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Entrainment and modulation of nonlinear dissipative waves
under external forcing

Hidekazu Tokuda and Takao Ohta
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, JAPAN

INTRODUCTION

Various self-organized patterns emerge in non-equilibrium open systems. Spatio-temporal properties of these pat-
terns have been studied extensively both experimentally and theoretically for many years. For example, mathematical
theories for spiral waves in Belousov-Zhabotinsky reaction have been developed [1]. Reduction methods to represent
pattern dynamics have also been developed [2, 3]. The interaction between localized objects in nonlinear dissipative
systems has been formulated [4].

The effects of external forcing in pattern dynamics have also been studied. One of the typical problems is synchro-
nization of nonlinear oscillators with an externally applied periodic disturbance [1, 5. This is an example of nonlinear
response in a nonequilibrium steady state, which should be developed further in biophysics such as dynamics ol col-
lective network in biological cells. Another reason as to why the effects of external forcing is interested is that it
might be useful to control the mesoscopic structures in material sciences. In fact, there are interesting experiments
of domain dynamics in chemical rcactions adsorbed on metal surfaces [6] and in nonecquilibrium monolayers [7-10].

Here we mention several older studies related to the subjects in the present paper. Experiments of convective
nematic fluids under spatially periodic forcing have been performed [11] and a theoretical study has been available
[12]. Influence of temporal modulation on pattern formation has been investigated in convective fluids [13-15] and in
chemical reactions [16, 17]. Quite recently, experiments and theoretical consideration have began for Turing paiterns
influenced by spatio-temporal forcing. For example, effects of illuminating light on spatially periodic structures and
on spiral waves are investigated in chemically reacting systems [18-21].

The purpose of the present paper is to investigate, theoretically and by numerical simnlations, dynamics of traveling
waves under spatio-temporal external forcing. In our previous paper, we introduced a model set of equations for phase
separated mixtures undergoing chemical reactions [22, 24] and studied synchronization and modulation of motionless
and propagating waves in two dimensions by applying spatially uniform oscillating external disturbance [23]. The
external forcing was imposed by allowing one of the reaction rates space-ime dependent.. Here we generalize this study
to the case of spatio-temporal external forcing and. carry out numerical simulations in one dimension and develop a
theoretical analysis to understand the results of simulations.

To our knowledge, despite the provious studies mentioned above, response of propagating periodic structures to the
space-time dependent external disturbance has not been explored until recently. Zykov et.al. [25] have investigated
spiral wave under traveling wave modulation. In our previous paper [26], we studied propagating waves under spatio-
temporal modulations and considered the case that the spatial period of the external forcing is the same as the
intrinsic period of the traveling waves. The present paper deals with the case where there is a small misfit between
the two periods. A part of the preliminary results has been reported in ref. [27]

The organization of the present paper is as follows. In the next section, we start with a brief explanation of the
model system and introduce the external forcing. To make the present paper sclf-contained, the results of the lincar
stability analysis obtained previously [26] are also described. In section 3, we present localized modulation of traveling
waves under incommensurate external forcing. The special case where the external frequency is equal to zero, i.e,
motionless external forcing is investigated both numecrically and theoretically in section 4. Discussion is given in
section 5 including an analysis of mode selection of the propagating waves.

MODEL EQUATION AND EXTERNAL FORCING

In our previous papers [22-24], we introduced a hypothetical chemical reaclion with three chemical components A,
Band C

AB Bl o2y (1)

with the reaction rates 71, y2 and v3. We assumc that other components are also involved in the chemical reaction,
which are supplied to the system and removed from the system sufficiently rapidly so that they are constant in both
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space and time. Therefore these components modify only the reaction rates. The reason as to why we consider the
cyclic chemical reaction is that the system is maintained far from equilibrium.

In order to realize a spatial order as well as temporal order, we assume that A and B species tend to segregate each
other at low temperatures and the component C is neutral both to A and B components. By introducing the local
concentrations ¥4, ¥ and ¥¢ of A, B and C components respectively, the time-evolution equations are given by [22]

DY ,0F
E—VZWHW,@, (2)
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where ¢ = ¥4 — ¥ and ¢ = Y4 + 5. We have imposed the condition ¥4 + ¥u + ¢ = 1 which is justified by the
assumption of the uniformity of other chemical species as mentioned above. The free energy functional F is given by

F= / dr [g(w;)? - ng + %w“] , (4)

where D and 7 are positive constants. In this free energy, we have ignored, for simplicity, the coupling terms between
¢ and ¢. The last terms in egs. (2) and (3) arise from the chemical reaction (1)

f(t/n¢)=-(*n+%)z/)—(’n—%+73)¢+73, (5)
9, ¢) = % - (% +73) ¢+ (6)

Note that the diffusion term is not considered in eq. (3) because it does not alter essentially the dynamics described
below [24].

The uniform stationary solution of eqs. (2) and (3) is readily obtained as

¥3(v2 — 71)
)= , (1)
T2 + Y23 + YsM
o = ¥3(v2 +71) ®)

0= Y2 + Y23+ V3N

The linear stability of the uniform solution was carried out by putting ¥ — ¥ = c1 exp(M + igz) and ¢ — ¢y =
¢a exp(At + iqr) with ¢; and ¢y constants and by substituting these into eqs. (2) and (3). In this section, we fix the
parameters as D = 1, y; = 0.3 and 43 = 0.05 and the remaining two parameters 7 and v, are varied. At some range
of the parameters, the eigenvalue A is found to be complex. An example is shown in Fig. 1 for 7 = 1.46 and 7, = 0.16
as a function of wave number. Note that the real part becomes positive at a finite wave number g, and the imaginary
part has a minimum at g = g,.

'T'he expressions of g, 7. and the critical frequency w. which is the imaginary part of the eigenvalue at ¢ = ¢, are

given for 7 > 3¢2 by
1/2
7 =3 2
Qe = ( D) > ) ) 9

Te = 3o + 2(m + 72 + 1) '/2, (10)

(11)

) 2 1/2
_ (vm —Y¥ = %2 2)
We=\"" 5 ™ .

The lincar stability analysis gives us the bifurcation diagram shown in Fig. 2 {24]. A motionless periodic pattern
appears in the region indicated by X in Fig. 2 whereas a propagating wave pattern appears in the region +. The
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FIG. 1: The wave-number dependence of Re A(q) (solid line) and Im A(g) (dashed line) for D = 1.0,7 = 1.46, 11 = 0.3,72 =0.16
and vz = 0.05. .
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FIG. 2: Bifurcation diagram for the uniform stationary solution for D = 1, m = 0.3 and vs = 0.05. The full line and the dotted
line are the Hopf bifurcation line and the Turing-type bifurcation line respectively. A traveling wave appears at the parameters
indicated by the symbol + whereas a motionless pattern al the symbol x.

value of 7 at the Hopf bifurcation point for 7y, = 0.16 is 7. ~ 1.46 at which the critical wave number is g, = 0.85 and
the critical frequency w. =~ 0.07.

In order to study the behavior above the bifurcation lines we have carried out numerical simulations of eqs. (2)
and (3) in one dimension. The Euler method is employed with the system size L = 64, the mesh size 0.5 and the time
increrent 0.001 and a periodic boundary condition is imposed.

Figure 3 displays the spatial variation of a propagating wave. Since egs. (2) and (3) arc invariant under the
transformation # — -z, the traveling wave can propagate either to the right or to the left with a certain phase
difference between ¢ and 1. Hereafter we choose (with an appropriate initial condition) a wave traveling to the right
without loss of generality.

The spatio-temporal forcing is introduced as follows. We suppose that the system is exposed through periodically
arrayed slits by illuminating light and the slit moves at a constant velocity /gy with 27/gs the period of the slits.
As a result, we assume that the reaction rate v; is modified such that 43 — 3 + I' where I" represents the effect of
illumination. We shall ignore a term I'¢ arising from the v3¢ term in egs. (5) and (6) providing a sufficiently small
forcing e. In this way, the set of equations (2) and (3) has an additive term

T'(z,t) = ecos(gsz — ). (12)

This is a sinusoidal force traveling to the right at the velocity ©/gs.
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FIG. 3: Spatial profiles of ¥(z,t) (solid linc) and ¢(z,!) (dashed linc) for D = 1.0,7 = 1.6,71 = 0.3, 72 = 0.16 and v3 = 0.05.
Both 9(z,t) and ¢(z,t) are propagating to the right at the same velocity.

LOCALIZED MODULATION OF TRAVELING WAVES

We have carried out numerical simulations of egs. (2) and (3) with the external force (12). When the external
forcing is present, the system size is set to be L = 2mN/q; and gy is varied from 0.2 to 1.6. The integer number N
is changed with gy as N = 10g; so that the system size is always equal to L = 20w. Note that the intrinsic wave
number is given by gc ~ 0.9 for 7 = 1.6 and v, = 0.16. (We shall not use the value of q. = 0.85 at the bifurcation
point 7, = 1.46 but use the value at 7 = 1.6 where numerical simulations will be carried out.) Note also that L is
approximately commensurate with 2r/q,, i.e., Lg./2m ~ 9.

The traveling wave solution is provided without the external forcing, then the forcing term is turned on and cxamine
the asymptotic behavior. Figure 4 summarizes the behavior on the  — g5 plane for the parameters v; = 0.3, v, =
0.16, v3'=0.05, 7 = 1.6 and € = 0.006. As mentioned above, the critical wave number is ¢, =~ 0.9 and the critical
frequency w; = 0.07. There is a region indicated by + around gy = g, and ! = w, where the traveling wave is
entrained with the external force, as expected, so that it propagates at the velocity /gy as in Fig. 5(a). When the
frequency ) of the external forcing is far away from w, but gy = g, as in the region indicated by the diamond symbols,
entrainment breaks down and the traveling wave is modulated such that the amplitude as well as the propagating
velocity is uniformly oscillating. When the velocity is decreased, the amplitude is also decrcased and vice versa as
shown in Fig. 5(b). This uniform modulation was studied in detail in the previous paper [26].

Next, we show the case that the wave length of the trains is different from the spatial period of the external forcing,
i.e., g # g.. When the external frequency ? and the external wave number g5 are much different from w, and ¢,
the traveling wave is modulated both in space and time. The essential difference from the case of q; = g, is that
the modulation is localized in space. A snapshot of the concentration profiles of 9 is displayed in Fig. 6. It is noted
that the envelop of the amplitude is localized as indicated by the arrow. The propagating direction of the locally
modulated region depends on the parameters. In fact, it propagates to the left in Fig. 7(a) in the paramcter region
of the white circles in Fig. 4 whereas the localized modulation propagates to the right in Fig. 7(b) in the region
indicated by the black circles in Fig. 4.

We have not fully succeeded in formulating the localized modulation for g, # g Here we describe a simple argument
to understand the velocily of the localized region. The velocity of the external forcing is given by v 7 = Q/qs and
the velocity of the traveling wave near the bifurcation threshold in the absence of the external forcing is defined by
Ve = We/qc. First we consider the case vy > v, and ¢ 1 > q.. Let us suppose that the variable ¢(x,t) and the external
forcing 1'(x,t) are in phase at the point A and ¢t = 0 as indicated in Fig. 8 This point A traverses at the distance

-v.T during a certain interval I'. The point B of I in Fig. 8 catches up the point A at the point C if 1’ satisfies

Tvy = 2n/qp + Tve. (13)
During this period, the localized region propagates the whole system plus T, so that ils velocity vy has to satisly
Tvp = Ny2mw/q; + To,. (14)

where Ny = Lgs/2m is the number of wave trains of the external forcing. Eliminating T from (13) and (14), one
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FIG. 4: Phase diagram of modulation for g5 # gc and for the parameters 41 = 0.3, 72 = 0.16, 73 = 0.05, 7 = 1.6 and ¢ = 0.006.
At the region indicated by the plus symbols around g, = 0.9 and w, = 0.07 the waves are entrained with the external forcing. At
the region indicated by the diamond symbols for g. = 0.9 a uniform oscillation of modulation occurs. The localized modulation
appears at the region indicated by the black (white) circles where the localized region propagates to the right (left).

20007/‘ f

(a) (b)

i;g

207t

1400#

FIG. 5: Space (horizontal)-time (vertical) plot of ¢ for (a) g; = 0.9 and 2 = 0.09, and (b) gs = 0.9 and £ = 0.11. The value of
¥ is large (small) for lighter (darker) regions. No modulation appears in (a). The modulation occurs periodically in time but
uniformly in space in (b).

obtains

vp = Ny(vp — ve) + ve. (15)

It is readily found that this relation can be extended to the case vy < v. In the case of g5 < gc, a similar argument
gives us

v = (Ny + 1)(ve — vg) + 5. (16)

These theorctical results arc compared with simulations in Figs. 9 for (a) g5 = 1.0 and (b) g5 = 0.8. It is noted
that the theoretical results are in a good agreement with the simulations for @ > w, = 0.07. However, 1here is a small
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FIG. 6: Spatial profiles of ¥(z,1) (solid line) and I'(x) (dashed line) for D = 1.0,7 = 1.6,y = 0.3,72 = 0.16, v3 = 0.05,
€ =10.007, 2 = 0.0 and g = 0.8. Both y(z,t) and a localized modulation (indicated by arrows) are propagating to the right.
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FIG. 7: Space (horizontal)-time (vertical) plot of v for (a) g = 0.8 and = 0.11 and (b) ¢; = 1.0 and © = 0.11. The value of
¥ is large(small) for lighter (darker) regions. The localized modulation propagates to the left in (a) and to the right in (b).

FIG. 8: Relative configuration of the wave v(z, t) and the external force I'(z,t). The locations of maxima of the periodic ¥ are
shown by the black circle whereas those of I' are by the white circles.
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FIG. 9: Q-dependence of the velocity vz of the localized modulation for (a) gs = 1.0 and (b) g7 = 0.8. The results of simulations
given by the symbol + are compared with the theoretical results eq. (15) in (a) and eq. (16) in (b). Note that the velocity is
defined to be positive when the localized modulation is propagating to the right.

but systematic deviation between them for smaller values of Q. In fact, the absolute value of vy is smaller than the
theoretical value. As is seen in Fig. 8, the above argument assumes implicitly the distortion of the wave due to the
external forcing is small. The results indicate that the coupling between the external forcing and the propagating
wave is stronger when the velocity of the external forcing is small, i.c., @ < we. This is qualitatively understood
because the effect of the periodic external force is smeared out when the velocity is large enough.

LOCKED STATE FOR Q =0 AND ITS STABILITY

In this section, we fix the external frequency as = 0 and the remaining two parameters ¢ and gy are varied.
The results are shown on the ¢ — g5 plane in Fig. 10 and Fig. 11. When the external forcing € is sufficiently large
and near g = ¢, = 0.9 as indicated by the plus symbols, the waves are locked by the external forcing. In other
regions modulation of waves is observed. The localized modulation occurs and propagates to the right in the region
indicated by the black circles whereas it propagates to the left in the region indicated by the white circles. In the
region indicated by the black triangles waves undergo a coherent in-phase oscillation in the confined interval of one
wavelength of the external force. In the region indicated by the squares, more complicated oscillatory motions appear
as described in detail below.

The representative motions of waves are shown in space-time plot in Figs. 12, 13 and 14. Figure 12 displays
the results for g5 = g, = 0.9. When e is sufficiently small, a periodic modulation appears as Fig. 12(a), which is
essentially the same as that in Fig. 5(b). When the magnitude of ¢ is intermediate, the waves undergo a trapped
in-phase oscillation as Fig. 12(b). The waves are locked (frozen) by the external forcing for sufficiently large values
of ¢ as indicated in Fig. 12(c). These were obtained and analyzed in the previous paper [26].

When g5 = 0.6 a localized modulation propagating to the right appears for small values of ¢ whereas the waves
are locked for large values of ¢ as clearly seen in Figs. 13(a) and (c). An oscillatory dynamics shown in Fig. 13(b) is
observed in the small interval between these two bchavior. Note that this oscillation is similar to but different from
the trapped oscillation mentioned above. In fact the motion of a pair of the adjacent domains is anti-phase. The
reason of the anit-phase oscillation can be understood qualitatively as follows. When g; = 0.6, there are 6 (= 10gy)
trains of the external forcing. On the other hand, the intrinsic number of propagating wave trains is 9 (= Lq./27 for
gc = 0.9). This means that there are three clusters, each of which consists of three trains. These three trains survive
equally for small values of € but one of the trains (say, the middle one) tends to be eliminated by the external force
for large values of €. This conflict makes the other two trains anti-phase oscillation.

Figure 14 displays the rosults for g5 = 1.2. It is interesting to see that there is again a narrow region between the
state of the localized modulation and the locked state, where an oscillatory state appears as in Fig. 14(b). Note,
however, that the oscillation is more complicated in its spatial structure compared with the other two, i.e., Fig. 12(b)
and Fig. 13(b). In this case the number of the trains of the external force is 12 whercas the intrinsic wave trains is 9.
Therefore the waves trains make three clusters which contains three wave trains. When the external force ¢ is large,
one more wave train tends to be produced in each cluster. ‘L'his is possible only when the amplitude of the three wave
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FIG. 10: Phase diagram for @ =0, 71 = 0.3, 72 = 0.16, vz = 0.05 and 7 = 1.6. In the plus region the waves are locked by the
external force. In the region of the white (black) circles the localized modulation propagates to the left (right). In the regions
indicated by the black triangles and the white squares, trapped oscillations of waves are observed. Those dynamics are shown
in Figs. 12, 13 and 14 below.
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FIG. 11: Magnification of the phase diagram around ¢y = 0.9 and ¢ = 0.01. A periodic modulation occurs in the region
indicated by the diamond symbols. The parameters are the same as those in Fig. 10.

trains is small. As a result, there is a standing oscillation of four wave trains such that the amplitude of the three
wave trains is large but that of the fourth wave train is small and vice versa. This is actually happening in Fig. 14(b).

Here we develop a theory to understand the phase diagram ncar qf = g, in Fig. 11. The following theory is an
extension of our previous one [26] which was restricted only to the case g5 = ¢.. The model equations (2) and (3)
with the external forcing (12) can be written explicitly as

L = V-V -+ ] 4w+ ag |
+ ecos(qrz — Q) + ag, (17)
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FIG. 12: Space (horizontal) -time (vertical) plot of ¥ for gs = 0.9 and for (a) ¢ = 0.005, (b) € = 0.01 and (¢) ¢ = 0.02. Other
parameters are chosen as § =0, 7 = 1.6 and 2 = 0.16.
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FIG. 13: Space (horizontal) -time (vertical) plot of ¢ for g; = 0.6 and for (a) € = 0.036, (b) € = 0.04 and (c) € = 0.045. Other
parameters are the same as those in Fig. 12,

% = by + baob + e cos(grx — Q) + b3, (18)

() | (b) (c)

2000

0 207r

FIG. 14: Space (horizontal) -time (vertical) plot of 9 for gf = 1.2 and for (a) ¢ = 0.1, (b) € = 0.115 and (c) ¢ = 0.12. Other
parameters are the same as those in Fig. 12. . ‘
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where

= - T2
a; = ('71'*‘2)’
ay = —(71—12-2--*-’73),
asz = 73,

Y2

by = =
1 21

= (2
by = (2 +73),
by = 3. (19)

The equilibrium uniform solutions 1y and ¢ have been given by egs. (7) and (8).
Numcrical simulations show that egs. (17) and (18) have a motionless periodic solution for sufficiently large values
of € and those are well approximated by

p =1y + cos(gsz), ’ (20)

¢ = ¢o + ¢1 cos(gyz), (1)

We have veridied numerically that there is no phase difference between 1, ¢ and the external force €cos(qsz) and
that 1, and ¢, are negative. Substituting (20) and (21) into (2) and (3) and ignoring the higher harmonics generated
by the nonlinear term, we obtain the set of equations for ¥; and ¢,

- - ‘ o - 3 - - - :
—a5" 1+ 7as*P1 — g (BugYs + 791) + a1y + a2y + € =0, (22)

bi¥y + b2y +€=0. (23)

The neglect of the higher harmonics is justified as long as the sinusoidal deformation (20) and (21) holds which is
indeed the case for the parameters considered here.

When the magnitude of the external force is decreased, the locked solution (20) and (21) becomes unstable as shown
in Fig. 10. It is difficult to formulate the whole behavior in this Figure. We restrict ourselves to the region near
¢ = q, = 0.9 where a trapped oscillation appcars after destabilization of the locked state as indicated in Fig. 11.

" A trapped oscillation can be represented approximately by

Y =g + ¥y cos gg(z + 64 (t)), (24)

¢ = ¢o + &1 cosqr(z + Ga(t)), (25)

where the time-evolulion equations for the unknown phases 6;(l) and 6>(t) are to be derived. 1t consists of two
steps. First substitute (24) and (25) into eqs. (17) and (18). Second, multiply each equation by sin gy (z + 6,(t)) and
sin g5 (z + 62(t)) respectively and carry out the integral over one spatial period. In this way, we obtain

d . - '
f1fd_t1 = ¢y 8ingy (6 — 62) + €1 5in(gs6:), (26)
do: . i
¢1!7£—t21 = —czsingy(f; — 61) + ez sin(gyb2), 7
where
a2, -
Ccl = ———, a="n 28)
R S -
b1y .
C2 = ==, T h *
-t 6 , (29)
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FIG. 15: Bifurcation diagram between the locked state and the trapped oscillation for @ =0, v = 0.3, 72 = 0.16, v3 = 0.05
and 7 = 1.6. The solid line is the stability limit obtained theoretically. In the simulations for g5 = 0.75, 0.85 and 0.95, the
system size is chosen as L = 407 to make the external force commensurate with L. The meanings of the symbols are the samce
as those in Figs. 10 and 11.

Near the bifurcation threshold one may linearize these equations

16
= =61 -62) + ey, (30)
do .
d_t2 = c2(0) — 62) + €26a, (31)
The eigen value equation is readily obtained as
L ((21 +€ ~c2+ 62)/\ + c1€0 — €] + €160 =0 (32)
The Hopf instability condition is given by
¢1+c—eg+ca>0 ) (33)
and
cre2 — €€y + €169 > 0 (34)

The solid line in Fig. 15 represents the above Hopf instability condition. Note thal the theory agrees quile well wilth
the simulation results.

The above theory was applied to the case gy = g, in our previous paper [26]. What we have shown here is that it
can also be applied successfully to the case g5 # g. as long as the difference is not too large.

DISCUSSION

We have studied dynamics of traveling waves under spatio-temporal forcing. When g; = g, the behavior can be
understood theoretically [26]. However, when gy # g;, more complex dynamics appears. In the present investigation,
we have found propagating localized modulation, several different types of confined oscillations and the locked state.
We have succeeded in predicting the velocity of the localized modulations which shows a good agreement with the
simulations for the external frequency larger than the intrinsic frequency. The bifurcation from the locked state to
the oscillatory state near g5 = ¢, is found to be undersiood by means of a phase dynamical approach.
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FIG. 16: Bifurcation diagram between the locked state and the trapped oscillation for vz = 0.1, and 7 = 1.55. Other parameters
are the same as those in Fig. 15. The solid line is the stability limit obtained theoretically. In these simulations the system size
is chosen as L = 807 to make the external force commensurate with L. The meanings of the symbols are the same as those in
Figs. 10 and 11.
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FIG. 17: Bifurcation diagram between the locked state and the trapped oscillation for v2 = 0.16, and 7 = 2.5. Other parameters
are the same as those in Fig. 15. The solid line is the stability limit obtained theoretically. In these simulations the system size
is chosen as L = 807 to make the external force commensurate with L. The meanings of the symbols are the same as those in
Figs. 10 and 11. The large discrepancy with the theory is not surprising because the theory ignores the higher harmonics and
is valid only near the Hopf bifurcation 7 = 7. = 1.46.

What we have investigated in this paper is rather simple situation of the effects of external forcing. It is well known
that the commensurate-incommensurate transition in thermal equilibrium exhibits & complicated phase diagram of
various structures [28]. In this respect, cven the locked state without propagation in the present problem is cxpected
to be complicated enough by changing more widely the ratio ¢./qy and the magnitude of the external force. More
systematic approach is necessary for these aspects but it is left for a future study.

Finally we discuss about the mode selection in the present propagating waves. In pattern formation phenomena,
to find a general principle for the mode selection beyond a bifurcation threshold is a fundamental unsolved problem
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in non-variational dissipative systems. In this respect, it would be interesting to explore the possibility that some
resonance condition might be related to the mode selection. That is, a periodic pattern might respond most strongly
to an external periodic modulation whose period is the same as that of the intrinsic spatial period. In order to
examine this possibility, we have carried out numerical simulations of traveling waves for sufficiently large system
without external forcing. For example, we obtain the intrinsic wave number g = 0.85 of the propagating wave for
v2 = 0.16 and 7 = 1.6. It is found from Fig. 15 that this wave number coincidences with the first wave number
g where the locked state becomes unstable by decreasing € and the trapped oscillation starts. We have also carried
out numerical simulations for 42 = 0.1, and 7 = 1.55 and found that the intrinsic wave number is ¢ = 0.825. This
is also the first wave number of g; as shown in Fig. 16. It is emphasized that this property is not limited near the
bifurcation point of propagating waves. Figure 17 shows that the first wave number is ¢, = 0.875 for 7 = 2.5 and
42 = 0.16. We have verificd numerically that the intrinsic wave number of a propagating wave for these parameters is
g = 0.875 for the system size L = 80m. (It is also true for these three cases that the wave number where the trapped
oscillation appears in the widest interval of ¢, e.g., 0.004 < ¢ < 0.0145 for gy = 0.85 in Fig. 15 coincides with the
intrinsic wave number of propagating wave.) These numerical evidences strongly support our conjecture. We shall
return this problem in further detail in the near future. '
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