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A certain Galois action on modular forms with
respect to any unitary group and the
arithmeticity of Petersson inner products

Atsuo YAMAUCHI

0 Introduction

Let us consider holomorphic modular forms for any symplectic group Sp(l, F),
where F' is a totally real algebraic number field of finite degree. In this case,
a holomorphic modular form f on $? (Hilbert-Siegel domain) has a Fourier
expansion of the following form:

F((24)vea) Zch exp (277\/_Ztr (hozy ) : (0.1)

vEa

where a denotes the set of all archimedean primes of F', and h runs over the
points in a certain lattice in symmetric matrices of degree [ with coefficients
in F. Shimura showed that, for any ¢ € Aut(C), there exists a holomorphic
modular form f whose Fourier expansion is given by

fo(zp)vea) = Zch exp (271’\/_—2 tr(hy2y) ) : (0.2)

vEa

It is also proved that this Galois action is compatible with Hecke operators.

In this lecture we will construct such a Galois action on holomorphic
modular forms for an arbitrary unitary group over any CM-field K, which is
the result of [12] and a natural generalization of [11]. This is essentially the
same as the conjugate of automorphic vector bundles on Shimura varieties,
which was researched in [4] or {1]. But the action was not explicitly written
in those papers. In this lecture, the Galois action will be given explicitly.
Moreover, we can obtain the relation between the Galois action and Petersson
inner products, which is stated in [13].
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1 Modular forms for an arbitrary unitary group

In this lecture, we treat scalar-valued holomorphic modular forms on hermi-
tian unitary groups for any CM-fields.

Let F be a totally real algebraic number field of finite degree and K be its
CM-extension (namely, a totally imaginary quadratic extension of F'). Such
a fleld K is called a CM-field. As is well known, the non-trivial element of

Gal(K/F) is the complex conjugate for any embedding of K into C. We

denote this by p. Let a be the set of all archimedean primes of F', which can
be identified with those of K. For each v € a, there are two embeddings of
K into € which lie above v. By a CM-type of K, we mean a set ¥ = (¥U,),ca
where each VU, is an embedding of K into C which lies above v. We can view
a CM-type ¥ as an embedding of K into C? such that b¥Y = (b¥*),¢a for any
b e K. Via U, we can view K as a dense subset of C*. When b € F, we
drop the symbol ¥ (since b¥ does not depend on ¥ ) and regard b as the
element (by)yea in R We identify Z* with the free module ) . Z-v by
putting (ky)vea = D ca kvv. Also put 1 = (1)yea = Y, ca v- We can define
~ the action of o € Aut(C) on Z2 by (3,0 kuv)’ = 3 pea ku(v0).

For a positive integer m, take a non-degenerate skew-hermitian matrix T’
of dimension m with coefficients in K, i.e. det(T) # 0 and 'T? = -T. We
view T as a skew-hermitian form on K™ by (z1,z2) — ‘z;Tzj and denote
by ¢ the dimension of maximal isotropic subspace of K™ with respect to T.
Take a CM-type ¥ = (¥, ),ca of K so that each hermitian matrix —/=1T%*
has signature (7,,s,) (r, + 8, =m) with r, > s,. The choice of ¥ is unique
if and only if r, # s, for each v € a. Choosing a suitable basis of K™, we
can express 1' as '

/ Tl \

T = 5 , (1.1)

K - ™1,

where 7,t; € K> so that 77 = —7, tf = —t; (1 < j < m — 2q) and
Im(7%*) > 0. Here we take t; (1 < j < m — 2g) so that Im(t;-l'”) > 0 if
1§j§rv—qand1m(t;1'”) <0ifr,—qg+1<j<m-—2qforeachv € a.
We call such 7' a “normal” skew-hermitian matrix with respect to W. For T




as in (1.1) and 1 < j < m — 2¢, we denote by U(T,j) = (¥(T,j)v)vea, the
CM-type of K such that Im(tf(T’” )") > 0 for each v € a. Clearly, we have
U(T,j)=Vifj <% —q.

Note that, for each v € a, a “normal” skew-hermitian matrix 7' with
respect to ¥ can be written as

T = ( T L. ) (1.2)

with diagonal matrices T; , and Ty, of degree r, and s, which satisfy —+/ —lTl‘I,';’

0 and —v/=1Tpy < 0. (The symbol > 0 means positive definite.) In case

Ty = 8, = 2 for any v € a, we have ¢ = Z if det(T) € Ng/r(K*) and
q = 2 — 1if det(T) ¢ Ng/r(K*). In case r, > s, for some v € a, the
minimum of {s,},., is equal to g.

Let T € K7 be a “normal” skew-hermitian matrix with respect to a CM-
type ¥ = (¥, )ea. Then we can define the algebraic groups corresponding

to T and ¥ as follows.

U(T,¥) ={a€GL(m,K)|aT'a? =T},
U(T,¥) ={a € GL(m,K)|aT'a? =T, det(a) =1}.

As is well known, the algebraic group U; (T, ¥) has the strong approximation
property. _

For each v € a, we can define the v-components of these algebraic groups

as follows.

U(T,¥), ={aeGL(m,C)|eT%ia=T%},
Uy(T, %), ={a€GL(m,C)|aT"i =T, det(a)=1}.

Now we can define the corresponding symmetric domain 3, = (T, ¥),
as

D(T, ¥), = {3, € C [—vV=T ((T3) ™} + .(T¥)3,) > 0},

where T} ,, T3, are as in (1.2) and > 0 means positive definite. For any
3 € D(T,¥), and any o = ( /Cl,"‘ IB;"‘ ) € U(T, V), (where A, € Cv,

B, €eCy,Cy € Ci, D, € C3), put

a(30) = (Aadv + Ba)(Cadv + Da) ™"
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Then the group U(T, ¥), acts on (T, ¥), as a group of holomorphic auto-
morphism by 3, — &(3,). The automorphic factors are

Nv(aaétz) = __‘g_ﬁv + D,
/\u(a,ﬁu) = A, — B ’;I’J%v(Tl\px:)

We have
#’ﬂ(gaaav) = ”"v(ﬂa Q(Zb'v))l‘v(aal'w),
Ao(Ber,30) = Ao(Bs @(30)) A 30),
det(cr) det(Ay(v,30)) = det(po(e,34)),

for any o, 8 € U(T, V), and any 3, € (T, ¥),. Clearly, det(p,(cx,3,)) # 0
for any @ € U(T, ¥), and 3, € D(T, ¥),.

Set
UT, ¥)a =[]0 ),
veEa
T, ¥) =][[DT ).,
vEa

and define the action of U(T, ¥), on (T, ¥) componentwise.
We define an embedding of U(T, ¥) into U(T, ¥)a by a@ — (a¥*)yea and
also define an action of U(7', ¥) on D(T, ¥) by

a((ﬁv)an) = ((-"\P"(ﬁv))vea’
for o € U(T,¥) and 3 = (3)vea € D(T, V). We write

ll‘v(azz) = ( ‘11‘73!)
Ao(@,3) = (a Yy 3v)s

for « € U(T, V), 3 = (3)vea € D(T, ¥) and v € a. We denote by 0 the point
(072)ece € D(T, T).

Set k = (ky)vea € Z*. For o € U(T, V) and a C-valued function f on
D(T, ¥), We define a C-valued function f|xa on D(T, ¥) by

(fle@)(3) = f(a()) [ ] det(uo(e,3)) ™.

vea

For any congruence subgroup I' of U(T, ¥), we denote by My(T, ¥)(T'),
the set of all holomorphic functions on (T, ¥) such that flxy = f for
any ¥ € I'. An element of M(T, ¥)(T) is called a holomorphic modular



form of weight k with respect to I'. We denote by My (T, ¥) the union of
M (T, U)(T) for all congruence subgroups I' of U(T, ¥).
We need to consider adelizations of algebraic groups. Put

U(T,¥)a = {z € GL(m, K4) |zT*z" =T} .

Note that z,, the p-component of z, belongs to GL(m, O,) for almost all
non-archimedean primes p of K. We also put

Ui(T, ¥)4 = {z € U(T, ¥) 4 |det(z) = 1}.

We denote by U(T, ¥)y, and U, (T, ¥)y, the non-archimedean components of
U(T, V)4 and Uy (T, U) 4, respectively, and view U(T, V), and Uy (T, ¥),, as
the archimedean components of U(T, ¥)4 and U;(T, ¥)a, respectively. We
regard U(T, ¥) and Uy(T, ¥), as subgroups of U(T, ¥),4 and U;(T, ¥)4, by
diagonal embeddings. As is well known, the algebraic group U;(T, ¥) has
the strong approximation property.

For symplectic group Sp(q, F'), take the corresponding symmetric domain
H?2 = {z=(2)vea € (CY*['2, = z,, Im(z,) > 0foreachv€ a}. For z =
(zv)UEa € ﬁ:: pllt

g 1) v 1)1
Eo(T, \I/)(z) = ( gg::g (z'u ) 1q) (Zv + 2 lq) ) ,
| vEa

Tv—q
Sv—(q Oqu

where r,, s, are as above. Then q(T, ¥) gives a holomorphic embedding of
$52 into D(T, ¥). This is compatible with the injection Io(T, ¥) of Sp(q, F)
into U;(T, ¥) defined by

Io(T, 0) ( % %2 )

a3 04

, 0 -I.1 a 0 @\ [l 0 -1\
=1 0 I, 0 0 lp—o O 0 1pm-2 0 ,
1, 0 51, Q3 0 Oy 1, 0 51,
a1 09 .
where a = ( ) € Sp(q, F) with a1, as,a3,04 € Fg. We have
a3 0Oy4

I(T, ¥)() (eo(T', ¥)(2)) = eo(T, ¥) ((2))
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for any o € Sp(¢, F) and z € $%. We can define pull-back of modular forms
by eo(T,¥). For k = (ky)vea € Z* and f € My(T, V), define a function
fleo(T, ¥) on §3; as

—ky
leoT, 1)(2) = FleoT, W) [ et (%24 1)

vEa

where z = (z,,),,ea € $55. Then f € M, (T, ¥) is a holomorphic modular form
on §)2 with respect to some congruence subgroup of Sp(g, F).

2 Galois action

Though modular forms (in this lecture) have no Fourier expansions, we can
give a Galois action on them concretely, using the pull-back by eo(T, ¥).

For a CM-field K, its CM-type ¥, and any o € Gal(Q/Q), we can define
another CM-type Yo = {40 |¢) € ¥} of K. We denote by Ky (or simply K*
if there is no fear of confusion), the corresponding algebraic number field to
{0 € Gal(@/Q) |¥o = ¥ } which is a finite index subgroup of Gal(Q/Q). As
is well known, K3, is a CM-field contained in the Galois closure of K. Viewing
¥ as a union of [F : Q] different right Gal(Q/K)-cosets in Gal(Q/Q), we
define a CM-type ¥* of K}, as follows

Gal(Q/K3) V" = (Gal(@/K)¥) ™.

We call ¥* by “the reflex of ¥” and the couple (K}, ¥*) by “the reflex of
(K, ¥)”. From the definition, we have (K} ) = Ky, for any o € Gal(@/@)
(or € Aut(C)). By N§, we denote the group homomorphism z — ]'L,,.eq,. ¥
from K3* to K*. It is a morphism of algebraic groups if we view K™ and
K> as algebraic groups defined over @, and so it can naturally be extended
to the homomorphism of (K})} to K.

For a CM-type ¥ and any ¢ € Aut(C), a certain idele class gg(c) €
K} /K*KZX is defined in [3] (or essentially in [2]). Take an abelian variety A
of type (K, ¥) with a Og-lattice L in K and a complex analytic isomorphism
© of C®/LY onto A. (See, [9].) We denote by Ay, the subgroup of all torsion
points of A, which coincides with the image of K/L by © o ¥. Next take
A?. Then it is an abelian variety of type (K, ¥o) and we have the following
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commutative diagram

K/L —2% Ay
xal la

O40(¥0o) o
K/aL ——— AL,

with some a € K and complex analytic isomorphism 6, of C*/(aL)¥® onto
A°. The coset aK*KX is uniquely determined only by (K, ¥) and ¢ (not
depending on A or L). We denote this coset by gg(c). For a € gy(o), we have
aa? € x(0)F*FX, where x(0) € [[,Z} C Q} which satisfies [x(s)~*,Q] =
0lQ,,- We define 1(0,a) € F* by %‘? € i(o,a)F}. If o is trivial on Ky, we
have gg(0) = NL(B)K*K} with b € (K})} such that [b™', K§] = olk_,;
this fact is a main theorem of complex multiplication theory of [9]. Note that
95(01)9ve, (02) = gu(0102).
Take CM-types ¥(T,j) (1 <j < m — 2q) as in section 1, and set

( o € Aut(C), )
ag
a= a1 c (K;: )m—-2q+1,

Caw)(C) = { (0; T, ¥; )

N

?
Am—~2q

where a9 € gy(0),

and a; € gy (o) for 1 <j<m-—2q, |

\

where K¢ denotes the non-archimedean component of the idele group K.
Note that, for any o € Aut(C), there exists some (0; T, ¥;a) € C7,w)(C).
For any (0;T,¥;a) € C(1,%)(C), take B(o; T, ¥;a) € GL(m, Ky) as

(%+29§ﬁ)1q %_ a_?'&)lq
aj
B(o;T,¥;a) =
a’ﬁz—2q
(3 - %501 (3 + 221
2 2 q 2 2 q

The following theorem is the main theorem of [12].
Theorem Let T be a “normal” skew-hermitian matriz with respect to a
CM-type U, which is expressed as in (1.1). For any (0;T, ¥;a) € Ciru)(C),



take T € K™ as

(0, a0)T - 14
L(U, al)tl

~h
I

L(G’ am-2q)tm—2q
(o,a0)m" - 14

Then T is a “normal” skew-hermitian matriz with respect to the CM-type Vo

Given any f € My(T,¥), take an open compact subgroup Cpn of U(T, ¥)p so

that f € My(T, ®) ((U(T, ¥)a x Cy) NU(T, ¥)). Then there ezists f@TVia) €
Mo (T, Vo) which satisfies the following property.

(i) In case g > 0, we have

(fOTYD &) eo(T, Vo) = {(flea)leo(T, ¥)}° - (2.1)
for any o € U(T, V) and & € U(T, Vo) such that
an € CuB(0;T, ¥;8)anB(0; T, ¥50) ™" (2.2)

where ay, and Gy, mean the non-archimedean parts of o and &. The action
of o in the right hand side of (2.1) is as defined in (0.2).
(i) In case ¢ =0, we have

(fCTY®26)(0) = {(flex) (0)}7

for any o and & as in (2.2).

Remarkl We can easily prove that 7 is “normal” with respect to ¥o.
Moreover, the dimension of the maximal isotropic subspace with respect to
T is also g, the signature of —/=1-T% is (r,,s,) for each v € a, and we
obtain ¥(T,j) = ¥(T,j)o for 1 < j <m — 2q.

Remark2 For any &y, € U(T, ¥o)y, we can easily verify that

B(0;T,V;2)2nB(0; T, ¥;0) " € U(T, ¥)n.
It is because we have
B(0; T, ¥;0)Tu'B(0; T, ¥; 2)° = x(0)Th,

where Th and T;, denote the non-archimedean components of T and T, re-
spectively.
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Remark3 For any & € U(T, Uo), there exists o € U(T, ¥) which satisfies
(2.2). Because we have ( det (&) 1 ) € U(T,¥) and
m—1

_ -1
( det(&) 1 ) B(o;T, ¥;0)anB(0; T, ¥;a)"! € Uy(T, )4,
m—1

the strong approximation property of U, (T, ¥) shows that.
Remark4 Clearly the modular form f@T:¥®) is uniquely determined, since

the set Useu( go) & © £o(T, ¥o)($52) (or {&(0) |a e U(T, \Ila)} if ¢ = 0) is

dense in (T, Vo).
Remark5 Let Sx(T, ¥) be the space of cusp forms contained in M, (T, ¥).
Then we have S (T, ¥)@T¥2) = S (T, Vo).

3 Relation with Hecke operators

We can easily prove that our Galois action is compatible with Hecke opera-
tors. :
To define Hecke operators, we have to consider adelized modular forms.
Let D be a subgroup of U(T, ¥)4 which is written as D = U(T, ¥), X Dy
with some open compact subgroup D), of U(7T,¥),. For any k € Z2, we
denote by M (T, ¥)(D), the set of all functions f : U(T, ¥)4 — C satisfying
the following conditions (1)—(3).

(1) f(zdn) = f(z) for any dy € Dy.

(2) £(Bz) = f(z) for any 8 € U(T, 7).

(3) For each p € U(T, ¥)y, there exists an element f, € My (T, ¥) such that

f(py) = (folxy)(0) for any y € U(T, ¥),.

Then we easily have f, € My (T, ¥)(pDp~! NU(T, ¥)). Using the strong
approximation property of U; (T, ¥), we can take a finite subset B of U(T, ¥),
so that

U(T,¥)4=| |U(T,¥)bD  (disjoint union). (3.1)
beB

212

Then the map f — (fs)ses gives a bijection of My (T, ¥)(D) onto [T,z Mk (T, ¥)

(bDb~t NU(T, T)). |
We write simply f < (fp), or f & (f3)sen to indicate that f, (resp. f5)
is determined by f for each p € U(T, ¥)y, (resp. b € B) as in (3) above.



We denote by Si(T, ¥)(D) the set of all f « (f,), € My(T, ¥)(D) so that
fp € Sk(T,¥) for each p € U(T, ¥)p.

Let £ (fi)ben, & < (go)oes € My(T, ¥)(D) and assume that either f
or g belongs to Sx(T, ¥)(D). Then we can define the inner product < ,> of
f and g by

< fag >= IBI_IZ < fb,gb >,
beB
where |B| denotes the number of elements in B. We can easily verify that
< f,g > is independent of the choice of B.
The Galois action can also be constructed on the space of adelized mod-

ular forms.

Theorem. For any f & (f,), € Mi(T,¥)(D) and any (0;T,¥;a) €
Ciru)(C), there exists fOTY8) o (f5); € Mye(T, ¥0)(D) such that f; =
(oTVa) yf 5 = B(o;T,¥; ;a)"'pB(o; T, ¥;a). Here D is a subgroup of
U(T, Vo), defined by D = U(T VUo)a X Dy, where

Dy = B(0;T,¥;a) 'DuB(0;T, U;a)  (C U(T, ¥o)n).

We can prove that this action of (0;7,¥;a) € Cr,%)(C) is compatible
with the action of the Hecke ring, that is,

(lexD)(a;T.\I';Q) = f(cr;T,‘I’;g)|E§;D,

where f € M (T, ¥)(D) and QxD, DzD are elements of the both Hecke
rings (corresponding to D and D), so that

i = B(0;T,V;a) 'zB(0; T, ¥;a).

(For details about the Hecke rings, see [8] or [13].)
Let f € Si(T,¥)(D) be a Hecke eigen cusp form corresponding to D,
with eigenvalues
f|DzD = A(z, f) - £.

Then f©T¥8) ¢ §,.(T, ¥o)(D) is a Hecke eigen cusp form (corresponding
to D ) with eigenvalues A(F, f@T¥9)) = \(z,f)°. Since A(z™1,f) = Xz, f)
holds, we have (A(z,f))° = A(z,f)° for any 0 € Aut(C). This implies that
A(z, f) is contained in a CM-field.

We can easily obtain that C(o; T, ¥;a) = B(pop; T, ¥;a?) ' B(0;T, ¥;a) €

U(T, ¥0),. Then we have the following conjecture.
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Conjecture. Letf, g, g € Si(T,¥)(D) be Hecke eigen cusp forms having
the same eigenvalues. Assume that £ # 0. For any (0;T,¥;a) € Cr,u)(C),
we have < £PorTYe)|C (g, T, U; a), fOT Y8 >=£0 and

< gg""p;T"I';gp)|C(a;T,\I’;Q),gg"‘T’q’;Q) >_[<sug:> i
< f(pap;T,‘I’;gp) IC(U’ T’ \II, g_), f(U;T,‘I’ig.) > < f, f> ’

where |C(0; T, V;a) denotes the translation by |C(o; T, ¥;a).

The latest result (the main theorem of [13]) is as follows.
Theorem. The previous conjecture is true if the weight k = k1 with even
integer k such that k > 2m.

This is proved by so-called “doubling method” introduced in [8].
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