0000000000
15230 2006 0 131-147 131

An explicit arithmetic formula for the Fourier
coefficients of Siegel-Eisenstein series of degree
two with square free odd level

Yoshinori Mizuno (Keio University)

1 Introduction

We give an explicit arithmetic formula for the Fourier coefficients of the
Siegel-Eisenstein series E,(c?l of degree two on the congruence subgroup I‘((,z) (N)
with a square free odd level N, where k is the weight and x is a primitive
Dirichlet character mod N. If the level N exceeds one, then any explicit formula

for the Fourier coefficients of E(z% was not available as far as the author knows.
We state the main result precisely. Let Hy be the Siegel upper half-space
of degree two and Z be the variable on H,. Then for any integer k > 3, the

Siegel-Eisenstein series Ey with level N is defined by

EZ(Z) = Y X(detD)det(CZ + D)™,
{c,D}

where the summation is taken over all representatives v = ( é g ) € I‘g) \
r{?(N) with

T(N) = {y € Sp3(Z);C =0, (mod N)}, TP = {ve€ Sp:(2);C =0},
and x is a Dirichlet character mod N such that x(—'l) = (-1)k.

Theorem 1. Let k > 3 be an integer, N be a square free odd natural number
excee;is one and x be a primitive Dirichlet character mod N satisfying x(—1) =
(=1)".

Then for any positive definite half integral symmetric matriz T of size two,
the T-th Fourier coefficient A(T, E,(cz%) of the Siegel-Eisenstein series E,(cz% with
level N is given by

@y _ (=2mi)*7n(X) k1 oo [ —det2T\




where T (X) 18 the Gauss sum Tn(X) = Zr~1 x(r)e*™ /N T(s) is the Gamma
function, L(s,%) is the Dirichlet L-function of X, e(T) = (n,r m) is the greatest

n r/2
m ), and e%°(D) has the form

common divisor of n,r,m for T = ( /2

E_O(D) _ ﬂk_l/z?(_él) 'le—3/2L(k -1, XK—X)

T {k2k—2T(k — 1/2) L(2k — 2,%?)
1+4ord, D ?(pe)
x I1 | 2 07mesGRlDp)
prime p|N e=1
X Z wd)xx ()X(d)d' ~* o5 gz (£/d)-

dif

Here we use the following notations. Let ord,D be the integer such that p°™%?
is the ezact power of p dividing D, u(d) be the Mobius function, o,z (f) is
defined by 0,52 (f) = 245 X*(d)d®, the natural number f is defined by D =
Dx f? with the discriminant Dg of K = Q(vD) and xx(*) = (2%) is the
Kronecker symbol of K. Let xp be the primitive characters mod p so that x =
[lorime piv Xo- Then x; is defined by x5 = [orime ol Xa- We puteg =1 ori
according to d = 1 (mod 4) or 3 (mod 4), and C,(D,p®) are ezplicitly given
as follows.

Let 7p(x) = S°P_, x(r)€*™"/P be the Gauss sum, (%) be the Legendre symbol
and put m = ordpD. Then we have

(a)for e < m,

e=1(p—1) = (2) and e is odd
N N
xm( 7°) { 0, otherwise.

(b)fore =m +1,

m+1

. (D,p) = xp(D/p"‘)< Lk )m+1p'"fp‘75(%) )

(c)for e 2 m + 2, Cg(D,p?) = 0.

For the Siegel-Eisenstein series on the full Siegel modular group Sp2(Z)
of degree two, equivalently the case level N = 1, an explicit formula for its
Fourier coefficients was obtained by Maass [12], [13]. His starting point is Siegel’s
formula which expresses the Fourier coefficients as an infinite product of the
local densities of quadratic forms over all primes. Then he calculated the local
densities explicitly to get his formula. For the case level N > 1 we cannot
proceed by the same way as Maass, since Siegel type formula does not hold for

the Fourier coefficients of the Siegel-Eisenstein series E,(f% on the congruence

subgroup I‘gz)(N ), especially for the Euler p-factors with primes p dividing the
level N.
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There is another proof for Maass’ formula due to Eichler and Zagier (see
corollary 2 [6] p.80). They showed that the Maass lift of the Jacobi Eisenstein
series on SLy(Z) X Z2 equals the Siegel-Eisenstein series on Sp2(Z). Our formula
for the case of the congruence subgroup F((,2)(N ) given in Theorem 1 follows
from an analogous result to this fact. In fact, we will show that the Maass
lift MER?, 5 of the Jacobi Eisenstein series E79 5 on [o(N) X Z2 is equal to

the Siegel-Eisenstein series E',(cl with level N up to a constant. Eichler and
Zagier use the characterization of the Siegel-Eisenstein series on Spy(Z) as the
unique eigenform of all Hecke operators whose zero-th Fourier coefficient is one.
Our method is completely different from Eichler-Zagier’s argument. Our main
tools are Koecher-Maass series D*(f,U, s) of a Siegel modular form f with a
Grossencharacter i and the Roelcke-Selberg spectral decomposition, which are
used to formulate the converse theorem for Siegel modular forms (8], [5], [2], [3],
[7].

More precisely, we proceed as follows. For the Siegel-Eisenstein series E(z)
with level N and the Maass lift MER?, 5, of the Jacobi Eisenstein series Ek’l’x
on To(N) x Z2, we will show that their Koecher-Maass series with any Grossen-
character are equal up to a constant,

() (=2m)* TN (X) e/ g oo
D (Ek,’i’u’ 5) = N*T(k)L(k, )D (MEk,l,ysu, )

where 7n(%) is the Gauss sum, I'(s) is the Gamma function and L(s,%) is the
Dirichlet L-function. Consider

@ (2PN e
F=Bex = NTRLE DR

We can show that the image ®F of the Siegel operator ® is zero. This says that
the Fourier expansion of F has only the terms indexed by positive definite half
integral symmetric matrices. Let the variable on the Siegel upper half-space be
Z = it!/2W, where t > 0 and W is a positive definite real symmetric matix of
size two whose determinant is one. We identify W with the variable 7 on the
upper half-plane. Then we have the Roelcke-Selberg spectral decomposition of
F;(W) = F(it'/?W). As shown in [8], [3], each spectral coefficient with respect
to a Grossencharacter U(7) is the inverse Mellin transform of the Koecher-Maass
series D*(F,U, s). Since the Koecher-Maass series D*(F,U, s) is zero as we can
see from above identity, we conclude that F is zero i.e.

@ _ (=2m) 7N (X)
Bix = NrT LGk ) PRR

Since the Fourier coefficients of images of the Maass lift can be described easily
in terms of the Fourier coefficients of Jacobi form, our formula for the Fourier
coefficients of the Siegel-Eisenstein series E,(c ) with level N follows from an
explicit calculation of the Fourier coefﬁcxents of the Jacobi Eisenstein series

Ekvlvx
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To show the coincidence of two Koecher-Maass series, we calculate each
Koecher-Maass series. It is easy for that of the Maass lift. To calculate
D*(f,U, ), we usually need a formula for the Fourier coefficients of f. Since

any formula of the Fourier coefficients of the Siegel-Eisenstein series E,ﬁz))c does
not available, we first calculate the Koecher-Maass series D*( ,52;,14 s) for the

twisted Siegel-Eisenstein series F,C ?) defined by
F{2(Z) = N~* det Z7*EZ(~(N2)7Y).

This is possible, since a Siegel type formula holds for the Fourier coefficients of

F( ) and so an explicit formula for the Fourier coefficients of F( ) is available
by the explicit form of the Siegel series due to Katsurada [10] The result-

ing formula of D* (F,gzi,u s) can be seen as the Rankin-Selberg transform of
certain automorphic forms on I'o(IV) by the explicit calculation of the Fourier
coefficients of the Jacobi Eisenstein series Eg,l, associated with the cusp 0 and
the Shimura correspondence for Maass wave forms due to Katok-Sarnak [9] and
Duke-Imamoglu [5]. Since we can prove the identity

D*(f,U,k — 8) = (~1)*D*(flswy, U, ),

where flkwfg)(Z) = N~k det Z=*f(—(NZ)™1) for any Siegel modular form of
weight k on Féz)(N ), we get

D*(BE, U,k — s) = (~1)*D*(FD,U, 5).

Hence we can compute D* (E(2) U, s) from the explicit formula of D*(F,Szi, U,s)
by the Rankin-Selberg methoé We remark that, since involved automorphic
forms are not always cuspidal according with Maass wave forms U(7), we cannot
use the usual Rankin-Selberg method and we must use the method given in our
previous work [14].

2 Jacobi Eisenstein series of index 1 with level
N

Let N be a square free odd natural number exceeds one and k be an integer.
Let x be a primitive Dirichlet character mod N such that x(—1) = (-1)*. For
G C SLy(R) X R?, we define

oo = {g € G; k19 =1}.
For any cusp & of I'o(IV), we take g € SLy(Z) such that

g(i00) = k. (1)
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Then we define the Jacobi Eisenstein series of weight k¥ and index 1 associated
with cusp « by

Eg1x(1:2) = > x(g7 ") k17, (2)
YE(gTV g7 1) \gTY

where x(7) is defined by

xn=x@, 7= (& %).om)er

The author learned this definition of the Jacobi Eisenstein series from Professor
Boecherer. This satisfies '

Eg 151y =XV EE 1,50 (3)

for all y e TV,
For the cusp 0, we take the above g in (1) by g = ( _01 (1) ) and for the
cusp 100, we take g = Is.
Let
r2—
BLyma)= Y &DeTC (4)

D<0,re€Z
D=r? (mod 4)

be the Fourier development of E} ; . and

r=0 (mod 2) D<0,rez
D=r® (mod 4)

Brsynn= 3 e+ Y @D )

be the Fourier development of EZ 5

To prove Theorem 1, we need to know the behavior of Eg,l,x at each cusp of
[o(N). As the set of representatives of non equivalent cusps of I'g(N), we can
take

{ioo, 0} {1/m;1 < < N,u|N}, (6)

since we assume that NV is square free. As the elements of SL3(Z) which trans-
forms 400 to the cusp of T'g(V), we can take

"°°=12"’°=((1) Bl>’”“=(; NZ/M>’ )

where integers o and 3 are chosen so that NG/u — au = 1. For the cusp &, we
will also denote o, instead of the above notations (7) by a trivial identification.
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Let

’ 2 Nr2_p
B Jkaoo(rz)= > a%(+ > WD)y ™
r=0 (mod 2) D<0,rez
D=Nr? (mod 4)

be the Fourier development of Ek 1 x|k 100.

The Fourier coefficients €3 (D) of Ef?, 5 and a3(ND) of E} 1 y|k,100 have
the following relation, which i 1s important to prove Theorem 1.

Proposition 1. One has

eX(D) = ad(N?D).

3 Siegel modular forms with level N and their
Koecher-Maass series

Denote by Mk(I‘gf)(N ), %) the space of all holomorphic functions f on Hy

which satisfy
fd =xieaD)f, M=( & 7 ) eI,

Each f € M, (l"(()z) (N), x) has a Fourier expansion of the form

f2)=" Y. A exp(2ritr(T2)), (8)

TeL;, T20

where the summation extends over all semi-positive definite half integral sym-
metric matrices T of size two.

Let P, be the set of all positive definite real symmetric matrices of size two
and 8P, be the determinant one surface of P,. We identify SP, with the upper
half-plane H; by

vl —uv~? ,
( —U’U—l U_l(u2 + U2) ) — T =u+wW. (9)

We mean by a Grossencharacter any function U on H, satisfying the follow-
ing three conditions.

(G-))U(y7) =U(T) for all v € SLy(Z).
(G-ii)U(T) is a C*-function on H; with respect to u = Rr,v = Q7 whlch

verifies a differential equation AU = —A\U with some A € C, where A = v2(

8‘9“ ) is the Laplacian on Hj.

(G-iii)i{ is a moderate growth as v = 37 tends to co.
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A Grossencharacter is also called a Maass wave form.
We extend a Grossencharacter & to a function on P; by setting

UT) =U(rr),

where 71 corresponds to det T~1/2T, in other words T € P, is identified with
Tr € Hy by

r=( ¢ b/2 \ _, _ —=b+ivdet2T
“\b/2 ¢ T= 20 '

Now for f € My (r§,2’ (N), x) which has a Fourier expansion (8), we define
the Koecher-Maass series with a Grossencharacter U by

A(T)U(T) |
D(f,U,s) = Z e(T) det T’ (10)
TeLf/SLz(2)

where L7 is the set of all positive definite half integral symmetric matrices of -

size two and the summation extends over all T € L+ modulo the usual action
T — T[U) = *UTU of the group SL2(Z) and ¢(T') = ﬁ{U € SLy(Z);T|U) =T}
is the order of the unit group of T

Let

Y ay
D*(f,U,s =/ det YUY (i—=)—=75" 11
(-f ) SLQ(Z)\'P: ( )f ( /_'N)det Y3/2 ( )
where £ is defined from (8) by

fA2z)= " AT)exp(2ritr(TZ)).
TeL}

If a Grossencharacter U corresponds to the eigenvalue — (3 +72) of A, then it
is known that (see [11])

D*(f,U,s) (12)
= 2rY2N*(27)~%T(s — 1/4+ir/2)[(s — 1/4 —ir/2)D(f, U, 5).

Put
wg) = ( ]\?;2 BI; ) (13)
Then f|xw® belongs to Mx(T3 (N), %) for f € Mp(TS (), xj.
By the similar way as in [1] and Theorem 10 of [3] p.209, we can show
Proposition 2. For f € Mk(F((JZ)(N ), X), we have

D*(f,U,k — 5) = (=1)*D*(flsw @, U, 5).
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If the Fourier coefficients of f € M (1‘82) (N), x) satisfy a Maass type relation,
then D(f,U,s) is a convolution product of two Dirichlet series as follows. This
result is due to Boecherer (see Satz 3 of [4] p.20).

Proposition 3. Let f € Mk(I‘(()Z)(N ), X) has a Fourier expansion (8). Suppose
that there exists a function c on the set of all negative integers such that

, _y [ —det2T
AD = T xaee (55, (14)
dle(T)
where e(T) = (n,r,m) for T = ( r72 7*42 ) Then we have
_ 0207 (9 _ o o(—n)b(—n)n®/*
D(f.U,s) =2%L(2s —k +1, x)n; - , (15)
where
- UT)
) — 5, —3/4
b(—n)=n +Z 7 (16)
TeL} /SLa(Z)
det 2T'=n

and €(T') is the same as in (10).

The final task in this section is to define the Maass lift M from the space
Ji,1(To(N), x) of Jacobi forms of weight k and index one to the space Mj, (F(()Z) (N), x)
of Siegel modular forms of weight . ‘

For ¢ € Ji1(To(N),x) and natural number m, we define the operator Vi,
by

OhaValrd) =mb 3 ya)er b e (-2 ) o (bar, ),

MEFo(NO\M; (m) or +d or +d

where the summation is taken over all representatives of
M= (8 }) eTo)\ M(m)
with
M;(m)={M = ( g g ) € M5(Z);det M =m,c=0 (mod N),(a,N)=1}.

It is known that

Blk1Vm € Jk,m(To(N),x)
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and if
$(r,2)= Y cnr)g*¢,
n,re€Z
4n—r220
then
mn
HeaVm(rz)= 3 (Zx(d)d"-lc(-&-z—,g))q"c- (17)
n,r€Z d|(n,rym)
4mn—r3>0

By the same manner as in Theorem 2.2 of [2] p.173, we can prove

Proposition 4. For ¢ € Ji,1(To(N), x), we define the Maass lift M¢ by

M$(Z) = bo(r, 2) + 3 BliVin(, 2)e(m’) (18)

m21

with Z = ( : :, ) € H,, where ¢o(T,2) is defined by

N*T(R)L(k, %) - k
bolr2) = (=2mi)* 7N (X) 7ere‘;\zro(N)X(d)(CT+d) «00 09

N*T(k)L(k,X) , .
{( —2mi)k TN (%) +2_ (D x(@)d* g }C(0,0).

n>1 djn

Here Tn (%) = 1)L, X(r)e™r/N is the Gauss sum, T'(s) is the Gamma function,
L(s, x) is the Dirichlet L function and

Then we have

Mo € My(TP (N), ).

4 Proof of Theorem 1

In this section we explain that Theorem 1 follows from the coincidence of
the Koecher-Maass series associated with the Siegel-Eisenstein series E'( ) with
level N and the Maass lift MES 5 of the Jacobi Eisenstein series 0 17 on

I'o(N) X Z2 for any with any Grossencharacter U.
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Define £ € M (TP (N), x) by

(—=2mi)* 7N (%)

E= NIt

MEE, 5.
Then we will show the following result in the next section.

Proposition 5. One has

D*(E,U,s) = D*(EX,U, s).

Now let
F=EX-E.

Then it is easy to see that ®F = 0. This says that the Fourier expansion
of F has only the terms indexed by positive definite half integral symmetric
 matrices. Let Z = it/2W be the variable on Hj, where t > 0 and W € SP; is
a positive definite real symmetric matrix of size two whose determinant is one.
By identifying W with the variable on H; as in (9), we have the Roelcke-Selberg
spectral decomposition of Fy(W) = F(it'/?W) as

Ft(W) = Z < Ft,uj > uj(T) + —1' < FtaEu > Eu(T)dua
= 47T JRu=1/2

where Uy = 1/3/m, {U;};>1 is an orthonormal basis consisting of cuspidal eigen-
functions for A,

EmM= Y (@)
‘ Y€l o0 \SL2(Z)

is the non holomorphic Eisenstein series and the inner product < f,g > is
defined by

——dudv
< fg>= / firyam ey,
SL2(Z)\H, v

Then as in (8], (4. 8) of [3] p.219, we have

1 —
< Fij,U >= — (Nt)”’D*(F,U, s)ds
2m Rs=sg
for U = U;, B, with sufficiently large real number so. Since D*(F, U,s)=0by
assuming Proposition 5, we conclude that F' is zero i.e.
@ _ (=2m)* 1N (%) \ oo
Bex = NETRIL(Rx) R

An explicit calculation of the Fourier coefficients of E? 5 gives Theorem 1.
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5 Coincidence of the Koecher-Maass series

In this section we prove Proposition 5, the coincidence of the Koecher-Maass
series.
It follows from Proposition 3, 4 and (12) that it holds

2Ic+1Ns—kﬂ.k+1/2—-Zs (*i)kTN (Y)

D*(E,U,s) = TRLE D) L(2s—k+1,x)
- - /4
x I(s—1/4+ir/2)[(s~1/4—ir/2) Z o d n)i(s nn’ , (20)
n=1

where e$°(—n) is the Fourier coefficients of E}°; 5 (see (5)).
To get an explicit formula for D* (E,?;.,u ,8) we proceed as follows.
Let F{2 be the twist of E(y defined by

F(2) = ER i@ (2) = N+ det Z-*ER(~(NZ)™Y),
where wg) is defined by (13). Then we have
EQ) e MyTP(N),x), Fig € MTP(N),X).

We can get an explicit formula of the Fourier coefficients of F(z) and from
this we have

Theorem 2. The Koecher-Maass series of F® wzth a Grossencharacter U cor-
responding to the eigenvalue — (1 +r2) of A has the form
24—2st—k7r1/2-—2s

D*(F®.U,s) =
Fezol: 5) &2,k X (—1) L(k, X)

x TI'(s—1/4+ir/2)'(s—1/4—ir/2)L(2s — k +1,%) i

€2 (—n)b(—n)n®/4

I

n=1 nf
where {3 and o are defined by
rk—1/2
k= Fok—20(k — 1/2) (21)
o = (4m)Y2(2mi)~*D (k)T (k — 1/2). (22)

respectively.

To regard D* (F,S?,Ll s) as a Rankin-Selberg tra.nsform of certain automor-
phic form and to apply the Rankin-Selberg method, we need the Shimura corre-
spondence for Maass wave forms due to Katok-Sarnak [9] and Duke-Imamoglu



[5], and the Rankin-Selberg method for automorphic forms which are not of
rapid decay given in [15], [14].

To state the Shimura correspondence for Maass wave forms, first we intro-

duce Maass wave form of weight 1/2. Let

jty,7) = %‘—}f} o(r) = 3" @7y e To(d)
neZ

be the well known automorphic factor on I'g(4). For r € C let T;¥ denote the
vector space consisting of all functions g on the upper half-plane H; satisfying
the following three conditions.

(M-i) Each g(7) is a C*™ function of v = R7 and v = Q7 verifying the
transformation formula .

9(vr) = g(r)j(v, 7)ler + d|~V/?

for all v € T'o(4) and it has a moderate growth at any cusp of I'o(4).
(M-ii)g(7) has a Fourier expansion of the form

g(1) = Z B(n,v)e(nu),

neZ

where the Fourier coefficients B(n,v) for n # 0 are given by

B(n, 'U) = b(n)Wsign(n)M,ir/z (41r|n|v).
Here W, 3 (b) is the usual Whittaker function.
(M-iii)If n = 2,3 (mod 4), then necesarily B(n,v) = 0.

The following result due to Katok-Sarnak [9] and Duke-Imamoglu [5] gives
a Shimura correspondence for Maass wave forms. .

Proposition 6. Let U be an even Maass wave form i.e. U(~T) = U(7), and
assume that AU = — (3 + %) U with some r € C. Then there ezists g € T+
which satisfies the relation

b(—n)=n=3/% M ur)

TeL] /SLy(Z) E(T)
det 2T'=n )

for any natural number n, where ¢(T) is the same as in (10).

For g € T} which has the Fourier expansion as in (M-ii), we set

ki(ry= Y (v/4)*B(~D,v/d)e(Du/4) (23)
D=—-j (mod 4)
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for j =0,1.
For the Jacobi Eisenstein series E,c 1x which has the Fourier expansion as
in (4), h; is defined by

hj(T) = > 5 (—D)g

D>0,D=-j (mod 4)

D
4

(24)

We can see that the Koecher-Maass series D*(F,Szi,u s) for the twisted
Siegel-Eisenstein series F( ) is a Rankin-Selberg transformation of certain au-

tomorphic form &, in other Words D> (F,Sz)z,u , 8) is the Mellin transformation of

the constant term of £.
This £ is define by

&(1) = ho()ko(T) + ha()k1 (), (25)

where h; and k; are defined by (24) and (23) respectively and we have

Proposition 7. One has

cr +d)k

5 (
£(yr) = (d)| ]

~—&(7)
for any v = (‘Z Z ) € I's(N).

Define the Rankin-Selberg transform of ¢ associated with the cusp ico by

(e ) 1
Reo(s) = /o /0 £(T)v* " ?dudv. (26)
Then using the formula
~%, -1 _P(u+1/2 wT(v+1/24 p)
/0 ey Weuly)dy T(v—k+1) (27)

and the Fourier expansion of ¢ obtained from (25), (24), (23), we get

Proposition 8. One has

9—1/2,3/4~s
=)= Ty

x T(s—1/4+ir/2)T(s — 1/4 — ir/2) Z X(-n)b( mn*

n=1
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From Theorem 2 and Proposition 8, we see that the Koecher-Maass series
D*(F,gz))(,u s) is essentially equal to the Rankin-Selberg transform of the au-
tomorphic form £. Roughly speakmg, we can see from Proposition 2 that the

Koecher-Maass series D* (Ek X,L{ S) is Roo(k — s). Hence we want to apply the
Rankin-Selberg method for automorphic forms which are not of rapid decay (see
[15] and Theorem 2 given in [14]) to get a reasonable Dirichlet series expression
for Roo(k — ).

For each cusp « in the set of representatives of non equivalent cusps of I'g (V)
given by

{ico, 0} J{1/m:1 < 1 < N, ulN},
we define elements in SL»(R) by

oo = 00,90 = O'OAI’ gu = O'#A,‘, (28)

where A, = ( \ JX/‘“ \/l(t)/_N ) for 1 < 4 < N and o, are defined by (7).

For each cusp k, we will also denote g, instead of the above g; by a trivial
identification.
Since g, are elements in the normalizer of I'o(N), the conditions

9x(i00) = K, I‘o(N)ﬂgn{(cl, ?):GER}9;1=QN<(5 i)>9;1

and x(v) =1 for all*yEgK<(

are satisfied.
Using these g, defined by (28), we define &, by

|J (g, T)|
J(gr,T)*

To apply Theorem 2 in [14], we must check the assumption (b) given there,
which is the growth condition for each £.. This is accomplished by expandlng
&« in the Fourier series.

i >> g! assumed in the section 2.1 of [14]

O =

§(7) = =<7 €(gxT)- (29)

If U is cuspidal, then B(0,v/4) = 0 and if & is a constant function or non
holomorphic Eisenstein series, then B(0,v/4) comes from the constant term of
real analytic Cohen’s Eisenstein series (see (5.18) of [3] p.228 and Lemma 5 of [5]
p.351). Hence we can apply Theorem 2 in [14]. The Rankin-Selberg transform
of £ associated with the cusp « is defined by

Ru(s) = /0 ” /0 (€n(7) = don(v/4) /A B(0, v/ 4))u*~2dud.
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Using the same notation given in Theorem 2 in [14], we have

QOoo,K.(Sa X)
0, fork#0
_ 22-2spik N—°T'(2s — 1)L(2s — 1,X) fork =0
T(s — k/2)T(s + k/2)L(25,%)
Thus we get
~1
Boo(8) = ¢o00(s = —5=> X)Ro(k — 5)

Qk+1-2eqik N—e+k/2-1/21(25 — k) L(25 — k, X)
T(s—k+1/2)T(s+1/2)L(2s —k+1,%)

Ro(k—s).  (30)
It follows from Theorem 2, Proposition 8, (30) and the functional equation
of the Dirichlet L-function that it holds

29/2—2IcNk/2-1/2—-2aﬂ.a—k—1/47.N (7)

&2,kx(—1)L(k, %)
x T(1/2+k—3s)L(1—2s+k,x)Ro(k — s),

. D*(Flg,z?)"u’ s) =

where 7 () is the Gauss sum 7y (x) = S0_, x(n)e2m /N,
This is nothing but (-l)kD*(E,(:.))Z,L{,k — 8) by Proposition 2. Hence by
replacing k — s by s and using x(—1) = (—1)*, we get

29/2—2kN2.s-3k/2-1/27r--s-1/4TN(-X-)

&2,k L(k, %)
x T(s+1/2)L(2s — k + 1,x)Ro(s). (31)

D*(E® U, s) =

k.Xx®

By calculating the Fourier expansion of &, we can see

2—1/27T3/4—3Nk/2+1/2—s

Bo(s) = T(s +1/2)

=, ad(—N2n)b(—n)n3/* .

x T(s—1/4+r/2)T(s~1/4—1ir/2) Z

n=1

na

Finally combining the above calculations and Proposition 1, we obtain

24—2st—k7r1/2—23TN(5<-)
€a.k0xL(k,X)

x T(s—1/4+ir/2)[(s—1/4—ir/2)L(2s —k+1,X)

B SE (U Chl

na

D*(E2,U,s) =

n=1
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From the definitions of £ ; and ay given by (22) and (21), we have

€a k0 = 2373k =R =3k (k).

Comparing the Dirichlet series expressions, we get

D*(E,U,s) = D*(E2,U, s)

as desired.
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