On integral bases of real octic 2-elementary abelian extensions (実 8次 2-基本アーベル拡大体の整数基について)

佐賀大学·大学院工学系研究科 博士後期課程 4年 朴 敬鎬 (Kyoung Ho PARK)
Graduate school of Science and Engineering,
Saga University

佐賀大学·理工学部 中原 徹 (Toru NAKAHARA¹⁾)

Faculty of Science and Engineering,

Saga University

八代工業高等専門学校·一般科 元田 康夫 (Yasuo MOTODA)

Faculty of General Education,

Yatsushiro National College of Technology

Abstract. Let K be an abelian field whose Galois group is 2-elementary abelian over the rationals Q. If an octic field K is monogenic and a quadratic subfield with odd discriminant and a quartic subfield of K are linearly disjoint, then K coincides with the field $Q(\sqrt{-1}, \sqrt{2}, \sqrt{-3})$, namely K is equal to the cyclotomic field $Q(\zeta_{24})$ [MN]. In this article, we explain how to prove that all the real octic fields K are non-monogenic, that is, the rings Z_K of integers in K do not have any power integral basis. Finally, we propose a few problems on the evaluation on the field index of K and the non-essential factor (außerwesentliche Diskriminantenteiler) of K.

§1. Introduction

Let K be an algebraic number field over the rationals Q. We denote the ring of integers in K by Z_K . When $Z_K = Z[\alpha]$ for some element α of Z_K , it is said that α generates a power integral basis of the ring Z_K or simply Z_K has a power integral basis. The field K is called monogenic if Z_K has a power integral basis. It is known as a problem of Hasse to characterize whether a field K is monogenic or not [Gy]. In this article, we consider the fields K whose Galois groups are 2-elementary abelian. Since the field K for $[K:Q] \geq 16$

AMS subject classification: Primary: 11R04.

¹⁾ Partially supported by grant (#16540029) from the Japan Society for the Promotion of Science.

is non-monogenic, i.e., the ring Z_K of integers in K has no power integral basis by virtue of the decomposition theory of a prime number ([Lemma 1, SN], [MNS], [Wa]) and by the works of K. S. Williams, M.-N. Gras and F. Tanoé for Dirichlet fields K,([Wi], [GT]) it is enough for us to investigate the octic 2-elementary abelian fields. Let k and L be a quadratic subfield of odd discriminant and a quartic subfield of K, respectively. If k and L are linearly disjoint, then such an octic field K = kL is non-monogenic except for the cyclotomic field $Q(\zeta_{24})$ of conductor 24 [MN]. In this paper, we will show an integral basis of the ring Z_K over the ring Z of rational integers in an octic field K [Theorem 1]. Next, being based on the linear equations

$$a_{i1}E_{i1} + a_{i2}E_{i2} + a_{i3}E_{i3} = 0 \quad (1 \le i \le 7)$$

with suitable factors a_{ij} of the field discriminant D_K , where $(a_{ij}, D_i) = 1$ and units E_{ij} as coefficients of valuables a_{ij} in each quadratic subfield $k_j = \mathbf{Q}(\sqrt{D_j})$ [Proposition 2], we can prove that all the real 2-elementary abelian fields K of degree 8 have no power integral basis[Theorem 2].

§2. Integral bases

We determine explicit integral bases of some octic fields K whose Galois groups are 2-elementary abelian. We denote the Galois group

$$\langle \tau, \sigma, \rho \mid \tau : \sqrt{mn} \mapsto -\sqrt{mn}, \sigma : \sqrt{dn} \mapsto -\sqrt{dn}, \rho : \sqrt{d_1 m_1 n_1 \ell} \mapsto -\sqrt{d_1 m_1 n_1 \ell} \rangle$$
 of K/\mathbf{Q} by G .

The following lemma and proposition are available to deduce the type of 2-elementary abelian extension fields K which would have power integral bases.

Lemma 1([SN]). Let ℓ be a prime number and let F/Q be a Galois extension of degree n=efg with ramification index e and the relative degree f with respect to ℓ . If one of the following conditions is satisfied, then Z_F has no power integral basis, i.e., F is non-monogenic;

$$(1) e\ell^f < n \text{ if } f = 1;$$

or

$$(2) \ e\ell^f \le n+e-1 \ \ if \ f \ge 2.$$

Proposition 1([MN]). Let a_1, a_2, \dots, a_r be square free rational integers and F be the field $\mathbf{Q}(\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_r})$ of degree $2^r, r \geq 4$. Then F is non-monogenic.

Proof. Without loss of generality, we may assume that there exists at most two generators $\sqrt{a_1}$, $\sqrt{a_2}$ of F with $a_j \not\equiv 1 \pmod{4} (1 \leq j \leq 2)$. Then the ramification index e of the prime

is at most 2^2 . Since the Galois group $G = Gal(F/\mathbf{Q})$ is 2-elementary, the relative degree f of the prime 2 is at most 2, because the inertia subgroup of G is cyclic. In Lemma 1 let ℓ be equal to 2. Then we can deduce $e\ell^f \leq 2^2 \cdot 2^1 < 2^r$ if f = 1 and $e\ell^f \leq 2^2 \cdot 2^2 \leq 2^r + e - 1$ if f = 2. Thus F is non-monogenic.

By the proof of Proposition 1, if an octic field K is monogenic, it is sufficient to consider that K contains two quadratic subfields of even discriminant and one of odd discriminant.

The main theorem is based on the following theorem, which is an extension of a result of the case of quartic fields $[M_1, M_2, Wi]$.

Theorem 1([PMN]). Let K be an octic field $\mathbf{Q}(\sqrt{mn}, \sqrt{dn}, \sqrt{d_1m_1n_1\ell})$ with $d = d_1d_2, m = m_1m_2, n = n_1n_2, mn \equiv 3, dn \equiv 2, d_1m_1n_1\ell \equiv 1, d_2 \equiv 2 \pmod{4}, d_1, m_1, n_1 \geq 1$ and dmn ℓ is square free. Let D_K be the field discriminant of the octic field K. Then we have $D_K = 2^{12}(dmn\ell)^4$ and an integral basis of K is:

$$Z_{K} = Z \left[1, \sqrt{mn}, \sqrt{dn}, \frac{\sqrt{dm} + \sqrt{dn}}{2}, \frac{1 + \sqrt{d_1 m_1 n_1 \ell}}{2}, \frac{\sqrt{mn} + \sqrt{d_1 m_2 n_2 \ell}}{2}, \frac{\sqrt{dm} + \sqrt{d_2 m_1 n_2 \ell}}{2}, \frac{\sqrt{dm} + \sqrt{dn} + e_1 \sqrt{d_2 m_2 n_1 \ell} + e_2 \sqrt{d_2 m_1 n_2 \ell}}{4} \right]$$

where $e_i = \pm 1$ $(i = 1, 2), e_1 \equiv d_1 m_1, e_2 \equiv d_1 n_1 \pmod{4}$.

§3. Non-monogenic field

It is known that in the case of $d_1m_1n_1 = 1$ that is, there exist a quartic subfield L and a quadratic k of K with $(D_L, D_k) = 1$, the fields K are non-monogenic except for the cyclotomic field $\mathbf{Q}(\zeta_{24})$ of conductor 24 [MN], where D_F means the discriminant of an algebraic number field F over \mathbf{Q} . From now on, we consider the case of $d_1m_1n_1 \geq 1$ and as an application of Theorem 1, we can slightly generalize Proposition 5 in [MN], whose proof was done using the relative different with respect to K over a suitable quadratic subfield. We assume that K is monogenic.

Let

$$\xi = b_1 \sqrt{mn} + b_2 \sqrt{dn} + b_3 \frac{\sqrt{dm} + \sqrt{dn}}{2} + b_4 \frac{1 + \sqrt{d_1 m_1 n_1 \ell}}{2} + b_5 \frac{\sqrt{mn} + \sqrt{d_1 m_2 n_2 \ell}}{2} + b_6 \frac{\sqrt{dn} + \sqrt{d_2 m_1 n_2 \ell}}{2} + b_7 \frac{\sqrt{dm} + \sqrt{dn} + e_1 \sqrt{d_2 m_2 n_1 \ell} + e_2 \sqrt{d_2 m_1 n_2 \ell}}{4}$$

be a generator of a power integral basis of Z_K . Now we calculate a factor $(\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\rho}$

On integral bases of real octic 2-elementary abelian extensions

of the discriminant $d_{K/Q}(\xi) = \Delta^2 \left[1, \xi, \xi^2, \xi^3, \xi^4, \xi^5, \xi^6, \xi^7 \right]$ of a number ξ ;

$$\begin{split} &(\xi-\xi^{\sigma})(\xi-\xi^{\sigma})^{\rho}\\ &=\left\{(2b_{2}+b_{3}+b_{6}+\frac{b_{7}}{2})\sqrt{dn}+\left(b_{3}+\frac{b_{7}}{2}\right)\sqrt{dm}+\left(b_{6}+\frac{b_{7}e_{2}}{2}\right)\sqrt{d_{2}m_{1}n_{2}\ell}+\frac{b_{7}e_{1}\sqrt{d_{2}m_{2}n_{1}\ell}}{2}\right\}\\ &\times\left\{(2b_{2}+b_{3}+b_{6}+\frac{b_{7}}{2})\sqrt{dn}+\left(b_{3}+\frac{b_{7}}{2}\right)\sqrt{dm}-\left(b_{6}+\frac{b_{7}e_{2}}{2}\right)\sqrt{d_{2}m_{1}n_{2}\ell}-\frac{b_{7}e_{1}\sqrt{d_{2}m_{2}n_{1}\ell}}{2}\right\}\\ &=\left\{\left(2b_{2}+b_{3}+b_{6}+\frac{b_{7}}{2}\right)\sqrt{dn}+\left(b_{3}+\frac{b_{7}}{2}\right)\sqrt{dm}\right\}^{2}-\left\{\left(b_{6}+\frac{b_{7}e_{2}}{2}\right)\sqrt{d_{2}m_{1}n_{2}\ell}+\frac{b_{7}e_{1}\sqrt{d_{2}m_{2}n_{1}\ell}}{2}\right\}^{2}\\ &=\left\{\left(2b_{2}+b_{3}+b_{6}\right)^{2}+\left(2b_{2}b_{7}+b_{3}b_{7}+b_{6}b_{7}\right)+\frac{b_{7}^{2}}{4}\right\}dn+\left(b_{3}^{2}+b_{3}b_{7}+\frac{b_{7}^{2}}{4}\right)dm\\ &-\left(b_{6}^{2}+b_{6}b_{7}e_{2}+\frac{b_{7}^{2}e_{2}^{2}}{4}\right)d_{2}m_{1}n_{2}\ell-\frac{b_{7}^{2}e_{1}^{2}d_{2}m_{2}n_{1}\ell}{4}\\ &+\left\{\left(2^{2}b_{2}b_{3}+2b_{3}^{2}+2b_{3}b_{6}+2b_{3}b_{7}+2b_{2}b_{7}+b_{6}b_{7}+\frac{b_{7}^{2}}{2}\right)d-\left(b_{6}b_{7}e_{1}d_{2}\ell+\frac{b_{7}^{2}e_{2}e_{1}d_{2}\ell}{2}\right)\right\}\sqrt{mn}, \end{split}$$

namely, this factor is an integer of the quadratic field $k_1 = \mathbf{Q}(\sqrt{mn})$ of the fixed field by the subgroup $\langle \sigma, \rho \rangle$ in G. Then we denote it by $\eta_{11} = B + C(\sqrt{mn})$. Thus we obtain

$$B/d_2 \equiv \left\{ b_3^2 + b_6^2 + b_3 b_7 + \frac{b_7^2}{4} \right\} d_1 n + \left(b_3^2 + b_3 b_7 + \frac{b_7^2}{4} \right) d_1 m$$

$$- \left(b_6^2 + b_6 b_7 + \frac{b_7^2}{4} \right) m_1 n_2 \ell - \frac{b_7^2 m_2 n_1 \ell}{4}$$

$$\equiv \frac{b_7^2}{4} \left(d_1 (m+n) - (m_1 n_2 + m_2 n_1) \ell \right)$$

$$\equiv \frac{\{ d_1 (m+n) - (d_1 n + 4k + d_1 m + 4k) \}}{4} \equiv 0 \pmod{2},$$

by $d_1m_1n_1\ell \equiv 1 + 4k \pmod{8}$ and $m + n \equiv 0 \pmod{4}$, since $m_1n_2\ell \cdot 1 \equiv d_1m_1^2n_1n_2\ell^2 + 4m_1n_2\ell k \equiv d_1n + 4k \pmod{8}$ and $m_2n_1\ell \cdot 1 \equiv d_1m_1m_2n_1^2\ell^2 + 4m_2n_1\ell k \equiv d_1m + 4k \pmod{8}$.

$$C/d_2 \equiv \left(b_6 b_7 + \frac{b_7^2}{2}\right) d_1 - \left(b_6 b_7 e_1 \ell + \frac{b_7^2 e_2 e_1 \ell}{2}\right)$$

$$\equiv b_6 b_7 \left(d_1 - e_1 \ell\right) + \frac{b_7^2}{2} \left(d_1 - e_2 e_1 \ell\right) \equiv 0 \pmod{2}$$

by $e_1 \equiv d_1 m_1$, $e_2 \equiv d_1 n_1 \pmod{4}$, since $d_1 - e_2 e_1 \ell \equiv d_1 - d_1^2 m_1 n_1 \ell \equiv d_1 (1 - d_1 m_1 n_1 \ell) \equiv 0 \pmod{4}$. So we can write $\eta_{11} = (\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\rho} = 2d_2 E_1$ for an integer $E_1 = B_1 + C_1 \sqrt{mn}$ in $k_1 = \mathbf{Q}(\sqrt{mn})$. By the same computation, we obtain $\eta_{12} = (\xi - \xi^{\rho})(\xi - \xi^{\rho})^{\sigma} = \ell E_2$, $\eta_{13} = (\xi - \xi^{\sigma\rho})(\xi - \xi^{\sigma\rho})^{\rho} = d_1 E_3$ for units E_j in $k_1(j = 2, 3)$. By the assumption that Z_K is generated by ξ , we have

$$d_{K/Q}(\xi) = \pm N_K(\mathfrak{d}(\xi)) = \pm D_K(\xi)$$

Kyoung Ho Park, Toru Nakahara and Yasuo Motoda

where $\mathfrak{d}(\alpha)$, $N_K(\alpha)$ and $N_K(\mathfrak{a})$ means the different of a number, norm of α and an ideal \mathfrak{a} with respect to K/\mathbb{Q} , respectively [Wa]. Then, because η_{1j} is a partial factor of $d_{K/\mathbb{Q}}(\xi)$, the integers E_j should be units in $k_1 = \mathbb{Q}(\sqrt{mn})$. Here the following is our basic identity:

$$(\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\rho} - (\xi - \xi^{\rho})(\xi - \xi^{\rho})^{\sigma} - (\xi - \xi^{\sigma\rho})(\xi - \xi^{\sigma\rho})^{\rho} = 0$$

for $(\xi - \xi^{\sigma})(\xi - \xi^{\sigma})^{\rho} = \eta_{11}$, $(\xi - \xi^{\rho})(\xi - \xi^{\rho})^{\sigma} = \eta_{12}$ and $(\xi - \xi^{\sigma\rho})(\xi - \xi^{\sigma\rho})^{\rho} = \eta_{13}$. Then we have the equation

$$2d_2E_1 - \ell E_2 - d_1E_3 = 0$$
 in $k_1 = \mathbf{Q}(\sqrt{D_1})$, $D_1 = m_1 \cdot 2m_2 \cdot n_1 \cdot 2n_2$,

where E_1, E_2 and E_3 are units in k_1 .

In the same way, we obtain seven equations corresponding to each of the seven quadratic subfields k_j of K.

Proposition 2. If $K = \mathbf{Q}(\sqrt{mn}, \sqrt{dn}, \sqrt{d_1m_1n_1\ell})$ is monogenic, then the following simultaneous equations hold:

(1)
$$\ell E_{11} + 2d_2 E_{12} + d_1 E_{13} = 0$$
 in $k_1 = \mathbf{Q}(\sqrt{D_1})$, $D_1 = m_1 \cdot 2m_2 \cdot n_1 \cdot 2n_2$,

(2)
$$\ell E_{21} + 2m_2 E_{22} + m_1 E_{23} = 0$$
 in $k_2 = \mathbf{Q}(\sqrt{D_2})$, $D_2 = d_1 \cdot 2d_2 \cdot n_1 \cdot 2n_2$,

(3)
$$\ell E_{31} + 2n_2 E_{32} + n_1 E_{33} = 0$$
 in $k_3 = \mathbf{Q}(\sqrt{D_3})$, $D_3 = d_1 \cdot 2d_2 \cdot m_1 \cdot 2m_2$,

(4)
$$2d_2E_{41} + 2m_2E_{42} + 2n_2E_{43} = 0$$
 in $k_4 = \mathbf{Q}(\sqrt{D_4})$, $D_4 = d_1 \cdot m_1 \cdot n_1 \cdot \ell$,

(5)
$$2d_2E_{51} + m_1E_{52} + n_1E_{53} = 0$$
 in $k_5 = Q(\sqrt{D_5})$, $D_5 = d_1 \cdot 2m_2 \cdot 2n_2 \cdot \ell$,

(6)
$$d_1E_{61} + 2m_2E_{62} + n_1E_{63} = 0$$
 in $k_6 = \mathbf{Q}(\sqrt{D_6})$, $D_6 = 2d_2 \cdot m_1 \cdot 2n_2 \cdot \ell$,

(7) $d_1E_{71} + m_1E_{72} + 2n_2E_{73} = 0$ in $k_7 = \mathbf{Q}(\sqrt{D_7})$, $D_7 = 2d_2 \cdot 2m_2 \cdot n_1 \cdot \ell$, where each E_{ij} is a unit in the corresponding quadratic subfield k_i of K and each D_i the field discriminant of k_i , respectively.

For the case of a real quadratic field, the following lemma holds:

Lemma 2. Let E_j be a power $\varepsilon_0{}^j = \frac{u_j + v_j \sqrt{D}}{2}$ of the fundamental unit $\varepsilon_0 = \frac{u + v \sqrt{D}}{2} > 1$ in a real quadratic field $\mathbf{Q}(\sqrt{D})$ with the field discriminant D and $\overline{\alpha} = \alpha^{\gamma}$ for α in $\mathbf{Q}(\sqrt{D})$ and $\gamma \neq I$ in $Gal(\mathbf{Q}(\sqrt{D})/\mathbf{Q})$. Let

$$\begin{cases} a + bE_j + cE_k = 0, \\ a + b\overline{E}_j + c\overline{E}_k = 0 \end{cases}$$
 (*)

for $abc \neq 0$. Denote the matrix

$$\begin{pmatrix} 1 & E_j & E_k \\ 1 & \overline{E_j} & \overline{E_k} \end{pmatrix}$$

On integral bases of real octic 2-elementary abelian extensions

attached to the the equation (*) by A and the rank of A by r_D . Then we have a solution (a,b,c) of rational integers:

$$\begin{cases} a \pm b \pm c = 0 & for \quad r_D = 1, \\ \frac{a}{u_k v_i - u_i v_k} = \frac{b}{2v_k} = \frac{c}{-2v_i} & for \quad r_D = 2 \end{cases}$$

with
$$E_i = \frac{u_i + v_i \sqrt{D}}{2}$$
.

Proof. This lemma means that the integral solutions should be on the plane for the rank $r_D = 1$ of the coefficient matrix A and on the line i.e. the intersection of two planes for $r_D = 2$, respectively.

First, we consider the case of $r_D = 1$, then for

$$\begin{cases} E_i = \frac{u_i + v_i \sqrt{D}}{2}, \\ \overline{E_i} = \frac{u_i - v_i \sqrt{D}}{2}, \end{cases}$$

 $E_i, \overline{E_i}$ should be a rational number. Then we have $E_j = u_j = \pm 1$ and $E_k = u_k = \pm 1$. Hence $a \pm b \pm c = 0$. Second, we assume $r_D = 2$. Then we have

$$a:b:c=\left|egin{array}{c|c} E_j & E_k \ \hline E_j & \overline E_k \end{array}
ight|:\left|egin{array}{c|c} E_k & 1 \ \hline E_k & 1 \end{array}
ight|:\left|egin{array}{c|c} 1 & E_j \ \hline 1 & \overline E_j \end{array}
ight|=u_kv_j-u_jv_k:2v_k:-2v_j.$$

Hence

$$\frac{a}{u_k v_j - u_j v_k} = \frac{b}{2v_k} = \frac{c}{-2v_j}.$$

In the case of any octic field $\mathbf{Q}(\sqrt{m_1m_2n_1n_2}, \sqrt{d_1d_2n_1n_2}, \sqrt{d_1m_1n_1\ell})$, by the following lemma, we can deduce to evaluate the rank r_D of a quadratic field $\mathbf{Q}(\sqrt{D})$ for a few cases with respect to the order of values $d_1, 2d_2, m_1, 2m_2, n_1, 2n_2, \ell$ in the set of seven parameters.

Lemma 3. Let denote the set $\{d_1, 2d_2, m_1, 2m_2, n_1, 2n_2, \ell\}$ by D. Then it holds that:

- (1) For one parameter s in D, there exist only four quadratic subfields k_j whose discriminants D_j are divisible by s.
- (2) For two parameters s,t in D, there exist only two quadratic subfields k_j whose discriminants D_j are divisible by st.
- (3) Let s, t, u be three parameters in D, such that stu is a divisor of the field discriminant of D_j of k_j . Then there exists only one quadratic subfield k_j whose discriminant D_j is divisible by stu.

Kyoung Ho Park, Toru Nakahara and Yasuo Motoda

Proof. (1) We can confirm the claim (1) for each of $\binom{\sharp D}{1} = 7$ parameter in D from seven equations in Proposition 2, such that there exist just four fields k_1, k_3, k_4, k_6 whose discriminant is divisible by m_1 .

(2) We can do the claim (2) of $\binom{\sharp D}{2} = 21$ pairs of parameters in D by the same way as in (1). For instance, there exist just two fields k_3, k_7 whose discriminants are divisible by d_2m_2 .

(3) We assume that $D_i = stua$ and $D_j = stub$. Then we have $D_i D_j = (stu)^2 ab$. However, the quadratic subfield $Q(\sqrt{ab})$ does not coincide with any $k_j (1 \le j \le 7)$.

Remark 1. We can confirm that the number of triplets (s,t,u) within the order of parameters in D is equal to $28 = 7 \times 1 \times {4 \choose 3} < {\sharp D \choose 3} = 35$ such that each of stu is a divisor of the field discriminant D_j of k_j .

Next, we prepare the key lemma for the proof of Theorem 2.

Lemma 4. For the set $D = \{a, b, c, d, e, f, g\}$ of seven positive rational integers, assume that $a > b \ge c > \max\{d, e, f, g\}$ and d > f or $a > b > c \ge \max\{d, e, f, g\}$ and d > f. Then

(1) For the field $Q(\sqrt{bcst})$, where $s, t \in D \setminus \{a, b, c\}$ and units E_i in $Q(\sqrt{bcst})$, the rank r_{bcst} of the equations

$$\begin{cases} a + uE_j + vE_k = 0, \\ a + u\overline{E_j} + v\overline{E_k} = 0, \end{cases}$$

with $\{u, v\} = D \setminus \{a, b, c, s, t\}$ is equal to 1.

(2) For the field $\mathbf{Q}(\sqrt{astu})$, where $s, t, u \in D \setminus \{a, b, c\}$ and units E_i in $\mathbf{Q}(\sqrt{astu})$, the rank r_{astu} of the equations

$$\begin{cases} b + cE_j + vE_k = 0, \\ b + c\overline{E_j} + v\overline{E_k} = 0, \end{cases}$$

with $\{v\} = D \setminus \{a, b, c, s, t, u\}$ is equal to 1.

Sketch of Idea. Our idea for the proof of this lemma is as follows. For the quadratic subfield k including the coefficients of the simultaneous equation (*), if the field discriminant D_k is divisible by the biggest parameter(case (1)) or the second and the third ones(case (2)), since the fundamental unit(> 1) of k is relatively big, the ratios for the line in Lemma 2 would not be permitted. Thus the ranks of the coefficient matrix for both cases should be equal to one, respectively, namely any integral solution of (*) lies on the plane [PMN].

Finally, we show the following main theorem, which is a generalization of a proto-type[PMN].

Theorem 2. Let $K = \mathbf{Q}(\sqrt{a_1}, \dots, \sqrt{a_r})$ be the 2-elementary abelian extensions over \mathbf{Q} whose degree 2^r is greater than 8 or real octic ones for square free integers a_1, \dots, a_r . Then the fields K are non-monogenic.

Sketch of Proof. By Proposition 1, it is enough to consider an octic field K. Let $(2) = \mathfrak{L}_1^e \cdots \mathfrak{L}_g^e$ be the prime ideal decomposition of a rational prime 2 in K. For the ramification index of 2, if $e \leq 1$, then by Lemma 1 and the relative degree f of a prime 2 is at most 2, we have $1 \cdot 2^1 < 8$ or $1 \cdot 2^2 \leq 8 + 1 - 1$ for e = 1 and $2 \cdot 2^1 \leq 8$ or $2 \cdot 2^2 \leq 8 + 2 - 1$ for e = 2, namely K is non-monogenic. Then in the case of $e \geq 3$, we can deduce that the type of an octic field K is $K = \mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3})$, where $a_1 = mn \equiv 3$, $a_2 = dn \equiv 2$, $a_3 = d_1m_1n_1\ell \equiv 1 \pmod{4}$, for $d = d_1d_2$, $m = m_1m_2$, $n = n_1n_2$ and $dmn\ell$ is square free. Put $D = \{d_1, 2d_2, m_1, 2m_2, n_1, 2m_2, \ell\}$. We denote again by $\{a, b, c, d, e, f, g\}$ any transposition on the seven parameters in D. Without loss of generality, we may assume that $a > b > c \geq \max\{d, e, f, g\}$. Using Lemma 4, it is enough for us to consider the following two cases.

Case (I). The field K includes $k_{j_1} = \mathbf{Q}(\sqrt{abct})$ for some $t \in D \setminus \{a, b, c\}$, for instance, t = d.

Case (II). The field K does not include the field $Q(\sqrt{abcs})$ for any $s \in D \setminus \{a, b, c\}$.

In the case (I), we can deduce that the four parameters a, b, c, d with $c \ge d$ must lie on suitable two planes and in the case (II), a, b, e, g with e > g do on four planes, respectively. However, the order of the parameters would be destroyed. Then we can prove that any real octic fields K does not have a power integral basis[PNM].

Remark 2. Recently, in [PNM] we proved that all the 2-elementary abelian fields K with degree $[K:Q] \geq 8$ are non-monogenic exept for the field $Q(\sqrt{-1},\sqrt{2},\sqrt{-3}) = Q(\zeta_{24})$.

Problem. For a primitive elment ξ in K, let $\operatorname{Ind}(\xi)$, $\tilde{m}(K)$ and m(K) be the index $\sqrt{\left|\frac{d_K(\xi)}{D_K}\right|}$ of an elemnet ξ , the minimum index $\min_{\xi \in K} \{\operatorname{Ind}(\xi)\}$ of K and the field index $\gcd\{\operatorname{Ind}(\xi)\}$ of K, respectively. Let the fields K run through all the real octic fields whose Galois groups are 2-elementary abelian. Then evaluate the values of

$$\inf_K \tilde{m}(K)$$
 and $\inf_K m(K)$,

Kyoung Ho Park, Toru Nakahara and Yasuo Motoda

respectively.

Acknowledgement. We wish to express our gratitude to Prof. Y. Taguchi and M. Ozaki for their valuable comments on this article.

References

- [GT] M.-N. GRAS and F. TANOÉ, Corps biquadratiques monogènes, Manuscripta Math. 86,(1995), 63-77.
- [Gy] K. Győry, Discriminant form and index form equations, in Algebraic Number Theory and Diophantine Analysis, (F. Halter-Koch and R. F. Tichy. Eds.), 191-214, Walter de Gruyter, Berlin-New York, 2000.
- [M₁] Y. MOTODA, On Biquadratic Fields, Mem. Fac. Kyushu Univ. Series A 29-2(1975), 263-268.
- [M₂] Y. MOTODA, On Power Integral Bases for Certain Abelian Fields, Saga University, 2004, Ph.
 D. Thesis, pp. 31.
- [MN] Y. MOTODA and T. NAKAHARA, Power integral bases in algebraic number fields whose Galois groups are 2-elementary abelian, Arch. Math. 83(2004),309-316.
- [MNS] Y. MOTODA, T. NAKAHARA and S. I. A. SHAH, On a problem of Hasse for certain imaginary abelian fields, J. Number Theory 96 (2002), 326-334.
- [PMN] K. PARK, Y. MOTODA and T. NAKAHARA, On integral bases of certain real octic abelian fields, Rep. Fac. Sci. Engrg. Saga Univ. Math. 34-1 (2005), 1-15.
- [PNM] Y. MOTODA, T. NAKAHARA and K. PARK, On integral bases of the octic 2-elementary abelian extension fields, submitted.
- [SN] S. I. A. Shah and T. Nakahara, Monogenesis of the rings of integers in certain imaginary abelian fields, Nagoya Math. J. 168 (2002), 85-92.
- [Wa] L. C. WASHINGTON, Introduction to cyclotomic fields, Graduate texts in mathematics 83, Springer-Verlag, New York-Heidelberg-Berlin, 1997.
- [Wi] K. S. WILLIAMS, Integers of buquadratic fields, Canad. math. Bull., 13(1970), 519-526.

Kyoung Ho Park E-mail: park@suuri2.ma.is.saga-u.ac.jp Toru Nakahara E-mail: nakahara@ms.saga-u.ac.jp Yasou Motoda E-mail: motoda@as.yatsushiro-nct.ac.jp