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Abstract. Let K be an abelian field whose Galois group is 2-elementary abelian
over the rationals Q. If an octic field K is monogenic and a quadratic subfield with
odd discriminant and a quartic subfield of K are linearly disjoint, then K coincides
with the field Q(v/=1, V2, v—3), namely K is equal to the cyclotomic field Q(Caq)
[MN]. In this article, we explain how to prove that all the real octic fields K are
non-monogenic, that is, the rings Zx of integers in K do not have any power integral
basis. Finally, we propose a few problems on the evaluation on the field index of K
and the non-essential factor (auBerwesentliche Diskriminantenteiler) of K.

§1. Introduction

Let K be an algebraic number field over the rationals Q. We denote the ring of integers
in K by Zx. When Zx = Z[o] for some element o of Zx, it is said that o generates a
power integral basis of the ring Zx or simply Zx has a power integral basis. The field K
is called monogenic if Zx has a power integral basis. It is known as a problem of Hasse
to characterize whether a field K is monogenic or not[Gy]. In this article, we consider the
fields K whose Galois groups are 2-elementary abelian. Since the field K for [K : Q] > 16
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is non-monogenic, i.e., the ring Zx of integers in K has no power integral basis by virtue
of the decomposition theory of a prime number ([Lemma 1, SN], [MNS], [Wa]) and by
the works of K. S. Williams, M.-N. Gras and F. Tanoé for Dirichlet fields K,([Wi], [GT})
it is enough for us to investigate the octic 2-elementary abelian fields. Let k and L be
a quadratic subfield of odd discriminant and a quartic subfield of K, respectively. If k
and L are linearly disjoint, then such an octic field K = kL is non-monogenic except for
the cyclotomic field Q({24) of conductor 24 [MN]. In this paper, we will show an integral
basis of the ring Zx over the ring Z of rational integers in an octic field K [Theorem 1].
Next, being based on the linear equations

ainEiy +apfp+agE3=0 (1<i<7)

with suitable factors a;; of the field discriminant Dy, where (a;;, D;) = 1 and units E;;
as coefficients of valuables a;; in each quadratic subfield k; = Q(\/ﬁj) [Proposition 2],
we can prove that all the real 2-elementary abelian fields K of degree 8 have no power
integral basis[Theorem 2].

§2. Integral bases
. We determine explicit integral bases of some octic fields K whose Galois groups are
2-elementary abelian. We denote the Galois group

(ryo,p | 7:vmn— —ymn,o: Vdn— —Vdn,p: Vaiminil —» —/dimin,€)
of K/Q by G. '

The following lemma and proposition are available to deduce the type of 2-elementary
abelian extension fields K which would have power integral bases.

Lemma 1([SN]). Let £ be a prime number and let F//Q be a Galois extension of degree
n = efg with ramification indez e and the relative degree f with respect to £. If one
of the following conditions is satisfied, then Zr has no power integral basis, i.e., F is
NON-MONOGENnic ;

Vet <n iff=1;

or

(2 etf <n+e-1 iff>2

Proposition 1([MN]). Let a;,a;, - ,a, be square free rational integers and F be the
field Q(+/a1, /a3, -+ , /@) of degree 2,7 > 4. Then F is non-monogenic.

Proof. Without loss of generality, we may assume that there exists at most two generators
V@1, /@2 of F with a; # 1 (mod 4)(1 < j < 2). Then the ramification index e of the prime

177



Kyoung Ho PARK, Toru NAKAHARA and Yasuo MOTODA

is at most 22. Since the Galois group G = Gal(F/Q) is 2-elementary, the relative degree f
of the prime 2 is at most 2, because the inertia subgroup of G is cyclic. In Lemma 1 let ¢
be equal to 2. Then we can deduce e¢f < 222! < 27if f =1 and etf <922.22< o +e—1
if f = 2. Thus F is non-monogenic. 0

By the proof of Proposition 1, if an octic field K is monogenic, it is sufficient to
consider that K contains two quadratic subfields of even discriminant and one of odd
discriminant.

The main theorem is based on the following theorem, which is an extension of a result
of the case of quartic fields [M;, Mg, Wi].

Theorem 1([PMN]). Let K be an octic field Q(v/mn, Vdn, Vdimini8) withd = dydg,m =
mymg, n = nng,mn = 3,dn = 2,dymynyl = 1,d; = 2(mod 4),d;,my,m 2 1 and
dmnd is square free. Let Dy be the field discriminant of the octic field K. Then we have '
Dy = 2'2(dmnf)* and an integral basis of K is:

Zx —Z[l e ‘[— va +\/% 1+v31m1n1 \/ +\/d1m2n2
Vin + \/dz'mmz V + \/Eﬁ + 61\/32?7’&2”1 + ey Ezmmzz]

where e; = £1 (i = 1,2),e; = dymy, e; = dymy (mod 4).

§3. Non-monogenic field

It is known that in the case of dymin; = 1 that is, there exist a quartic subfield L
and a quadratic k of K with (Dy, Di) = 1, the fields K are non-monogenic except for the
cyclotomic field Q((a4) of conductor 24 [MN], where Dp means the discriminant of an
algebraic number field F' over Q. From now on, we consider the case of dymin; > 1 and
as an application of Theorem 1, we can slightly generalize Proposition 5 in [MN], whose
proof was done using the relative different with respect to K over a suitable quadratic
subfield. We assume that K is monogenic.

Let

_bn/_+b2\/%+bg‘ +‘/d—n 1+“21m1n1 +b5“’mn+2' 1MaT2

b Vidn + daminyd b \/ m + Vdn + e/ damani £ + exv/damynal
6
2 4

be a generator of a power integral basis of Zx. Now we calculate a factor (E—-¢o)(E-¢€0)
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of the discriminant dg q(€) = A? [1,5’52,53’54,65’56,57] of & number ¢;
€-€)E-¢)

{(sz + b +bg + ———)\/d—n-!— (b3 + = )\/Zi_n_z+ (b6 + ._2_) Dol + eV damanut Vf'izzmznl?}
x {(2b2 +b+be+ «/&R+(b3+ 2\vdm - (b6+b7_z)m_bveu/ﬁzmzn1?} .

= {(2ba+55 4+ bo + )V + b3+_)¢,7,;} {(bs+9-7-‘32) pa—r, +b7en/ar—72m2n1}

= {(2b2 + bs + bg)? + (2bgbr + babr + bebr) + —Z—} dn + (b3? + bsbr + —Zl—)dm

2,.2
— (bg? + bebrez + ”7 2% dymamal — bredmamt
2 by? daf
+ {(22b2b3 + 2b32 + 2babg + 2b3by + 2boby + bgby + %—)d — (bsb'(eldzf + L?.?éﬂ_"’_) } vmn,

namely, this factor is an integer of the quadratic field k; = Q(v/mn) of the fixed field by
the subgroup < 0, p > in G. Then we denote it by n1; = B + C(y/mn). Thus we obtain

2 2
B/d, = {b32 + bg? + baby + %} din + (ba2 + bsbr + %—) dym

2

bs + bgbr + -Z-) myngf —

b7ZMQTL1[
4

(d1 (m +n) — (myng + many)f)

= {di(m +n) - (d1n4+ 4k + dym + 4k)} = 0 (mod 2),

by dymin € = 1+ 4k (mod 8) and m + n = 0 (mod 4), since mingd - 1 = dyminnaf? +
4mynolk = din+4k (mod 8) and mon f-1 = dymymgn?e®+4mon, bk = dym+4k (mod 8).

by? 26,6,0
C/dz = (b5b7 + '—;‘-)dl - (beb7€1e+ b7 62281 )
2
= bebo (d1 — 1) + 21 (dy — ezerf) = 0 (mod 2)

2
by e; = dymy, €; = din; (mod 4), since d; — ezl =dy — dmini € = di(1 — dimamf) =
0 (mod 4). So we can write 7y, = (§—£%)(§ —5")”‘” = 2d,E, for an integer By = B, +Cy/mn
in k; = Q(y/mn). By the same computation, we obtain i = (§ — £P)(& — €°)° = LBy,
Ty = (€ — £9P)(€ — £°°)P = d, By for units E; in k;(j = 2,3). By the assumption that Zg
is generated by £, we have

dio(€) = £Nk (0(€)) = Dk,
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where d(a), Nx(a) and N (a) means the different of a number, norm of & and an ideal a

with respect to K/Q, respectively{Wa]. Then, because 7,5 is a partial factor of dx/q(£),

the integers E; should be units in k; = Q(y/mn). Here the following is our basic identity:
(E-€)E-€)Y (- - (E-&)E-EPP=0

for (€ —€7)(€ —€°)P = mu, (€ — €°)(€ — £°)7 = mz and (§ —£7°)(§ — £7°)” = 3. Then we

have the equation

2d2E1 - ZE’Z - d1E3 =0 in k]_ = Q(\/ Dl), D1 =m 2m2 Ny 277,2,

where E;, E; and E; are units in k; .
In the same way, we obtain seven equations corresponding to each of the seven
quadratic subfields k; of K.

Proposition 2. If K = Q(y/mn, Vdn, Vdimini€) is monogenic, then the following
simultaneous equations hold:
(1) EEu + 2d2E12 + d1E13 =0 in kl = Q(\/ﬁl), D1 =M 217'L2 Ny 2n2,

(2) 0By +2mgEp +myEys =0 in ks = Q(vVD3), Dy=d;-2dy-n, - 2n,,
(3) LE3 + 2ngEs +n1Fs3 =0 in ks = Q(v/Ds), D;=d;-2d; - m, - 2my,
(4) 20,Es +2mBa+2mEs=0 in ky=Q(Ds), Di=dy-my -2,
(5)  2dyEsi +miEsy+miBss =0 in ks=Q(vDs), Ds=dy-2my 2np-4,
(6) diEe; +2maEgs + nEe3 =0 in ks = Q(VDe), Dg=2dy-my-2ng-¢,

(7) dlEﬂ + m1E72 + 27‘&2E73 =0 1in k-/ = Q(\/D—',-), D7 = 2d2 . 2m2 Ny . 2,
where each E;; is a unit in the corresponding quadratic subfield k; of K and each D; the
field discriminant of ki, respectively.

For the case of a real quadratic field, the following lemma holds:

, ; ivD
Lemma 2. Let E; be a power g¢’ = 31_11233_‘/_—_ u+12’\/5 >1

in a real quadratic field Q(v/D) with the field discriminant D and @ = o” for o in Q(VD)
and v(# I) in Gal(Q(VD)/Q). Let

a+bE; + cEy =0, (+)
a+bEj+cEy=0

of the fundamental unitey =

for abc # 0. Denote the matriz

1 E; E
1 E, E
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attached to the the equation () by A and the rank of A by rp. Then we have a solution
(a,b,c) of rational integers :

a:tbic#O for p =1,
a b c

UrV5 — Uj'Uk 2‘Uk —-2’Uj

with E; = “;*_'_‘é’;@
Proof. This lemma means that the integral solutions should be on the plane for the rank
rp = 1 of the coefficient matrix A and on the line i.e. the intersection of two planes for
rp = 2, respectively.

First, we consider the case of rp = 1, then for

E=3‘_t;___‘/5
E_ui—vi\/b_
i—‘—_—z—’

E;, E; should be a rational number. Then we have E; = u; = 1 and E; = w = *1.
Hence a &+ b+ ¢ = 0. Second, we assume rp = 2. Then we have

o | Bi Ex Be 1] |1 B |_ O - — O,
a:b:c= -E-; L E 11 E = UpV; — Uk : 2V 1 —20;.
Hence
) e _b__c
UkV; — U Vk - 2'Uk - —2'!)_,'.

g

In the case of any octic field Q(\/m1Mgning, Vdidanina, vVdimini€), by the following
lemma, we can deduce to evaluate the rank rp of a quadratic field Q(vD) for a few
cases with respect to the order of values dy,2dz, m1,2mz,ny,2n2, £ in the set of seven

parameters.

Lemma 3. Let denote the set {dy,2dz, my,2ma,ny,2n2,£} by D. Then it holds that:

(1) For one parameter s in D, there exist only four quadratic subfields k; whose dis-
criminants D; are divisible by s.

(2) For two parameters s,t z’n‘D, there exist only two quadratic subfields k; whose

discriminants D; are divisible by st.

(3) Let s,t,u be three parameters in D, such that stu is a divisor of the field discrimi-
nant of D; of kj. Then there exists only one quadratic subfield k; whose discriminant D;
is divisible by stu.
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§D
1
seven equations in Proposition 2, such that there exist just four fields k, ks, k4, k¢ Whose

discriminant is divisible by m;.
(2) We can do the claim (2) of

Proof. (1) We can confirm the claim (1) for each of =7 parameter in D from

5 ) = 21 pairs of parameters in D by the same way

as in (1). For instance, there exist just two fields ks, k7 whose discriminants are divisible
by dyms.

(3) We assume that D; = stua and D; = stub. Then we have D;D; = (stu)?ab.
However, the quadratic subfield Q(+/ab) does not coincide with any k;(1 < j < 7). 0

Remark 1. We can confirm that the number of triplets (s,t,u) within the order of

parameters in D is equal to 28 =7 x 1 X (3) < (ﬂ3D> = 35 such that each of stu is a

divisor of the field discriminant D; of k;.

Next, we prepare the key lemma for the proof of Theorem 2.

Lemma 4. For the set D = {a,b,c,d,e, f, g} of seven positive rational integers, assume
that a > b > ¢ > max{d,e, f,g} andd > fora>b>c 2 max{d,e, f,g} and d > f.
Then _
(1) For the field Q(Vbest), where s,t € D\{a,b,c} and units E; in Q(Vbest), the rank
Toest Of the equations

a+uE; +vE; =0,

a+uE; +vE, =0,

with {u,v} = D\{a,b, ¢, 8,t} is equal to 1.
(2) For the field Q(v/astu), where s,t,u € D\{a,b,c} and units E; in Q(Vastu), the rank
Tastu Of the equations

b+CEj+'UEk = 0,

b+ cE; + vEr =0,

with {v} = D\{a,b,c,s,t,u} is equal to 1.

Sketch of Idea. Our idea for the proof of this lemma is as follows. For the quadratic sub-
field k including the coefficients of the simultaneous equation (x), if the field discriminant
- Dy is divisible by the biggest parameter(casé (1)) or the second and the third ones(case
(2)), since the fundamental unit(> 1) of k is relatively big, the ratios for the line in Lemma
2 would not be permitted. Thus the ranks of the coefficient matrix for both cases should
be equal to one, respectively, namely any integral solution of (%) lies on the plane[PMN].

[
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Finally, we show the following main theorem, which is a generalization of a proto-
type[PMN].

Theorem 2. Let K = Q(y/a1,*++ ,+/Gr ) be the 2-elementary abelian extensions over Q
whose degree 2" is greater than 8 or real octic ones for square free integers ay,- - ,@r.
Then the fields K are non-monogenic.

Sketch of Proof. By Proposition 1, it is enough to consider an octic field K. Let
(2) = £,°--- £,° be the prime ideal decomposition of a rational prime 2 in K. For the
ramification index of 2, if e < 1, then by Lemma 1 and the relative degree f of a prime
9is at most 2, we have 1-2! < 8or1.22 < 8+1—-1fore=1and2-2' <8
or2-22 < 84+2—1 for e = 2, namely K is non-monogenic. Then in the case of
e > 3, we can deduce that the type of an octic field K is K = Q(,/a1, /a2, /a3), where
a; =mn=3,a, = dn = 2,a; = dymym £ = 1 (mod 4), for d = dida, m = myma,n = MmNy
and dmn{ is square free. Put D = {dy,2dy, m1, 2mg, ny, 2y, £}. We denote again by
{a,b,c,d,e, f,g} any transposition on the seven parameters in D. Without loss of gener-
ality, we may assume that a > b > ¢ > max{d, e, f,g}. Using Lemma 4, it is enough for
us to consider the following two cases.

Case (I). The field K includes k;, = Q(vabct) for some t € D\{a,b, c}, for instance,
t=d.

Case (II). The field K does not include the field Q(v/abcs) for any s € D\{a,b,c}.

In the case (I), we can deduce that the four parameters a, b, ¢, d with ¢ > d must lie on
suitable two planes and in the case (II), a, b, e, g with e > g do on four planes, respectively.
However, the order of the parameters would be destroyed. Then we can prove that any
real octic fields K does not have a power integral basis[PNM]. 0

Remark 2. Recently, in [PNM] we proved that all the 2-elementary abelian fields K with
degree [K : Q] > 8 are non-monogenic exept for the field Q(W=T1,v2,v=3) = Q((a)-

Problem. For a primitive elment £ in K, let Ind(¢), M(K) and m(K) be the index
1/‘11’%9! of an elemnet £, the minimum index rsréi}ré{lnd(&)} of K and the field index
ged{Ind(€)} of K, respectively. Let the fields K run through all the real octic fields
ek

whose Galois groups are 2-elementary abelian. Then evaluate the values of

i%f m(K) and 'u}}f m(K),
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respectively.
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