G. Karpilovsky, Group representations, Vol. 2 (Elsevier, Amsterdam, 1993).
- [8] S. Kamienny, On the torsion subgroups of elliptic curves over totally real field, Invent. Math. 83 (1986), 545-551.
- [9] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math. 109 (1992), 221-229.
- [10] M. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125–149.

- [11] D.S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), no. 2, 193-237.
- B. Mazur, Rational points on modular curves, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 107-148. Lecture Notes in Math., Vol. 601, Springer, Berlin, 1977
- B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1978), 33-186.
- [14] B. Mazur, Rational isogenies of prime degree, Invent Math. 44 (1978), 129-162.
- [15] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), 437-449.
- [16] E.E. Pyle, Abelian varieties over Q with large endomorphism algebras and their simple components over Q. In J. Cremona, J.C. Lario, J. Quer and K. Ribet (ed.): Modular curves and abelian varieties, 189-239, Progress in Mathematics 224, Birkhäuser, 2004.
- [17] M. Raynaud, Schémas en groupes de type (p, \ldots, p) , Bull. Soc Math. Fr. 102 (1974), 241-280.
- [18] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. Math. 88 (1968), 492-517.
- [19] J. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil, B.J.Birch, W.Kuyk(editors), Modular Function of One Variable IV, Springer-Verlag, LNM 476 (1975).
- [20] L.C. Washington, Introduction to cyclotomic fields, Springer GTM 83.
- [21] H.G. Zimmer, Torsion groups of elliptic curves over cubic and certain biquadratic number fields, Contemp. Math. 174 (1994), 203-220.

Fumio SAIRAIJI, Hiroshima International University, Hiro, Hiroshima 737-0112, Japan. e-mail address: sairaiji@it.hirokoku-u.ac.jp

Takuya YAMAUCHI, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8526, Japan. e-mail address: yamauchi@math.sci.hiroshima-u.ac.jp