
Vanishing cycles over general bases
after P. Deligne, O. Gabber, G. Laumon and F. Orgogozo $(^{*})$

Luc Illusie

1. Historical sketch

1.1. Almost forty years have elapsed since Milnor introduced, for a germ of analytic
map $f$ : $(\mathbb{C}^{n+1},0)arrow(\mathbb{C}, 0))$ having an isolated singularity at the origin, what is now
called the Milnor ball $B$ and the Milnor fibration $t\vdasharrow V_{t}=f^{-1}(t)\cap B$ of $f$ at $0$ . About
at the same time, Grothendieck defined the functors $R\Psi$ and $R\Phi$ , globalizing Milnor’s
constructions and proving in passing his conjecture that the eigenvalues of the monodromy
acting on $H^{*}(V_{t}, \mathbb{Z})$ are roots of unity. He also constructed and studied analogues in \’etale

cohomology. His theory, written up by Deligne in [SGA 7], has had immense applications.
Before turning to the main topic of this talk, let me briefly recall the definition of the

functors $R\Psi$ and $R\Phi$ in the \’etale context. Let $f:Xarrow S$ be a morphism of schemes, where
$S$ is a henselian trait, with closed point $s$ , generic point $\eta$ , and generic geometric point $\overline{\eta}$

defining $\overline{s}$ over $s$ . Fix some coefficients ring $\Lambda$ , which for simplicity we $\mathrm{i}o$ose to be $\mathbb{Z}/\ell^{\nu}(\ell$

a prime invertible on $S,$ $\nu\geq 1$ ) (there are variants with $\mathbb{Z}_{\ell},$ $\mathbb{Q}_{\ell},$
$\overline{\mathbb{Q}_{\ell}}$). For $F\in D^{+}(X_{\eta}, \Lambda)$ ,

the complex of nearby cycles $R\Psi F$ (of $(F,f)$ ) is a complex on the geometric special fiber
$X_{\overline{\epsilon}}$ defined by

(1.1.1) R\Psi F=-i*R九 F,

where $\overline{i}$ : $X_{\overline{s}}-$

.
$arrow X_{(\overline{\epsilon})}$ and $\overline{j}$ : $X_{\overline{\eta}}arrow X_{(\overline{l})}$ are deduced by pull-back ffom the maps

$\overline{i}$ : $\overline{s}arrow S_{(\overline{\epsilon})’ J}$ : $\overline{\eta}arrow S_{(\overline{s})}$ , with $S_{(\overline{s})}$ the strict localization of $S$ at $\overline{s}.$ If $\overline{x}$ is a $\mathrm{g}\infty \mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$

point of $X$ over $\overline{s}$, and $X_{(\overline{x})}$ denotes the strict localization of $X$ at $\overline{x}$ (the analogue of the
Milnor ball $B$), the fibre $(X_{(\overline{x})})_{\overline{\eta}}$ of $X_{(\overline{x})}arrow S_{(\overline{\epsilon})}$ at $\overline{\eta}$ plays the role of a Milnor fibre, and

(1.1.2) $(R\Psi F)_{\overline{x}}=R\Gamma((X_{(\overline{x})})_{\overline{\eta}}, F)$ .

The complex $R\Psi F$ comes equipped with more structure : if $G$ is the Galois group $\mathrm{o}\mathrm{f}\overline{\eta}$ over
$\eta,$

$R\Psi F$ underlies a complex of sheaves of $\Lambda$-modules endowed with a continuous action of
$G$ compatible with its action on $X_{\overline{s}}(\mathrm{t}$ object of $D^{+}(X_{s}\mathrm{x}_{\mathit{8}}\eta, \Lambda)$ in Deligne’s notations in
[SGA 7 XIII] $)$ . This action plays the role of the monodromy action of $\pi_{1}$ of the punctured
disc on the cohomology of a Mihor fiber $V_{t}$ .

For $F\in D^{+}(X, \mathrm{A})$ , the adjunction map defines an equivariant triangle

(1.1.3) $F|X_{\overline{\epsilon}}arrow R\Psi Farrow R\Phi Farrow$ ,

where $R\Phi F$ is by definition the complex of vanishing cycles of $(F,f)$ . This complex
measures the non local acyclicity of $(F,f)$ : by definition, the stalk of $R\Phi F$ at $\overline{x}$ vanishae
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if and only if $(F,f)$ is locally acyclic at $\overline{x}$ ; this is the case, for example, if both $F$ and $f$

are smooth at $\overline{x}$ .
The functor $R\Psi$ enjoys the following basic properties:
(a) Let $f:Xarrow S,$ $g:\mathrm{Y}arrow S,$ $h:Xarrow \mathrm{Y}$ be $S$-morphisms, with $gh=f$.
(i) If $h$ is proper, then, for $F\in D^{+}(X_{\eta},\Lambda)$ ,

(1.1.4) $R\Psi(R(h_{\eta})_{*}F)arrow R(\sim h\overline{‘})_{*}R\Psi F$.

This is an immediate consequence of the proper base change theorem [SGA 4 XI].
(ii) If $h$ is locally acyclic ($\mathrm{e}$ . $\mathrm{g}$ . smooth), then, for $F\in D^{+}(\mathrm{Y}_{\eta}, \Lambda)$ ,

(1.1.5) $h_{\epsilon}^{*}R\Psi Farrow R\Psi(\sim h_{\eta}^{*}F)$ .

(b) Suppose $f$ of finite type. Then $R\Psi$ preserves constructibility, $\mathrm{i}$ . $\mathrm{e}$ . sends
$D_{c}^{+}(X_{\eta}, \Lambda)$ (resp. $D_{\mathrm{c}}^{b}(X_{\eta},$ $\Lambda)$ ) into $D_{\mathrm{c}}^{+}(X_{\overline{\epsilon}}, \Lambda)$ (resp. $D_{\mathrm{c}}^{b}(X_{\overline{\epsilon}},$ $\Lambda)$ ), where $D_{\mathrm{c}}^{*}$ denotes the full
subcategory consisting of complexes with constructible cohomology, and the formation of
$R\Psi F$ commutes with any dominant change of traits $S’arrow S$ ( $[\mathrm{S}\mathrm{G}\mathrm{A}41/2$, Th. finitude]).

1.2. A natural question arises : how do complexes of nearby cycles vary in families ?
The answer is: in general, not so well, as is shown by the following elementary example,
discussed by Deligne [D]. Let $Y$ be the afline plane $\mathrm{A}_{\mathrm{C}}^{2},$ $f$ : $Xarrow \mathrm{Y}$ the blow-up of the
origin in $\mathrm{Y},$ $E=f^{-1}(0)=\mathrm{P}_{\mathrm{C}}^{1}$ the exceptional divisor. Lines in $\mathrm{Y}$ passing through $0$ are
parametrized by $E$ ; for $t$ in $E$ , let $D_{t}$ be the corresponding line. Fix $t\in E$ . Let $U$ be an
open neighborhood of $t\in E$ in $X$ , sent by $f$ into some open neighborhood $V$ of the origin in
Y. Then $R(f|U)_{*}\mathbb{Z}|V=(f|U)_{*}\mathbb{Z}|V$ is $\mathbb{Z}$ on some sector around $D_{t}\cap V$ and zero elsewhere.
These sectors shrink as $U,$ $V$ do. Therefore the cohomologies of the (generalized) Milnor
fibers around the origin in $\mathrm{Y}$ do not form a nice family : the inductive system $R(f|U)_{*}\mathbb{Z}|V$

around $0$ in $\mathrm{Y}$ , is not essentially constant (and, in addition, each member is, in general,
not analytically constructible, because of the shape of these sectors).

The morphism $f$ above is not flat, but other examples with $f$ flat and with the same
bad properties were given by Deligne [D] and L\^e [L\^e]. L\^e $(loc. cii)$ showed that morphisms
“without blow-ups”, $\mathrm{i}$ . $\mathrm{e}$ . admitting suitable Thom-Whitney stratifications, had a good
theory of “punctual” nearby cycles, $\mathrm{i}$ . $\mathrm{e}$ . the inductive systems considered above were
constructible and essentially constant. Deligne [D] asked whether such good properties
could be obtained after a suitable modification of the base (for instance, in the example
discussed above, the modification by $f$ itself works). This was proven by Sabbah [S], at
least for $j$ proper.

It was not at all clear how to proceed in the \’etale set-up. While trying to prove the
product formula for the constants of the functional equations of $L$ functions for function
fields, in the tamely ramified case, Deligne conceived a theory of nearby and vanishing
cycles valid over general bases. A short summary, without proofs, was written by Laumon
[L1]. This topic long remained untouched, because Laumon’s proof of the product formula
using the $\ell$-adic Fourier transform [L2] rendered Deligne’s approach useless. But it has
been recently revisited by Orgogozo [O], who (with the help of Gabber for certain points)
proved an analogue of Sabbah’s theorem in the \’etale context. Some applications have
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already been obtained (more, I think, are looming in the background). This is what I am
going to report on.

I wish to thank O. Gabber and F. Orgogozo for very helpful comments and discussions
in the preparation of these notes.

2. Oriented products and vanishing toposes

2.1. Let $f$ : $Xarrow S$ be a morphism of schemes, A $=\mathbb{Z}/l^{\nu}(\nu\geq 1)$ , with $\ell$ a prime
invertible on $S$ . Let $F\in D^{+}(X, \Lambda)$ . Let $x$ be a geometric point of $X$ , with image $s$ in $S$,
and let $tarrow s$ be a map of geometric points in $S,$ $\mathrm{i}$ . $\mathrm{e}$ . a geometric point $tarrow S_{(\epsilon)}$ of the
strict localization of $S$ at $s$ . As in 1.1, the strict localization $X_{(x)}$ of $X$ at $x$ plays the role of
a Milnor ball and $(X_{(x)})_{t}$ the role of a Milnor fiber. One would like to construct a complex
of sheaves of “nearby cycles” (resp. “vanishing cycles”) (on a suitable space) whose stalk
at each $(x,t)$ would be $R\Gamma((X_{(x)})_{t}, F)$ (resp. a cone of $F_{x}arrow R\Gamma((X_{(x)})_{t},$ $F)$ ). In order to
do that, Deligne slightly changes the viewpoint. Instead of working with Milnor fibers, he
prefers to work with “Milnor tubes” $X_{(x,t)}$ . Here $X_{(x,t)}$ is the inverse image in the Milnor
ball $X_{(x)}$ of the strict localization $S_{(\mathrm{t})}$ of $S$ (or $S_{(s)}$ ) at $t,$

$\mathrm{i}$ . $\mathrm{e}$ .

$X_{(x,t)}=X_{(x)}\mathrm{x}_{S_{(\cdot)}}S_{(t)}$ .

The “center” $X_{(x)}\mathrm{x}_{S_{(\cdot\rangle}}t$ of the Milnor tube is the Milnor fiber $(X_{(x)})_{t}$ . It coincides
with the tube when $t$ is localized at a maximal point of $S_{(\epsilon)}$ . It turns out that pairs

$(x,tarrow s=f(x))$ are points of a certain topos $X\cross_{S}Sarrow$ under $X$ , called the vanishing topos
of $f$ , Minor tubes $X_{(x,t)}$ the localizations at them, and the complexes $R\Gamma(X_{(x,t)}, F)$ the

stalks at them of a certain complex $R\Psi(F)$ on $x_{\mathrm{X}_{S}}^{arrow}s$ .

2.2. The construction of $x_{\mathrm{x}_{S}}^{arrow}s$ is a particular case of a general construction of
“oriented” fiber products of toposes, which we will, for simplicity, explain only in the
case of \’etale toposes of schemes, see [I2] for the general case. Let $f$ : $Xarrow S,$ $g:Yarrow S$

be morphism of schemes. The oriented fiber product of the \’etale toposes of $X$ and $Y$ over
$S$ is a topos

(2.2.1) $X\cross sYarrow$,

equipped with morphisms $p$ : $\mathrm{x}_{\mathrm{x}_{s^{Y}}}^{arrow}arrow X,$
$q$ : $x_{\mathrm{x}_{s^{Y}}}^{arrow}arrow \mathrm{Y}$ , sometimes denoted

$p_{1},$ $p_{2}$ (or $p_{X},$ $p_{Y}$ ), and a morphism $\tau$ : $gqarrow fp$ , and which is universal for these
data, $\mathrm{i}$ . $\mathrm{e}$ . having the following property : for any topos $T$ equipped with a triple
$(a:Tarrow X, b:Tarrow Y,t : gbarrow ja)$ , there exists a unique morphism $h$ : $Tarrow x_{\mathrm{X}_{S}}^{arrow}Y$

together with isomorphisms $pharrow a,$$qharrow b\sim\sim$ making the composition $\tau*h$ equal to $t$ .
We shall sometimes omit the mention of these isomorphisms.

A defining site $(X\cross s\mathrm{Y})_{\text{\’{e}} \mathrm{t}}arrow$ for $\mathrm{x}_{\mathrm{x}_{S}}^{arrow}Y$ (cf. [Ll, 3.1.3]) is the category of pairs of
morphisms $Uarrow Varrow W$ \’etale above $Xarrow Sarrow Y$ , with the topology generated by
covering families $(U_{i}arrow V_{i}arrow W_{i})arrow(Uarrow Varrow W)(i\in I)$ of the following types :
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(a) $V_{i}=V,$ $W_{i}=W$ for all $i$ and $(U_{i}arrow U)$ is an \’etale covering,
(b) $U_{i}=U,$ $V_{i}=V$ for all $i$ and $(W_{i}arrow W)$ is an \’etale covering,
(c) ( $U’arrow V’arrow$ VV$‘$ ) $arrow(Uarrow Varrow W)$ , where $U’=U$ and $W’arrow W$ is obtained by

base change $\mathrm{h}\mathrm{o}\mathrm{m}$ a map $V’arrow V$ of the \’etale site of $S$ (not necessarily covering).
By the universal property, the projections $pr_{1}$ : $X\cross sYarrow X,$ $pr_{2}$ : $X\mathrm{x}_{S}Yarrow Y$ define

a morphism

(2.2.2) $\Psi$ : $X\mathrm{x}_{S}\mathrm{Y}arrow x_{\mathrm{x}s^{\mathrm{Y}}}^{arrow}$,

such that $\Psi^{-1}(Uarrow Varrow W)=U\mathrm{X}\gamma W$ . By the universal property again, a pair
of geometric points $(xarrow X, yarrow Y)$ and a map $c$ : $g(y)arrow f(x)$ define a point
$(x,y,c)$ of $X\cross_{S}Yarrow$ . There are enough such points. For a $s$heaf $F$ on $X\mathrm{x}_{S}Y$ , the stalk
of $\Psi_{*}F$ at $(x, y, c)$ is $\Gamma(X_{(x)}\mathrm{x}_{S_{(f(\varpi))}}\mathrm{Y}_{(\mathrm{y})}, F)$ , where $\mathrm{Y}_{(y)}arrow S_{(f(x))}$ is the composition
$\mathrm{Y}_{(y)}arrow S_{(g(y))}arrow S_{(f(x))}$ , the second map being given by $c$ . Thi$s$ identification is derived
into an isomorphism

(2.2.3) $R\Psi_{*}F_{(ae,y,c)}\simeq R\Gamma(X_{(x)}\mathrm{x}_{S_{(f(\mathrm{o}\mathrm{e}))}}\mathrm{Y}_{(y)}, F)$

for $F\in D^{+}(X\cross_{S}\mathrm{Y}, \Lambda)$ . We will abbreviate $(x, y, c)$ to $(x, y)$ when no confusion can arise.
For brevity, we will usually write $R\Psi$ instead of $R\Psi_{*}$ .

2.3. For $\mathrm{Y}=S$ and $g=Id_{S}$ , the oriented product $x_{\mathrm{x}_{S}}^{arrow}s(2.2.1)$ is called the vanishing
topos of $f$ . In order to avoid confusion, the morphism $\Psi(2.2.2)$ will be sometimes denoted
$\Psi_{f}$ (or $\Psi_{X}$ ), and the projection $p$ denoted $p\mathrm{x}$ . Here we have $X\mathrm{x}_{S}S=X$ and (2.2.3) is
the formula announced at the end of 2.1, namely, for a point $(x,t)$ of $x_{\mathrm{X}_{S}}^{arrow}s$ ,

(2.3.1) $R\Psi F_{(x,t)}=R\Gamma(X_{(x,t)}, F)$ .

One can also think of $R\Psi F$ as putting together all the $i^{*}Rj_{*}F$ for $i$ : $X‘arrow X\mathrm{x}_{S}S_{(\epsilon)}$ and
$j:X\cross sS_{(t)}arrow X\mathrm{x}_{S}S_{(\epsilon)}$ , as at a point $x$ of $X_{f}$ we have

(2.3.2) $(i^{*}Rj_{*}F)_{x}=R\Psi F_{(x,t)}$ .

Note again that the stalks of $R\Psi F$ are cohomologies of Milnor tubes, not Milnor fibers, and
that the restriction to the cohomology of the corresponding Milnor fiber is not in general
an isomorphism. This question is addressed in \S 3.

By construction one has $p\Psi=Id$, and one shows that the map

(2.3.3) $p_{*}arrow\Psi^{*}$

obtained by applying $p_{*}$ to the adjunction map $Idarrow\Psi_{*}\Psi^{*}$ is an isomorphism. The
identity of $F$ , for $F\in D^{+}(X, \Lambda)$ , gives a canonical map

$p^{*}Farrow R\Psi F$,
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and (with the usual caution) a canonical triangle

(2.3.4) $p^{*}Farrow R\Psi Farrow R\Phi Farrow$ .

The complex $R\Psi F$ (resp. $R\Phi F$) is called the complex of nearby cycles (resp. vanishing
$cycles\rangle$ of $f$ .

When $S$ is the spectrum of a field, the morphism $\Psi$ is an equivalence. In particular,
$R\Phi F=0$ for $\mathrm{a}\mathrm{U}F\in D^{+}(X, \Lambda)$ .

When $S$ is a trait, as in 1.1, the topos denoted $X_{s}\mathrm{x}_{\epsilon,arrow}S$ (resp. $X_{\epsilon}\cross_{\epsilon}\eta$ )
$arrow$

by Deligne
in [SGA 7 XIII] can be identified with the sub-topos $X_{\iota}\mathrm{x}_{S}S$ (resp. $X_{l}\cross s\eta$) of $x_{\mathrm{x}_{S}}^{arrow}s$,
and (2.3.4) induces the usual triangle relating (classical) nearby and vanishing cycles.

2.4. Oriented products and vanishing toposes satisfy various formal properties with
respect to composition and base change, which we will not describe in detail. Let us just
note the following.

(a) Let $f:Xarrow S$ and 9: $\mathrm{Y}arrow S$ be morphisms and let $h:Xarrow \mathrm{Y}$ be an S-morphism.
Then $h$ defines a morphism

$arrowarrow h$: $X\cross sSarrow \mathrm{Y}\mathrm{x}_{S}Sarrow$ ,

compatible with the projections to $X$ and $Y$ and with the morphisms $\Psi_{f}$ and $\Psi_{\mathit{9}},$
$\mathrm{i}$ . $\mathrm{e}$ .

giving rise to 2-commutative diagrams

(2.4.1) $X$

$\{$

$\mathrm{Y}$

$arrow X\cross\Psi_{Xarrow}$

$harrow \mathrm{Y}\cross\Psi_{Yarrow}arrow\downarrow h$

$sS^{p\mathrm{x}}rightarrow X$

$\{$

$sS^{p\gamma}rightarrow Y$

$h$

(b) For $f$ : $Xarrow S$ and $f’$ : $X’arrow S’$ deduced from $f$ by a base change $g$ : $S’arrow S$,

there is a natural $\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}arrow \mathit{9}$ : $X’\cross_{S’}S’arrowarrow x_{\mathrm{X}_{S}}^{arrow}s$ inserting itself in a 2-commutative
diagram

(2.4.2)
$x_{\mathrm{I}}$

’ $x$$\underline{g}$

$\Psi_{X’}$
$\Psi_{\mathrm{X}}\{$

$X’\mathrm{x}_{S’}S^{\primerightarrow}X\cross sSarrow garrow$

$X\downarrow$$P,x\prime \mathrm{I}\underline{\mathit{9}}X$

$p_{X}$

For $F\in D^{+}(X, \Lambda)$ we say that the formation of $R\Psi_{j}F$ commutes uith the base change $g$

if the base change morphism

$arrow g^{*}R\Psi_{X}Farrow R\Psi_{X}\prime g^{*p}$
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given by the upper square of (2.4.2) is an isomorphism.

2.5. On toposes of the form (2.2.1) there are good notions of finiteness and constructibil-
ity $([\mathrm{O}, 7])$ . Assume, for simplicity, that $S$ is noetherian and $X$ and $Y$ are of finite type
over $S$ . A sheaf $F$ of A-modules on $x_{\mathrm{X}_{S}}^{arrow}Y$ is called constructible if there exist finite
partitions of $X$ and $\mathrm{Y}$ into locally closed subsets : $X=\cup X_{i},$ $Y=\cup \mathrm{Y}_{j}$ , such that, for all
$(i,j)$ , the restriction of $F$ to the sub-topos $X_{1}\cross sY_{j}-$ is locally constant of finite type. The
constructible sheaves of A-modules form a thick subcategory of the category of all sheaves
of A-modules, so that the full subcategory $D_{c}^{b}(\mathrm{x}_{\mathrm{x}_{S}}^{arrow}Y, \Lambda)$ consisting of complexes with
bounded, constructible cohomology sheaves is a triangulated subcategory. Constructible
sheaves are the noetherian objects of the category of A-modules and any sheaf of A-modules
is a filtering inductive limit of constructible sheaves.

If $S’arrow S$ is proper and surjective, a sheaf of A-modules on $x_{\mathrm{X}_{S}}^{arrow}s$ is constructible if
and only if its inverse image on $X’\cross_{S’}S’arrow$ is, where $X’=X\cross_{S}S’$ .

3. Main results $([\mathrm{O}])$

3.1. First basic properties.

There are (easy) generalizations of properties (a) (i) and (ii) of 1.1, already mentioned
in [Ll, 3.2]. Let $S$ be a scheme and A be as in 2.1.

Diagram (2.4.1) yields an isomorphism

(3.1.1) $R\Psi_{Y}Rh_{*}Farrow Rh_{*}R\Psi_{X}F\simarrow$

for any $F\in D^{+}(X, \Lambda)$ . When $h$ is prvper, the formation of $Rh*arrow \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{s}$ with base
changes $\mathrm{Y}’arrow Y,$ $S’arrow S([\mathrm{O}, 8.1.1])$ . In particular, in the situation of 1.1, base changing
by $Y_{s}arrow Y,$ $\etaarrow S$ one recovers (1.1.4). Moreover, when $h$ is proper, the second square of
(2.4.1) gives an isomorphism

(3.1.2) $p_{Y}^{*}Rh_{*}Farrow Rh_{*}p_{X}^{*}F\simarrow$

for any $F\in D^{+}(X, \Lambda)$ , which implies an isomorphism analogous to (3.1.1) for $R\Phi$ .
When $h$ is locally acyclic, the base change map given by the first square of (2.4.1)

(3.1.3) $arrow h^{*}R\Psi_{Y}Farrow R\Psi_{X}(h^{*}F)$

is an isomorphism. This generalizes (1.1.5).
Properties (b) of 1.1 turn out to be false in general. As shown by Orgogozo $[\mathrm{O}, 9]$ , in

the case of the blow-up discussed in 1.2, $R\Psi_{f}\Lambda$ has not constructible cohomology, and its
formation does not commute with the base change by $f$ itself. Additional assumptions are
necessary.

Recall that a morphism $g$ : $S’arrow S$ is called a modification (resp. an alteration)
if $g$ is proper, $\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}_{1}\mathrm{i}\mathrm{v}\mathrm{e}$ and induces an isomorphism (resp. a finite morphism) over an
everywhere dense open subscheme, with the property that each maximal point of $S’$ is sent
to a maximal point of $S$ . Orgogozo’s main result is the following theorem, conjectured by
Deligne:
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Theorem 3.2 $[\mathrm{O}, 1.1,5.1,6.1]$ . Let $S$ be a noetherian scheme and $f$ : $Xarrow S$ be a
morphism of finite type. Let $F\in D_{c}^{b}(X, \Lambda)$ . Then there exists a modification $g:S’arrow S$

such that if $f’$ (resp. $F$‘) is deduced from $f$ (resp. $F$) by base change by $g,$ $R\Psi_{f’}F’$ belongs

to $D_{c}^{b}(X’\cross_{S’}S’, \Lambda)arrow$ and the formation of $R\Psi_{f’}F’$ commutes with any base change $S”arrow S’$

(cf. $(\mathit{2}.\mathit{4}\cdot \mathit{2})$).

In particular, after base change by $g$ , the cohomology of the Milnor tube restricts
isomorphically to that of the Milnor fiber: for any point $(x, y)$ of $X’\mathrm{x}_{S^{J}}S’arrow$ , the restriction
map

$R\Psi_{f’}F_{(x,y)}arrow R\Gamma(X_{(x)}’\cross_{S_{(f(u))}’}y, F)$ .

is an isomorphism.

Remarks 3.3. (a) When $S$ is the spectrum of a field, 3.2 says that, after any base change
$S’arrow S,$ $R\Phi_{X’}F’=0$ : in view of 3.2.1, this is Deligne’s universal local acyclicity theorem
[SGA 41/2 Th. finitude, 2.13].

(b) When $S$ is a trait, as in 1.1, one can take $g$ to be the identity, and one recovers
Deligne’s results 1.1 (b).

(c) A slightly more general result is stated in $(loc. cit.)$ : the conclusion is valid if $S$

is quasi-compact and quasi-separated and has a finite number of irreducible components,
and $f$ is of finite presentation. In particular, if $S$ is the spectrum of a valuative ring, as
any modification of a valuative scheme admits a section, one recovers a result of Huber $[\mathrm{H}$,
4.2.4].

(d) Theorem 3.2 can be viewed as an analogue (and strengthening), in the \’etale context,
of Sabbah’s theorem [$\mathrm{S}$ , th.1, th. 2].

(e) One has unfortunately no control on the modification $g$ . For example, if $f$ is smooth
over some open subset $V$ of $S$ and $F$ has locally constant cohomology sheaves on $f^{-1}(V)$ ,
one doesn’t know if one can impose to $g$ to be an isomorphism over $V$ .

(f) One can ask: when is $(f, F)$ already good for $R\Psi,$ $\mathrm{i}$ . $\mathrm{e}$ . $R\Psi F$ belongs to $D_{c}^{b}$ and
is base change compatible ? Here is an important example, a particular case of which is
stated in [Ll, 3.2.5] :

Proposition 3.4 $([\mathrm{O}, 5.1])$ . Let $S$ be a noetherian scheme and $f$ : $Xarrow S$ be a separated
and of finite type morphism. Let $F\in D_{c}^{b}(X, \Lambda)$ . Let $\Sigma$ be the complement in $X$ of the
largest open subset $U$ such that $F|U$ is universally locally acyclic over $S[SGA\mathit{4}\mathit{1}/\rho$ Th.
finitude, Z. $lZJ$ . Assume that $\Sigma$ is quasi-finite over S. Then $R\Psi F$ (resp. $R\Phi F$) belongs

to $D_{\mathrm{c}}^{b}(X\cross sS, \Lambda)arrow(B.\mathit{5})$ and its formation commutes with any base change $S’arrow S$ (cf.
$(\mathit{2}.\mathit{4}\cdot \mathit{2}))$ (in particular, for any point $(x, y)$ of $X\cross sSarrow$ , the cohomology of the Milnor tube
at $(x,y)$ restricts isomorphically to the cohomology of the Milnor fiber). Moreover, $R\Phi F$

is concentrated on $\Sigma \mathrm{x}sSarrow$ .
The proof of the commutation with base change is a standard local to global argument

(cf. Deligne’s theorem $[\mathrm{L}\mathrm{O},$ $4.1.2]$ ). A similar argument shows the constructibility when $\Sigma$

is finite over $S$ . The general case follows from 3.2.

For $\Sigma=\emptyset$ , we get :

41



Corollary 3.5. Let $f$ : $Xarrow S$ be separated and of finite type, with $S$ noetherian, and
let $F\in D_{c}^{b}(X, \Lambda)$ . Then $(f, F)$ is universally locally acyclic if and only if, after any base
change $g$ : $S’arrow S,$ $R\Phi_{X’}(F’)=0$ , where $X’$ is deduced from $X$ by base change by $g$ and
$F’=g^{*}F$ .

4. Outline of proofs

The idea is to reduce 3.2 to the particular case of 3.4 where $f$ is a proper semistable
curve and $F=\Lambda_{X}$ , using cohomological descent and de Jong’s alterations. There are
several steps.

In what follows, we will sometimes say “constructible” for “belongs to $D_{\mathrm{c}}^{b}$”.

4.1. $P\mathrm{r}elimina\eta$ reductions.
(a) If there exists a finite surjective morphism $g:S’arrow S$ such that (with the notations

of 3.2), $R\Psi_{f’}F’$ is constructible and of formation compatible with base change, then $R\Psi_{f}F$

enjoys the same properties.
This relies on a simple cohomological descent argument for $g$ .
(b) By standard reductions we may assume $S$ affine, integral and of finite type over $\mathbb{Z}$

(in particular, excellent and finite dimensional).
On the other hand, as the problem is local upstairs, we may assume $X$ affine. Embedding

$X$ into a projective space over $S$ and extending $F$ by zero, we may assume $f$ proper.

(c) It is enough to show that tbere exists an alteration $g$ : $S’arrow S$ (cf. 3.1 for the
definition) such that $R\Psi_{f’}F’$ satisfies the properties of the condusion of 3.2.

This is, thanks to (a), a consequence of Gruson-Raynaud’s flattening theorem [$\mathrm{G}\mathrm{R}$ , I
5.2.2].

(d) If $N$ is an integer bounding the dimension of the fibers of $f$ , then $R\Psi_{f}$ is of
cohomological dimension $\leq 2N$ on $D^{+}(X, \Lambda)$ .

By an argument of Gabber, this follows from a result of Artin on the join of henselian
rings $[\mathrm{A}, 3.4]$ .

4.2. Key lemmas.
Recall that a morphism $h$ is called plurinodal $[\mathrm{d}\mathrm{J}, 5.8]$ if $h$ is a finite composition of

proper semistable curves, $\mathrm{i}$ . $\mathrm{e}$ . proper and flat morphisms whose geometric fibers have at
most ordinary quadratic singularities (this definition is slightly less restrictive than that
in $(loc. cit.)$ as we don’t require the curves to be quasi-split nor have sections).

Recall, on the other hand, that a proper hypercovering of a scheme $S$ is a simplicial
scheme S. over $S$ such that for any $n\in \mathrm{N}$, the natural map $S_{n+1}arrow \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{k}_{n}^{S}(S.)_{n+1}$ is
proper and surjective. If $\epsilon$ : $S$. $arrow S$ is the augmentation, then, for any $F\in D^{+}(S, \Lambda)$ , the
adjunction map

F– $R\epsilon_{*}\epsilon^{*}F$

is an isomorphism (Deli$g\mathrm{n}\mathrm{e}’ \mathrm{s}$ cohomological descent theorem).
The reduction to the case where $f$ is a proper semistable curve and $F=\Lambda_{X}$ relies on

the following three lemmas.
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Lemma 4.2.1 $([\mathrm{O}, 3.3,1])$ . Let $f$ : $Xarrow S$ be a proper morphism between noetherian,
integral, excellent schemes. Then there exists an alteration $g$ : $S’arrow S,$ urith $S’$ integral,
and a proper hypercovering $x;arrow X’=X_{S’}$ such that each connected component of the
$S’$ -scheme $X_{0}’$ is either integral and plurinodal over $S’$ , or of image a strict closed subset
of $S’$ , and that, furthermore, the generic relative dimension of $X_{0}’$ over $S’$ is at most that
of $X$ over $S$ .

This is an easy consequence of one of de Jong’s main theorems $[\mathrm{d}\mathrm{J}, 5.10]$ , namely that
under the assumptions of 4.2.1, there exists a commutative diagram

$s’ sz_{f}\downarrow’=_{g}^{h}x\downarrow$
$f$

where $g$ and $h$ are alterations, with $Z$ integral, and $f’$ is plurinodal.

Lemma 4.2.2 (Gabber). Let $g$ : $\mathrm{Y}arrow S$ be a proper morphism between oeduoed
noetherian schemes, and let $T=g(Y)$ . Then there exists a commutative diagram

$T_{S’}W\downarrow=_{\tau}^{Y}\downarrow$

$S’arrow S\downarrow\downarrow p$

where the right vertical composition is $g$ , the bottom square is cartesian, $p$ is a blow-up
whose center is nowhere dense in $S$ , and the $mo$rphism $Warrow T_{S’}$ is finite and surjective.

See $[\mathrm{O}, 3.2.1]$ for the proof. We will apply 4.2.2 to the case where $Yarrow T$ is a modification
: the meaning of 4.2.2 then is that such a $\mathrm{m}o$dification is-up to a finite surjective morphism
-dominated by a modification of $T$ induced from one of $S$ (“$\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{t}$

” domination is in general
inpossible, as an example of Koll\’ar shows $[0,3.2.3])$ .

Lemma 4.2.3. Let $S$ be a noetherian scheme and let $f$ : $Xarrow Y$ be $a$ proper $mo$rphism

between $S$-schemes of finite type. Then $Rf_{*}arrow send_{S}D_{\mathrm{c}}^{b}(x_{\mathrm{x}s}^{arrow}S, \Lambda)$ to $D_{\mathrm{c}}^{b}(Y\cross sS, \Lambda)arrow$ .
This is an easy consequence of the classical finiteness theorem and of (3.1.2). In view

of Gabber’s recent results [Ga], one may expect that if $S$ is excellent the properness
assumption on $f$ is superfluous.

4.3. The triple inductions.

It turns out to be more convenient to treat constructibility and commutation with base
change separately.
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4.3.1. Commutation with base change.

One proves by induction on the triples of integers $t=(\delta, r, d)$ , lexicographically ordered,
with $\delta\geq 0,$ $r\geq-2,$ $d\geq 0$ , the following assertion:

$A(t)$ : for every morphism $f$ : $Xarrow S$ , with $S$ excellent, $\dim S\leq\delta,$ $f$ of finite type
and relative dimension $\dim(f)\leq d$ and every $F\in D_{\mathrm{c}}^{b}(X, \Lambda)$ such that $H^{i}F=0$ for $i<0$ ,
there exists an alteration $g:S’arrow S$ such that for any $S’$ -morphism $T’arrow T$ , if we denote
by $K_{TT’}R\Psi_{f}F$ the cone of the base change map

$R\Psi_{f_{T}’}(F_{T})|T’arrow R\Psi_{f_{T’}’}(F_{T’})$ ,

where $f’$ : $X’arrow S’$ is deduced fiom $f$ by base change by $g$ , one has

$\tau\leq\prime K_{TT’}R\Psi_{f}F=0$ .

In view of 4.1 (b), (c) and (d), the existence of a modification $g$ in 3.2 such that the
formation of $R\Psi_{f’}F’$ commutes with any base change follows $\mathrm{h}\mathrm{o}\mathrm{m}A(t)$ for all $t$ .

The assertion $A(\delta, -2, d)$ holds trivially for any $\delta$ and $d$, in particular $A(\mathrm{O}, -2,0)$ holds,
which starts the induction. Let $t=(\delta, r, d)>(\mathrm{O}, -2,0)$ , assume that $A(t’\rangle$ holds for any
$t’<t$ and let us prove that $A(t)$ holds. We first treat a particular case :

(a) Composition with a semistable curve.
Suppose that $f$ can be factored as $f=ba$, where $b$ : $\mathrm{Y}arrow S$ is proper, of relative

dimension $\leq d-1$ , and $a:Xarrow Y$ is a proper semistable curve. Let us show that after a
suitable alteration $g$ : $S’arrow S$ , we have $\tau\leq \mathrm{r}KTT^{J}R\Psi_{f}\Lambda=0$ for every $S’$-morphism $T’arrow T$.

Let $U\subset X$ be the open subset of smoothness of $a$ . The complement $\Sigma=X-U$ is
finite over Y. As $b$ is of relative dimension $\leq d-1$ , by the induction assumption we may
assume, up to base changing by an alteration $S’arrow S$ , that $\tau\leq\prime K_{TT’}R\Psi_{b}\Lambda=0$ . By the
basic property (3.1.3), as $a_{U}=a|U$ is smooth, we then have

$0=a^{-*}U\tau\leq\prime K_{TT’}R\Psi_{b}\Lambda=\tau\leq\prime K_{TT’}R\Psi_{f}\Lambda|U$.

Hence $\tau\leq\prime K_{TT’}R\Psi_{f}\Lambda$ is concentrated on $\Sigma$ , and it suffices to show that

$a^{-}\Sigma*\tau\leq rK_{\tau\tau\prime}R\Psi_{f}\Lambda=0$ .

Now
$a\Sigma*\tau\leq\prime K_{TT’}R\Psi_{f}\Lambdaarrow=\tau\leq\prime Ra_{*}K_{TT’}R\Psi_{f}\Lambdaarrow$,

and by the basic property (3.1.1) we have

$Ra_{*}K_{TT’}R\Psi_{f}\Lambdaarrow=K_{TT’}R\Psi_{b}(Ra_{*}\Lambda)$ .

As $Ra_{*}\Lambda$ is in $D_{\mathrm{c}}^{b}(\mathrm{Y}, \Lambda)$ and cohomologically concentrated in nonnegative degrees, by the
induction assumption again, we may assume, up to base changin$gS$ by an alteration that
$\tau\leq\prime K_{TT’}R\Psi_{b}(Ra_{*}\Lambda)=0$ , hence $\tau\leq\prime K_{TT’}R\Psi_{f}\Lambda=0$ as required.
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(b) The general case.

We may assume $F$ concentrated in degree zero. By 4.1 (b) we may assume furthermore
that $S$ is integral, affine, of finite type over $\mathbb{Z}$ and $f$ is proper. Embedding $F$ into a finite
sum of sheaves of the form $p_{*}C$ for $p:Zarrow X$ finite and $C$ constant and using $A(\delta, r-1, d)$

and (3.1.1) we reduce to the case $F$ is constant, and finally to $F=\Lambda_{X}$ . Usin$g$ cohomological
descent by a proper hypercovering of $X$ whose components are disjoint sums of integral
schemes finite over $X$ , we may assume $X$ integral. Now apply the key lemma 4.2.1 to
$f$ . Up to changing notations we may $\mathrm{a}ss$ume that $S=S’,$ $X=X_{S’}$ . By cohomological
descent we have $\Lambda_{X}=R\epsilon_{*}.\Lambda_{X}.$

’ hence (by (3.1.1))

$K_{TT’}R\Psi_{X.*}\Lambda=R_{\mathcal{E}}^{arrow}K_{TT’}R\Psi_{X’}$. A.

It suffices to show that, for $n\geq 0$ ,

$(*)$ $\tau\leq\gamma-nK_{TT’}R\Psi_{X_{n}’}\Lambda=0$ .

Recall that $X_{0}’$ is a disjoint sum of schemes $(X_{0}’)$: such that $(X_{0}’)_{1}arrow S$ is either plurinodal
or of image a proper closed subset of $S$ . The first case is disposed of by (a). The second
one follows from the induction assumption ($\dim f’((X_{0}’)_{i})<\delta$ , thanks to 4.1 (a) and key
lemma 4.2.2. This proves $(^{*})$ for $n=0$. The case $n>0$ follows from the induction
assumption $(r-n<r)$ .

4.3.2. Constructibility.

In order to prove that there exists a modification $g:S^{l}arrow S$ such that, with the notations
of 3.2, $R\Psi_{f’}F’$ belongs to $D_{c}^{b}$ ($X’\cross_{S’}Sarrow$ ‘, A), it is again enough to show, by induction on
the triples of integers $t=(\delta,r, d)$ , lexicographically ordered, with $\delta\geq 0,$ $r\geq-2,$ $d\geq 0$ ,
the following assertion:

$B(t)$ : for $eve\eta$ proper $mo$rphism $f$ : $Xarrow S$ , Utth $S$ excellent, $\dim S\leq\delta,$ $f$ of finite
type and relative dimension $\dim(f)\leq d$ and every $F\in D_{c}^{b}(X, \Lambda)$ such that $H^{i}F=0$ for
$i<0$ , there exists an alteration $g$ : $S’arrow Ss\mathrm{u}ch$ that $\tau<\mathrm{r}R\Psi_{f’}F’\in D_{c}^{b}(X’\mathrm{x}_{S’}S’, \Lambda)arrow$

$($where $f’$ : $X’arrow S’$ is deduced $fwmf$ by base change by $g)^{-}$.

Again $B(\delta, -2, d)$ is trivially true, which starts the induction. Let $t=(\delta, r, d)>$

$(0, -2,0)$ , assume that $B(t’)$ holds for any $t’<t$ and let us prove that $B(t)$ holds. The
strategy is the same as for $A(t)$ .

(a) Composition with a semistable curve.

Suppose that $f$ can be factored as $f=ba$, where $b$ : $Yarrow S$ is proper, of relative
dimension $\leq d-1$ , and $a:Xarrow Y$ is a proper semistable curve. Let us show that after
a $s$uitable alteration $g$ : $S’arrow S,$ $\tau\leq\prime R\Psi f’\Lambda$ is in $D_{\mathrm{c}}^{b}$ . By the induction assumption, we
may assume, up to base changing by a suitable alteration, that $\tau\leq\prime R\Psi_{b}\Lambda$ is constructible.
Therefore it suffices to show that, after base changing by a suitable alteration, a cone $K(a)$

of the canonical map
$arrow a$ “

$\tau\leq\prime R\Psi_{b}\Lambdaarrow\tau\leq fR\Psi_{a}\Lambda$
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is constructible. By the basic property (3.1.3) $K(a)$ is concentrated on $\Sigma \mathrm{x}_{S}Sarrow$ , where
$\Sigma$ is the non smoothness locus of $a$ , which is finite over $Y$ . It follows that it suffices to
check that $\tau\leq \mathrm{r}Ra_{*}K(a)arrow$ is constructible. By 4.2.3 we know that $Ra_{*\leq r}arrowarrow a^{*}\tau R\Psi_{b}\Lambda$ is
constructible, so we are reduced to showing that $\tau_{\leq \mathrm{r}*\leq \mathrm{r}}Ra\tau R\Psi_{f}\Lambdaarrow$ is in $D_{c}^{b}$ . But

$\tau\leq rRa*\tau\leq rR\Psi f\Lambda=\tau\leq\tau Ra_{*}R\Psi_{f}\Lambdaarrowarrow$ ,

and by the basic property (3.1.1),

$Ra_{*}R\Psi_{f}\Lambda=R\Psi_{b}(Ra_{*}\Lambda)arrow$ .

As $Ra_{*}\Lambda$ is in $D_{c}^{b}(\mathrm{Y}, \Lambda)$ , by the induction assumption, up to base changing by a suitable
alteration, $\tau\leq\prime R\Psi_{b}(Ra_{*}\Lambda)$ is constructible and we are done.

(b) The gene$\mathrm{m}l$ case.
The proof follows the lines of 4.3.1 (b).

5. Lefschetz pencils

This section is an application of 3.4, in a situation where the complex of vanishing cycles
can be somehow explicitly calculated.

5.1. Let $k$ be an algebraically closed field of characteristic $p,$ $P$ a projective space of
dimension $>1$ over $k,$ $X\subset P$ a smooth, connected, closed subscheme of $P$ , of dimension
$n+1$ . Let $\overline{F}$ be the dual projective space, parametrizing the hyperplanes in $P$. Let $D$ be
a pencil of hyperplanes, $\mathrm{i}$ . $\mathrm{e}$ . a line in $\check{P}$ . For $t\in D$ we denote by $H_{t}$ the corresponding
hyperplane, defining a hyperplane section $X_{1}=X\cap H_{1}$ of $X$ , and by $D$ the osvis of $D$ , a
codimension 2 linear subvariety of $P$ through which all the $H_{t}$ pass. Recall ([$\mathrm{S}\mathrm{G}\mathrm{A}7$ XVII],
[Dl 5.6], [D24.2] $)$ that one says that $(X_{t})_{t\in D}$ (or $D$ ) is a Lefschetz pencil if the following
conditions are satisfied :

(i) the axis $D$ is transverse to $X$ ;
(ii) there exists a finite closed subset $S$ of $D$ such that $X_{t}$ is smooth for $t\not\in S$ , and

for $s\in S,$ $X_{\epsilon}$ is smooth outside a single closed point $x_{\epsilon}$ , which is an ordinary quadratic
singularity of $X_{s}$ .

If $D$ is a Le&chetz pencil, the sections $X_{t}$ are the fibers of the projection $\tilde{X}arrow D$ , where
$\tilde{X}arrow D$ is the incidence scheme, consisting of pairs of points $(x, t)\in X\cross D$ such that
$x\in X_{t}$ ; $\tilde{X}$ is smooth over $k$ , and coincides with the blow-up of $\check{D}\cap X$ in $X$ .

Let $D$ be a Le&ietz pencil. Put $n=2n’$ (resp. $2n’+1$) is $n$ is even (resp. odd). Let
$p$ be a prime $\neq p$ and A as in 2.1. For each $s\in S$ , let $\overline{\eta}_{\delta}$ be a geometric generic point
of $D_{(s)}$ . Choose also a generic geometric point $u$ of $D-S$ and morphisms $\mathrm{c}:uarrow D_{(\epsilon)}$ .
Recall $(loc. cit,)$ that, for each $s$ , there is an element

(5.1.1) $\delta_{e}\in H^{n}(X_{\overline{\eta}}., \Lambda)(n’)$ ,

well defined up to sign, called the vanishing cycle at $s$ . Thanks to $c,$
$\delta_{\mathit{8}}$ defines an element

(5.1.2) $\delta_{c}\in H^{n}(X_{u}, \Lambda)(n’)$ ,
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also called “vanishing cycle”. Thanks to the Picard-Lefschetz formula, these vanishing
cycles (together with some local characters of order 2 when $n$ is even and $p=2$) determine
the local and global monodromy of the family $H^{n}(X_{t}, \Lambda)_{t\in D}$ . In [SGA 7 XVIII 6.6] it is
proven that if $n$ is odd or $p\neq 2$ , the vanishing $\mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}\pm\delta_{c}$ are conjugate under the action
of $\pi_{1}(D-S, u)$ on $H^{n}(X_{u}, \Lambda)(n’),$ $\mathrm{i}$ . $\mathrm{e}$ . under the action of the monodromy group, image
of $\pi_{1}(D-S, u)$ in $\mathrm{G}\mathrm{L}(H^{n}(X_{u}, \Lambda)(n’))$ . In [D2, 4.2.8], Deligne showed that if $n$ is even and
$p=2$ , the same is true provided that $\Lambda=\mathbb{Q}_{\ell}$ and $D$ is sufficiently general ( $\mathrm{i}$ . $\mathrm{e}$ . belongs
to a suitable open subset of the grassmannian of lines in $\check{P}$). He also added :

“Il devrait resulter d’une th\’eorie-non \’ecrite-des cycles \’evanescents pour une base de
dimension $>1$ que, pour un pinceau de Lefschetz transverse, les cycles \’evanescents pris
au signe pr\‘e$\mathrm{s}\pm\delta$ sont tous conjugu\’es sous le groupe de monodromie et que la g\’eom\’etrie
de la situation (en particulier, le groupe de monodromie) ne d\’epend pas du pinceau de
Le&ietz transverse choisi.”

$\mathrm{R}\mathrm{e}\mathrm{c}_{\vee}\mathrm{a}\mathrm{n}$ that a Lefschetz pencil $D$ is said to be transverse if it is transverse to the smooth
locus of the dual variety $\check{X}$ , an integral closed subscheme of $\check{P}$ of dimension $\leq\dim P-1\vee$ ’

which is the set of points $t\in\check{P}$ such that $H_{t}$ is not transverse to $X$ . In other words, $X$

is the image of the projection to $\check{P}$ of the nonsmoothness locus over $\check{P}$ of the incidence
scheme $Z\subset X\cross\check{P}$ ( $Z$ consists of pairs of points $(x,t)$ such that $x\in X_{t}$ ). If $p=2$ and $n$

is even, a Lefschetz pencil is not necessarily transverse.
Deligne’s expectation proved to be true. Orgogozo indeed shows:

Theorem 5.2 ( $[\mathrm{O}, 11.2]$ . Let $X\subset P$ and $\Lambda=\mathbb{Z}/p\nu$ be as in 5.1, and let $D\in\check{P}$ be a
Lefschetz pen$\mathrm{c}il$ . Then, urith the above notations :

(i) The vanishing cycles $\pm\delta_{\mathrm{c}}\in H^{n}(X_{u}, \Lambda)(n’)$ are conjugate under the monodromy
group $G={\rm Im}\pi_{1}(D-S, u)arrow \mathrm{G}\mathrm{L}(H^{n}(X_{u}, \Lambda)(n’))$ ;

(ii) $G$ is the image of the homomorphism $h$ : $\pi_{1}(\check{P}-\check{X}, u)arrow \mathrm{G}\mathrm{L}(H^{n}(X_{\mathrm{u}}, \Lambda)(n’))$ , in
particular, is independent of $D$ .

Note that here $D$ is not assumed to be trtsverse, and one doesn’t need to take $\Lambda=\mathrm{Z}\ell$

or $\mathbb{Q}_{\ell}$ . The proof of (ii) is due to Gabber (letter to Orgogozo, 3/14/2005).

5.3. Sketch of proof.
Let $G_{0}$ be the image of $h$ . It is equivalent to show (i) and (ii), or (i1) $(\mathrm{i}. \mathrm{e}. G=G_{0})$

and
$(\mathrm{i}’)$ The vanishing $cycles\pm\delta_{c}\in H^{n}(X_{u}, \Lambda)(n’)$ are conjugate under $G_{0}$ .
(a) We will first sketch the proof of $(\mathrm{i}’)$ . Let, $Z\subset X\cross\check{P}$ be the incidence scheme

considered above, and
$f$ : $Zarrow\check{P}$

be the projection, so that, for $t\in\check{P},$ $f^{-1}(t)=X\cap H_{t}=X_{t}$ . Using vanishing cycles for
$f$ , the proof closely follows Lefschetz’s proof in the transcendental case, explained in [Dl,
5.4]. Let $\Sigma$ be the nonsmoothness locus of $f$ . This is a smooth closed subscheme of $Z$ ,
consisting of points $(x, t)$ such that $H_{t}$ is tangent to $X$ at$\vee x$ , in other words, $\Sigma=\mathrm{P}(N)$

where $N$ is the normal bundle of $X$ in $P$ . By definition, $X=f(\Sigma)$ . Let $X_{0}$ be the open
subset of .fir whose dosed points $s$ are such that $X_{s}$ has a unique singular point $x_{\epsilon}$ , which
is ordinary quadratic, and $\Sigma_{0}$ the inverse image of $\check{X}_{0}$ in $\Sigma$ . By definition $X_{0}$ contains
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$D\cap\check{X}$ , and we may assume that $D\cap\check{X}$ is nonempty. Set $U:=\check{P}-\check{X}$ and let $f_{U}$ : $Z_{U}arrow U$

be the restriction of $f$ . As $fu$ is proper and smooth, the sheaf $R^{n}f_{U*}\Lambda$ is lisse. Let

$p_{2}$ : $\check{X}_{0}\mathrm{x}_{P}Uarrowarrow U$

be the second projection. Applying 3.2 to the restriction of $f$ over $\check{P}-(\check{X}-\check{X}_{0})$ , whose
nonsmoothn\’es locus $\Sigma_{0}$ is radicial and surjective over $\check{X}_{0}$ , and using the classical locaJ
Leffichetz theory [SGA 7 XV \S \S 2, 3], one defines a set-theoretic local system of order 1 or
2

$\pm\delta\subset p_{2}^{*}R^{n}f_{U*}\Lambda(n’)$ ,

whii plays the role of a universal local vanishing cycle. In particular, its fiber at each
point $c:uarrow s$ of $\check{X}_{0}\cross pUarrow$ chosen above is the vanishing $\mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\pm\delta_{c}\in H^{n}(X_{\mathrm{u}},\Lambda(n’))=$

$(R^{n}f_{U*}\Lambda(n^{j}))_{\mathrm{u}}arrow=(p_{2}^{*}R^{n}f_{U*}\Lambda(n’))_{\mathrm{c}}(5.1.2)$ . As $\check{X}_{0}$ is nonempty, hence irreducible,
$\check{X}_{0}\cross pU$ is connected. If $c$ : $uarrow s,$ $c’$ : $uarrow s’$ are two points, one can choose a path
$d:carrow c’$ . $\mathrm{A}\mathrm{s}\pm\delta$ is a local system, $d\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{s}\pm\delta_{c}\mathrm{t}\mathrm{o}\pm\delta_{c’}$ . The image of $d$ by $p_{2}$ is a path
ffom $u$ to $u$ in $U,$ $\mathrm{i}$ . $\mathrm{e}$ . an element $g$ of $\pi_{1}(U, u)$ . The isomorphism ffom $(p_{2}^{*}R^{n}f_{U*}\Lambda(n’))_{\mathrm{c}}$ to
$(p_{2}^{*}R^{n}f_{U*}\Lambda(n’))_{\mathrm{c}’}$ defined by $d$ coincides with the automorphism of $H^{n}(X_{u}, \Lambda(n’))$ defined
by $g$ . In other words, there is an element $g\in\pi_{1}(U, u)$

.
such that $g\delta_{c}=\pm\delta_{\mathrm{c}’}$ .

(b) Let us now sketch the proof of (ii). We may assume that $\check{X}$ is a hypersurface
(otherwise $G=G_{0}=\{1\}$ ). When $p\neq 2$ or $n$ is odd, $\pi_{1}(D-S,u)$ acts on $H^{n}(X_{u}, \Lambda)$

through its tame quotient $\pi_{1}^{t}(D-S, u)$ , and the corresponding homomorphism on the tame
quotients $\pi_{1}^{t}(D-S, u)arrow\pi_{1}^{t}(\check{P}-\check{X},u)$ is surjective [SGA 7 XVIII 6.1], so the conclusion is
immediate in this case. When $p=2$ and $n$ is even, the actions on $H^{n}(X_{\mathrm{u}}, \Lambda)$ of the inertia
$\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}_{8}$ of $D$ around the points of $S$ are non necessarily tame: they are given by characters
of order two associated to quadratic extensions which can be wildly ramified. Moreover,
the homomorphism $\pi_{1}(D-S, u)arrow\pi_{1}(\check{P}-\check{X}, u)$ is not surjective. Thus, in this caee, a
new argument is needed. Here is the idea. Let $\mathrm{Y}$ be the (connected) Galois \’etale cover of
$U$ given by $G_{0}$ . One has to show that the pull-back $Y_{D}:=Y\cross p(D-S)$ of $Y$ to $D-S$ is
still connected. Let $\overline{Y}$ be the normalization of $F$ in $\mathrm{Y}$ , and let $W=\check{P}-(\check{X}-\check{X}_{0})$ . A local
study of $Y$ around points of $\check{X}_{0}$ shows that the restriction $\mathrm{o}\mathrm{f}\overline{Y}$ to $W$ is smooth over $k$ , as
well as $\overline{\mathrm{Y}}_{D}:=\overline{\mathrm{Y}}\mathrm{x}_{P}D$ . Thaee schemes $\overline{Y}_{D}$ are the fibers of a proper and smooth morphism
$g$ : $Aarrow B$ where $B$ is the open subset of the Grasmannian $\mathrm{G}\mathrm{r}(1, P)$ consisting of Lefschetz
pencils. By a theorem of Bertini, the generic fiber of $g$ is geometrically connected, hence
each $\overline{\mathrm{Y}}_{D}$ is connected by Zariski’s theorem, and in particular $Y_{D}$ is connected. The main
point in the local study is a refinement of [SGA 7 XV 1.3.2], which says that \’etale locally on
$W,$ $f$ defines a flat double cover of $W$ , \’etale outside $X$

\dagger which is unique up to isomorphism,
and smooth over $k$ .

6. Open problems

6.0. $Var\dot{\mathrm{v}}$ation.

Let $f$ : $Xarrow S$ be separated and of finite type, with $S$ noetherian, and A be as in 2.1.
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If $S$ is a henselian trait, for $F\in D_{c}^{b}(X, \Lambda)$ and $\sigma\in G$ (with the notations of 1.1), there
is defin$e\mathrm{d}$ a morphism, called the variation,

Var(a): $R\Phi Farrow R\Psi F$,

deduced from the action of $\sigma-1$ on $R\Psi F$ [SGA 7 XIII]. This morphism is a finer invariant
than the action of a and its determination in the case of ordinary quadratic singularities
(Picard-Lefschetz formula) is the key to the study of the monodromy of Lefschetz pencils.
What could replace this morphism in the general situation of 2.1 ?

6.1. Duality, perversity.

Let $f$ : $Xarrow S$ and A be as in 6.0.
If $S$ is a henselian trait, according to a theorem of Gabber, the functor $R\Psi$ :

$D_{\mathrm{c}}^{b}(X_{\eta}, \Lambda)arrow D_{c}^{b}(X_{\iota}\cross_{\epsilon}\eta, \Lambda)$ commutes with the dualizing functors $D_{\eta}$ and $D_{\epsilon}$ on $X_{\eta}$

and $X_{\delta}\mathrm{x}_{\delta}\eta$ respectively, defined by RHom$(-, a^{1}\Lambda)$ , where $a$ is the projection to the $\mathrm{b}\mathrm{a}s\mathrm{e}$ ,
$\mathrm{i}$ . $\mathrm{e}$ . there is a natural isomorphism [Il, 4.2] :

(6.1.1) $R\Psi D_{\eta}Farrow D_{\epsilon}R\Psi F\sim$

for $F\in D_{\mathrm{c}}^{b}(X_{\eta}, \Lambda)$ (the proof given in $(loc. cit.)$ for $F$ in $D_{ctf}^{b}$ works also for $F$ in
$D_{\mathrm{c}}^{b})$ . This fact, combined with the right $\mathrm{t}$-exactnes$s$ of $R\Psi$ [BBD, 4.2] (a consequence of
the afline Lefschetz theorem [SGA 4 XIV] $)$ , implies $(loc. cit.)$ that $R\Psi$ is $\mathrm{t}$-exact, and
in particular transforms perverse sheaves into perverse sheaves. Moreover, by another
theorem of Gabber $(loc. cit, 4.6)$ , if $F$ is a perverse A-sheaf on $X$ (for the standard
$\mathrm{t}$-structure), $R\Phi F[-1]$ is perverse.

In general, can one expect similar statements after a suitable modification of $S$ ? Even
the formulation of these requires some preliminary work on the definition of “operations”
in the derived category involving oriented products, which haven’t been considered yet.

6.2. Comparison with the complex analytic case.

For a complex analytic space $\mathcal{X}$ over a disc $D$ of center $0$ , there is defined a functor $R\Psi$

similar to (1.1.1) [SGA 7 XIV 1.3], going from $D^{*}(\mathcal{X}^{*}, \mathbb{Z})$ to $D^{+}(\mathcal{X}_{0}, \mathbb{Z}[\pi])$ , where $\mathcal{X}_{0}$ is the
central fiber, $\chi*$ the restriction of $\mathcal{X}$ over the punctured disc $D^{*}=D-\{0\}$ and $\pi(\simeq \mathbb{Z})$

the fundamental group of $D^{*}$ ;

(6.2.1) $R\Psi F=i^{*}R\overline{j}_{*}(F|\overline{\mathcal{X}}^{*})$ ,

where $i:\mathcal{X}_{0}arrow \mathcal{X}$ is the inclusion and $\overline{j}$ : $\overline{\mathcal{X}}^{*}arrow \mathcal{X}$ the natural projection, $\overline{\mathcal{X}}^{*}$ being the
pull-back of X’ to a universal cover of $D^{*}$ .

Moreover, for a scheme $X$ separated and of finite type over a smooth curve $\mathrm{Y}$ over $\mathbb{C}$ and
$s$ a closed point of $Y$ , there is a comparison theorem between the functor $R\Psi$ associated
to the restriction of $X$ to the strict localization $S$ of $Y$ at $s$ and the functor $R\Psi$ associated
to the complex analytic space X over a disc $D$ centered at $s$ defined by $X/S$ [SGA 7 XIV
2.8].
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For a general morphism of complex analytic spaces there is as yet no analogue of the
vanishing topos and of the functor $R\Psi$ considered in 2.3, and a fortiori no comparison
theorem. It is even perhaps too optimistic to hope for such a general theory. The only
positive indications toward the existence of “some” theory seem to be the following:

(a) In [S] Sabbah showed that if $f$ : $\mathcal{X}arrow S$ is a proper morphism between complex
analytic spaces, then, after base change by a suitable modification, $f$ has, at each point $x$

of X, a “theory of vanishing cycles” (for the constant sheaf Z), in the sense explained in
1.2.

(b) In complex analytic logarithmic geometry, a variant $R\Psi^{\log}$ of the functor $R\Psi(6.2.1)$

is constructed. This functor $R\Psi^{\log}$ is defined for any morphism $f:Xarrow \mathrm{Y}$ of fs $\log(=\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}$

and saturated logarithmic) analytic spaces. It goes $\mathrm{h}\mathrm{o}\mathrm{m}D^{+}(X^{1og}, \mathbb{Z})$ to $D^{+}((X’)^{\log}, \mathbb{Z})$ ,
where $X’$ is the $\log$ space having the $\log$ structure inverse image by $f$ from that of $\mathrm{Y}$ and
the superscript “

$\mathrm{l}\mathrm{o}\mathrm{g}$

” means the associated Kato-Nakayama space (some kind of a “real
blow-up” of the underlying analytic space). By definition $([\mathrm{I}\mathrm{K}\mathrm{N}, 8.1])$ ,

(6.2.2) $R\Psi^{\log}=R\nu_{*}^{\log}$ ,

where $\nu$ : $Xarrow X’$ is the natural projection. In the case where $\mathrm{Y}$ is a disc, with the
standard $\log$ structure given by the origin, $X$ is $\log$ smooth over $\mathbb{C}$ (i.e. of “toroidal
type”) and $f$ “vertical”, which means that the $1\mathrm{o}g$ structure of $X$ is given by the special
fiber (and trivial outside), then one can recover $R\Psi F$ from $R\Psi^{\log}F^{\log}$ for locally constant
abelian sheaves $F$ on $X-X_{0}$ ($F^{\log}$ denoting the natural extension of $F$ on $X^{\log}$ ) $([\mathrm{I}\mathrm{K}\mathrm{N}$,
8.3]). It doesn’t seem, however, that, in the general case, this functor $R\Psi^{\log}$ should yield
a suitable analogue of the functor $R\Psi$ of \S 2.

6.3. Non-abelian variants.

So far there doesn’t seem to exist any theory of nearby cycles in the non-abelian setting
: sheaves of sets, of groups, or-which encompasses both - stacks in groupoids, even in the
classical case, over a trait, as in 1.1. It is not unreasonable to expect that such a theory-
in the “prime to $p$

” case-could shed light on specialization theorems for the (prime to $p$

quotients) of the fundamental groups, and their possiblejumps between generic and special
fibers. In the situation of 2.3, for a morphism $f$ : $Xarrow S$ and a stack in groupoids $F$ on $X$ ,

one can consider the stack in groupoids $\Psi_{*}F$ on $X\cross sSarrow$ , the stack of nearby cycles of $F$ .
It is not clear, however, how to define a stack of vanishing cycles $R\Phi F$ , as already in the
commutative case, the cone of a morphism of Picard stacks is rather a 2-stack. One can of
course ask for analogues of 3.2 and 3.4, when $F$ is constructible and its local automorphism
sheaves are of order invertible on $S$ .

6.4. hbular neighborhoods and rigid geometry.

Let $S$ be a scheme. The topos

(6.4.1) $arrowarrow S:=S\cross sS$ ,

which might be called the vanishing topos of $S$ , is of special interest. Its points are maps
$yarrow x$ of geometric points of $S$ . The defining site considered in 2.2 can be replaced by
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the following simpler one, namely the category of morphisms $Uarrow V$ , with $U$ and $V$ \’etale

over $S$ , with the topology generated by the covering families of the following types : (i)
$(Uarrow V_{i})arrow(Uarrow V)$ , where $(V_{i}arrow V)$ is an \’etale covering ; (ii) $(U_{1}arrow V_{i})arrow(Uarrow V)$ ,
where $(U_{i}arrow U)$ in an \’etale covering and $V_{i}=U_{i}\cross_{U}V$ . A sheaf $F$ : $(Uarrow V)rightarrow F(Uarrow V)$

$\mathrm{o}\mathrm{n}arrow S$ can be viewed as a (nonnecessarily cartesian) section $U\mapsto F(U$, - $)$ of the stack of
sheaves on $S$ satisfying a certain descent condition. If $p_{1},$ $p_{2}$ are the projections $\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}arrow S$

to $S$ , in addition to $p_{1*}=\Psi^{*}(2.3.3)$ , we have here $p_{2}^{*}=\Psi_{*}$ . The oriented fiber product

considered in (2.2.1) can be recovered $\mathrm{h}\mathrm{o}\mathrm{m}Sarrow$ by “usual pull-ba&s’’, i.e. fiber products of
toposes (cf. [Ll, 3.1.3]) :

(6.4.2) $\mathrm{x}^{arrow}\cross s\mathrm{Y}=X\mathrm{x}_{S}arrow \mathrm{Y}$

The existence of fiber products of toposes is proven in [Gi]. Gabber recently observed that
a more direct construction can be given in terms of oriented products, see [I2].

Let now $X$ be a noetherian scheme, $\mathrm{Y}$ a closed subscheme, and $U=X-Y$. The topos

(6.4.3) $\mathrm{Y}\mathrm{x}_{X}Uarrow$,

plays the role of a punctured tubular neighborhood of $Y$ in $X$ . Its points are maps $xarrow y$

of geometric points of $X$ , with $y$ localized in $Y$ and $x$ in $U$ . Such a topos appeared in
the proof of 5.2. If $\mathrm{Y}$ consists of a single closed point $y$ , with $k(y)$ separably closed, then
$Y\cross xUarrow$ is the punctured Milnor ball $X_{(y)}-\{y\}$ .

Let $p_{1}$ : $\mathrm{Y}\mathrm{x}_{X}Uarrowarrow \mathrm{Y}$ and $p_{2}$ : $\mathrm{Y}\mathrm{x}\mathrm{x}Uarrowarrow U$ be the projections. Let $\Lambda=\mathbb{Z}/\ell^{\nu}(\nu\geq 1)$ ,
with $\ell$ a prime invertible on $X$ . For $F\in D_{c}^{b}(U, \Lambda)$ there is a natural base Change map

(6.4.4) $i^{*}Rj_{*}Farrow Rp_{1*}p_{2}^{*p}$,

where $i$ : $\mathrm{Y}arrow X$ and $j$ : $Uarrow X$ are the inclusions. It is easy to check that this is an
isomorphism. This is reminiscent of the (deleted) tubular neighborhood $T_{X/\mathrm{Y}}$ of $X$ along
$\mathrm{Y}$ defined by FUjiwara $[\mathrm{F}, 6]$ , a topos equipp$e\mathrm{d}$ with projections $q_{1}$ and $q_{2}$ to $\mathrm{Y}$ and $U$

respectively, and a map $jq_{2}arrow iq_{1}$ giving rise to an isomorphism similar to (6.4.4). By the

universal property of the topos $Y\mathrm{x}_{X}Uarrow$ , there is a morphisms

$\epsilon_{X}$ ; $T_{X/Y}arrow \mathrm{Y}\cross \mathrm{x}Uarrow$ .

More generally, if $X’arrow X$ is a modification inducing an isomorphism over $U$ and
$Y’=Y\cross \mathrm{x}X’$ , there is a morphism

$\epsilon_{X’}$ : $T_{X/Y}arrow Y’\mathrm{x}_{X’}Uarrow$,

and these morphisms form a compatible system in a natural way. We thus obtain a
(nonnecessarily coherent) morphism

(6.4.5) $\epsilon:T_{X/Y}arrow\tilde{Y}\mathrm{x}_{\tilde{X}}Uarrow$,
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where $\tilde{Y}\mathrm{x}_{\overline{X}}Uarrow$ is the 2-limit of the toposes $\mathrm{Y}’\mathrm{x}_{X’}Uarrow$ . What can be said of $\epsilon$ ? For example,
is it true that $R\epsilon_{*}\Lambda=\Lambda$, assuming $X$ excellent ? Recently, the tubular neighborhood $T_{X/Y}$

has been used (indirectly) by Abbes and T. Saito [AS] in their theory of microlocalization.
Could $\tilde{Y}\cross_{\overline{X}}Uarrow$ be a substitute for $T_{X/Y}$ ?

6.5. Families of pencils.

Let $S$ be a noetherian scheme, $f$ : $Xarrow Y$ an $S$-morphism between schemes separated
and of finite type over $S$ . Assume that $\mathrm{Y}$ is smooth over $S$ with geometrically connected
fibers of relative dimension 1. One can view $f$ as a family of (generalized) pencils
parametrized by $S$ . Let $Z$ be a closed subscheme of $\mathrm{Y}$ , proper over $S$ . Finally let
A $=\mathbb{Z}/\ell^{\nu}\mathbb{Z}$, with $\ell$ invertible on $S$ , and let $F\in D_{\mathrm{c}}^{b}(X, \Lambda)$ . It follows $\mathrm{h}\mathrm{o}\mathrm{m}$ Orgogozo’s
theorem 3.2 that there exists a partition of $S$ into locally closed subschemes $S_{1}’(i\in I)$ ,
and, for each $i\in I$ , an open neighborhood $U_{i}$ of $Z_{i}$ in $Y_{i}$ (denoting by the subscript $i$

the restriction to $S_{i}$ ), such that, for $f_{i}$ : $f^{-1}(U_{1})arrow U_{i}$ induced by $f$ and $F_{1}=F|f^{-1}(U_{i})$ ,
$R\Psi_{f:}(F_{i})$ is in $D_{\mathrm{c}}^{b}(f^{-1}(U_{i})\mathrm{x}_{U_{l}}U_{i}, \Lambda)arrow$ and commutes with base changes $Tarrow U_{i}$ . The proof
is easy, by noetherian induction, observing that for $S$ irreducible, a modification of $\mathrm{Y}$ is
an isomorphism on the generic fiber.

This result, suitably reinforced to take into account the jumps from one stratum to
another, might have some interest in ramification theory, in view of Deligne’s theorem
[LO].
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