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Mass quantization in equilibrium self-gravitating
fluid

$K # (Takashi SUZUKI)*

1 Exponential nonlinearity revisied
Emden-Fowler equation with exponential nonlinearity,
-Av=o0e" inQ, v=0 ondN (1)

arises in the theories of thermonic emission, isothermal stationary gas sphere,
and gas combustion [20, 10, 4], where 2 C R™ is a bounded domain with smooth
boundary 82 and o > 0 is a parameter. In the case of m = 2, it is also associated
with the theories of turbulence and self-dual gauge [30, 28, 55, 47]. Actually,
this equation with m = 2 is provided with complex and geometric structures,
which results in the mass quantization of the blowup family of solutions [43, 45].

Complex Structure
Putting u = v + log o, we obtain
-Au=c¢e" in Q. (2)
If we identify z = (z1,22) € Q to z = 21 + 122 € C, then (2) means

1

Uzz = —=e*
for Z = 1 — wz2. This implies
L. 1 .
for 1
8 = Uzyy — ‘2‘“/3, (3)

and therefore, s = s(z) is a holomorphic function of z € Q C C.
Regarding (3) as a Riccati equation of u, we obtain

1
Pz + 589 =10 (4)
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for ¢ = e /2. Here, we take z* = (23,23) € Q, and define a fundamental

system of solutions to the linear equation (4), denoted by {p1(2), p2(2)}, such
that

iz}

6@1
Soliz=z"‘ = 82 a9

=1 and 52

Z==2z™

= 902]z=z"‘ =0, (5)

z=2z*

where z* = 2} + 123. This {¢1(2), p2(2)} is composed of analytic functions of
z € §1, and it holds that

o =2 =F(2)p1(2) + f2(2)p2(2) (6)

for some functions f1 and f; of Z.
These f1(Z), f2(Z) are prescribed by the Wronskian. Since

W(‘Pl#ﬁz) = P102: — P1zp2 = 1,
it holds that
fi(2) = W(p,02) = 02z — 0202
F2(Z) = W(p1,90) = 0102 — 0129,

and the left-hand side is independent of z. Taking z = z* in the right-hand side,
therefore, we obtain

@) =0("2) and  f2(2) = 0u(2",2). (7)
Since ¢ is real-valued, it holds that

1_
pzz + 559 =0 (8)
for 3 = 3(%) defined by 3(Z) = s(z). This relation is valid to ¢ = f1(2), f2(Z)
formulated by (7), while {%,,®,} forms a fundamental system of solutions sat-
isfying

_ 0p o1 _
‘Pﬂz:,—* = —322 = 1 and —5-—_2_-1— = B3|z=3 = 0.
z=z" Z=z*

Thus, f1(Z) and f2(%) are linear combinations of P, (Z) and P,(Z).
If the above prescribed z* = (¢7,z3) € Q is a critical point of u, then it
holds that

T=x*
1 * ek —u/2
(Z) = px(2",2") = zze ™/ 0
oz : ="
f2(z*) — (,07(2*,2*) - %e—-u/Z =0
T=z*
8f2 —u/2 2
—=(Z") = 2(2",7") = ZAe u/ = —Ze *?Au
6-2 = r=x* r=x*
_ leu/2
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and therefore, we obtain f1(Z) = cp1(Z) and f2(2) = ¢ '@3(2) for ¢ =
e—-u/2|
that

This means fi = cp; and fo = %im, and therefore, it holds

=x*’
—u/2 2 ¢} 2
e = ¢l +—8—|<P2| (9)
by (6). Writing 91 = c/?8/4p; and 9o = ¢71/287/%p,, we have
W(¢17¢2) = W(‘P1a902) =1
1/2 -1/2 1/2
1 1
(%) e/ {c (g) o1l + 7 <§> |<P2|2}
_ 1t
l® + ool

and therefore,

P W) __(1)1/2eu/z (10)

L+IFP - [al” +[al”  \8
for F = 13/41. This means that (1) is reduced to finding an analytic function
F = F(z2) of z € Q C C such that

o\1/2
p(F)loa = (3) (11)
by u = v + logo and v|gq = 0, where
|F”|
p(F) = .
F)=1 +|F)?

The above defined F = F(z) is a quotient of two linearly independent solu-
tions to (4), and therefore, it holds that

{F;z} = —%s,

3 /F" 2 1 F"
{F’Z}‘Z(Ff) T

is the Schwarzian derivative.

where

Geometric Structure

It is known that p(F) describes the spherical derivative of the meromorphic
function F = F(z). More precisely, if d£? denote the standard metric of the
Riemannian sphere C with the south pole (0,0, 0) and the north pole (0,0,1),
and if 7 : C — CU{co} denotes the stereographic projection, then the conformal
transformation F = 71 o F induces the relation

dx

ds p(F), (12)

where ds® = dz? + dz} denotes the Euclidean metric on C 2 R?. In particular,
p(F) is invariant under O(3) transformation of C.
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If w CC Q is a sub-domain, then the immersed length of F(dw) and the
immersed area of F(w) on C are defined by

4y (6w) = / p(F)ds and my(w)= / p(F)?dz,
Bw w
respectively, and therefore, it follows that
£1(8w)? > 4my (W) (m — my (w)) (13)

from the isoperimetric inequality. Putting
£(Bw) = / p'/%ds = 81/2/ p(F)ds
Sw Sw
m(w) = /pdm = 8/ p(F)%de
with p = e*, we obtain
1
£(0w)? > §m(w) (87 — m(w)) (14)

by (10) and (13).

Relation (14) is a form of Bol’s inequality on the surface M with the Gaus-
sian curvature less than or equal to 1/2. More precisely, (14) describes this
inequality for non-parametric M, where p = p(z) > 0 is a C? function defined
on the domain Q C R? of which boundary is composed of a finite number of
Jordan curves,

—Alogp<p in Q, (15)

and w CC Q is a sub-domain with the boundary dw locally homeomorphic to a
line. This geometric isoperimetric inequality induces an analytic isoperimetric
inequality [2] concerning the first eigenvalue of the Laplace-Beltrami operator,
by spherically decreasing rearrangement with respect to d¥ = p(z)'/2ds, i.e.,

A= /ﬂp <8r = 1 (p,R)=vi(p*Q"), (16)
where
11 (p, Q) = inf {/ﬂ Vol de | v e HAQ), /n'vzpdm - 1} A
is the first eigenvalue of
—Ap=vpp in(Q, ¢=0 ondQ, (18)
p* =o*e?, O = {z € R?||z| < 1}, and
—Av* =g*¢¥"  in QF, v*=0 on Q"
/ ) o*e’ =\ (19)
This (o*,v*) exists uniquely for each A € (0, 87).

Radial Solutions
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From the general theory [21], any classical solution to (1) is radially sym-
metric if Q) is the unit ball. To classify such a solution for n = 2, first, we

study

1
v+ v oe? =0 (0<r <o), V(0)=0.

If vy = vo(r) is a solution to this problem, then so is

v(r) = vo(e*%r) + o

(20)

for a € R. Thus, we shall assign a special solution vg(r) to (20) and chose o by

the boundary condition, i.e.,
vo(e*/?) +a = 0.

For this purpose, we deduce

d2
38—2(1) +28) +oevt® =0

from (20) using s = logr, and obtain the one-dimensional case,
v’ +oe* =0 (—o0 <8< 00),

where u = v + 2s. This equation implies

{3} -o

1
" 22 —
u 2( ) 2.

Actually, (23) is reduced to the logistic equation
¢ =(1-1¢)¢

and we take the case

by £ = 2:”'45&, and we can assign a solution
{(s) = E (1 + tanh f)
=3 5)
This £ = £(s) induces vo = vo(r) defined by
2
vy + 258 = —2log cosh s + log et

ie.,

(21)

(22)

(23)

as a special solution to (20). Then, (21) is reduced to the algebraic equation

8 _(e2+1)?

c ex '’

and thus, we have classified the solutions to (1) for

Q=0"={zeR?||z|<1}.
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Actually, they are described explicitly, i.e.,

80+/0
(1482 lof?)’

SIS

v =vY(z) = log , Bx=

{1—%:&:(1—%)1/2}.

It holds that

vy’ = v =2log

1+ |z)?

for 0 = 2, and the number of solutions to (1) @ = Q* is two, one, and zero
accordipg to 0 < 0 < 2, ¢ = 2, and ¢ > 2, respectively. Total set of solutions
C* = {(o,v)}, on the other hand, forms a one-dimensional manifold in R x
C(1"). We obtain

hi% v*(z) =0  uniformlyinze Q"
li% v3%(z) = 4log '—% locally uniformly in z € 0" \ {0},

and therefore, the endpoints of C* are (0,0) and (0, v.) with v, = 4log I—ﬂlv_l Thus,

Ux = V«() is a singular limit of the solution.
It is convenient to write these radially symmetric solutions as

uN 1/2 :
(5)1/2ev/2= (f_> h (24)
8 8 lz|” +

1/2 1/2 2\"? o
= ={= 1 - =3,
2=l = (2) {iey-3

In fact, in this case their Liouville integrals (10) are described by F(z) = Cz
with

with

1/2
C=p2=0Cy= {-}7-{4—0:1:2\/4——20}} ,
and the length of F(8Q*) and the area of F(Q2*) are equal to

u 1/2 1/2
NG =/ (9—) ds =2 (Z
1(007) s \ 8 (8)

U
m1(Q*) = /* e—s—dz = —;— Q*pd:z: = %,

respectively. Therefore, A grows from 0 to 87 monotonously along the branch
C* between (0,0) and (0,v.). Furthermore, the bending point ¢ = 2 of C*
corresponds to A = 4w, while o increases first from 0 to 2, and then decreases
from 2 to 0.

If we take A as a control parameter and eliminate o in (1), then it follows
that

and

CAv= e
e’U

Ja
This X casts a physical parameter derived from the inverse temperature and the

coupling constant in turbulence and self-dual guage, respectively (8, 9, 30, 45,
46, 55).

in Q, v=0 on ON. - (25)



Laplace-Beltrami Operator

From the general theory of bifurcation [16, 43], the above described profile
of C* guarantees the linearized stability of v*? as a solution to (1) for 2 = Q.
This means that the first eigenvalue of the self-adjoint operator

L¥ = —A —ge’~

in L2(9*) with the domain (H? N H})(Q*) is positive if 0 < o < 2, and zero
if o = 2. These properties are equivalent to v1(p*,Q) > 1 and v (p*,Q*) =1
for 0 < 0 < 2 and o = 2, respectively, where v, = 11 (p*,Q*) denotes the first
eigenvalue of

—-Ap =vp*p in Q*, =0 ondQ" (26)

for p* = oe?= .
This v1(p*, Q*) is equal to v1(p, Q) of (17) for (p,Q) = (p*,Q2*), and by the
above consideration it holds that

0<A<4r = 1n(*Q*)>1, (27)
where 8
P(s) = —— (28)
(1ol + )
with p > 0 determined by
A= | p*(z)dz. (29)
(944
Thus, we obtain
0<A<dr = 1n(p,Q)>1 (30)

if @ ¢ R2 is a domain with smooth boundary 89, p = p(z) > 0 is a C? function
on { satisfying (15), and [, pde = X.

We can confirm, on the other hand, (27) directly, using the associated Leg-
endre equation. More precisely, putting

_n2
p(z) = B(E)e™, z=re’, £= Z_Jr% A=1/y,

we obtain the associated Legendre equation [2]
[(1-€9)8¢], + [2/A-m?/(1-€)] 2 =0 (§ <€<1)
o(1)=1, () =0 (31)
by (26), where £, = (u — 1)/(p + 1). Thus, if & = ®(£) denotes a solution to
the first equation of (31) for A = 1, m = 0, and ®(1) = 1, then 1, (p*,Q*) > 1

is equivalent to
2(¢) >0  (fu<E<]).

Since such & is given by Py(£) = &, this means £, > 0, and therefore, we can
reproduce (27) by

A<dr & p>1 & £,>0.
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The associated Legendre equation arises when one adopts the polar coordi-
nate to sustain the eigenvalues of three dimensional Laplacian written in the
Cartesian coordinate. To understand the reason why this equation arises in the
study of (26), we recall that p* = p*(z) of (28) is associated with the Liouville
integral F(z) = u~2z by (p*/8)*? = p(F). Using the stereographic projection:
7: C — CU {00}, therefore, § = ¢ o 7 satisfies

-Agp = -18{6 in @, =0 on 0w, (32)

where ¢ = ¢(z) is a solution to (26). Here, Ag is the Laplace-Beltrami operator
and @ C C is a disc with the center (0,0,0). In other words, 11 (p*,Q*) defined
by (28)-(29) is nothing but the first eivenvalue of the Laplace-Beltrami operator
—Ag2 defined on w C §% with |, = 0, where S? and w C S? denote the
round sphere with total area 87 and an immersed disc with total area A € (0, 87),
respectively. Then, we obtain the associated Legendre equation using separation
of variables to (32).

Spherically decreasing rearrangement used in the proof of (16) is reformu-
lated as a Schwarz symmetrization on the round sphere in this context. Thus,
given a positive C? function p = p(z) defined on a domain 2 C R? with con-
tinuous extension to Q satisfying (15) and [, p(z)dz = A € (0,8), we take an
immersed disc w C S? with total area A. Let ¢ = (z) be a non-negative C?
function defined on § satisfying ¢|5q = 0. Then, we put

@"(z) =sup{t|z € wi} (33)

for x € w, where w; denotes the concentric disc of w satisfying

/ dv = / pdz (34)
wt {p>t}

and dv is the area element of S2.
Spherically Harmonic Functions

We recall that if  C R? is a domain, then (2) is equivalent to (10), i.e.,
p(F) = (e /8)1/ 2 where F = F(Z) is an analytic function. This is regarded as
an analogy of the harmonic case, that is, Au = 0 in Q if and only if u = Re F,
where F' = F(z) is an analytic function. In fact, we can derive the mean value
theorem for this type of functions described below, and this property guarantees
a Harnack type inequality [41]. In this sense, the function u = u(z) satisfying
—Au < e* and Au < €% may be called spherically sub-harmonic and super-
harmonic, respectively [43, 45], i.e., —Au < e* in Q if and only if

1 1
u(zg) € T uds — 2log 1———/ etdx
(o) |0B(z0, R)| JaB(co,R) { 87 JB(zo,R) } N

for any B(zo, R) CC R, and similarly, Au < e* in Q if and only if

1 1
u(zg) > == uds — 2log{ 1+ — / etdz
) |0B(z0, R)| JoB(z0,R) { 87 JB(zo,R)
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for any B(zo, R) CC Q.
The first inequality implies the following fact, called Bandle’s mean value
theorem [1]: If p = p(z) is continuous on B, C? in B, and satisfies

—~Alogp<p in B, /p_<_47r,
B

then it holds that

»(0) 1 1/2
< ds, 35
T 2007 = BB Jps.” (39)

where B = B(0,R) C R?, B, = B(0,r), and r € (0, R).
Duality

Problem (25) is the Euler-Lagrange equation of the functional

Ta(v) = % (Vo3 — Alog (/n e”) +Alogh— A (36)

defined for v € H}(Q). The Trudinger-Moser inequality [32] guarantees that
this functional is C*, and is bounded from below if A = 8. Actually, there are
several inequalities of this type [44].

This J» = Jx(v) is regarded as the dual form of a physically important
functional, Helmholtz’ free energy

F(u) = /Qu(logu -1) - %((—AD)_IU,@

defined for u > 0 and [, w = X ([45]). The equilibrium with respect to F(u) is
described by

(=Ap)~*u = logu + constant in Q, lull, = A (37)

We define, on the other hand, the Lagrangian by
1
L(w,v) = [ ullogu=1)+ 3 Vol = ().
Q

First, if v € H(f) is a solution to (25) then u = fj:—u is a solution to (37), and

conversely, if u > 0 is a solution to (37) then v = (—Ap) " u is & solution to
(25). Next, there are unfolding Legendre transformation and the minimality in
accordance with the Lagrangian formulated by

| LIv:(——Ap)“lu =F and Llu:ﬁ‘?‘—:v =T (38)
and '
L(u,v) > max {F(u), Ia(v)}, (39)

respectively, where u > 0, ||ul|; = ), and v € H}(2). We have, more precisely,

inf {L(u,v) | v € Hy(Q)} = F(u)
inf {L(u,v) | u >0, |lul; = A} = AA(v),
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and in particular,
inf L(u,v) = irq}f JIx(v) = inf F(u).

These profiles are the consequence of the abstract structure of Toland duality
[48, 49] observed in wide areas [45].

Decrease of this free energy together with mass conservation, on the other
hand, is realized by the model (B) equation [23, 24]. This is the Smoluchowski-
Poisson equation concerning material transport under the self-attractive force,
or a simplified system of chemotaxis in the context of mathematical biology, i,e.,

u=V-(Vu—uVv), —Av=u inQx(0,T)

Ou Oov

— —Y—=v = Q T). 40
3 Y3y =Y 0 ondQx(0,7T) (40)

In fact, this system is described by
0

ug =V - (uVIF(u)), u=—08F(u)] =0
ov 59
and hence it follows that
4 u—-~—/ u—a—d}'(u)—O
dt Q - a0 61/ -

’—d—]-'(u) = —/ u|V6F(w)® <O0.
dt o

This means that the stationary state of (40) is defined by

u>0, |ull; =\, 0F(u)= constant,
that is, (37), equivalent to (25) by the above mentioned transformation.
Collapse Formation

There is a quantized blowup mechanism in the nonlinear eigenvalue problem
(25) derived from (1), which is the origin of the formation of collapse with
quantized mass to (40). A typical example of such a profile is the following
theorem [44].

Theorem 1 If the solution to

us =V - (Vu - uVv), —szu_|—§12—|/u in 2 x (0,T)
o

Ou Ov Ov
a—u-a—;—-a—;—o OnaQX(O,T)
blows-up at t =T < 400, then it holds that
u(z, t)dz — Z M (T0)0z, (dz) + f(2)dz
ToES

in M(Q) ast T T, where @ C R? is a bounded domain with smooth boundary
o1Q,

S = {zo € Q| there exist zx — o and tx 1 T such that
u(wk,tk) — +OO}
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is the blowup set, 0 < f = f(z) € LX(Q)NC(Q\ S), and

8r (x0 €02
(o) :{ o (o eas)z).

Thus, we obtain

2H(SNQ) +1(SNOQ) < [luoll /(4r). (41)

We can ‘show also that the equality in (41) is excluded [45]. See [34] for later
developments.

2 Two-Dimensional Mass Quantization
The quantized blowup mechanism to (1) is described as follows [33].

Theorem 2 Let Q C R? be a bounded domain with smooth boundary 89, and
{(ok,vk)}, be a solution sequence to (1) such that ox | 0. Then, passing to a
subsequence, A\, = fQ oxe’*dx — 8wl with some £ =10,1,...,+00. According to
this value, the solution behaves as follows:

1. £=0: uniform convergence to 0, i.e., ||vk|l,, — 0.

2.0 < £ < +00: n-point blowup, i.e., there exist x5 € Q (j = 1,...,¢)
and vy = vo(z) such that vy — vy locally uniformly in Q\ S for S =
{z3,...,2;}. We obtain

1
vo(z) = 8#2 G(z,z})

j=1

1 : * * * .
5 VR(e5) + ;vxa(mi,mj) =0 (1<j<0, (42
i#]

where G = G(z,z') is the Green’s function:
"AG(', w,) = 5zl(d2:) in Q, G(-,m’) =0 on aﬂ

defined for ' € 2, and
R(z) = [G(x,x’) + L log |z — m’|]
27 o=

is the Robin function.

3. £ = +o00: entire blowup, i.e., vy — +o00 locally uniformly in Q.

The second case is crucial in the above theorem. Using (25), we can refor-
mulate it as follows.



Theorem 3 Let Q C R? be a bounded domain with smooth boundary 09, and
{(Ak,vk)} be a solution segence to (25) satisfying A, — Ao € (0,+00). Then,
Ao = 87 with £ € N, and passing to a subsequence, we obtain vy — vy locally
uniformly in Q\ S with vo = vo(z) satisfying (42) for S = {z},...,z}}.

To prove this case, first, we note that vkl pr.e = O(1) holds by the L!-

estimate [39, 7], where 1 < ¢ < 2 = 2 from n = 2. This implies a uniform
boundary estimate indicated by
vkl peo ey = O(1), (43)

using the reflection argument combined with the Kelvin transformation [21, 17],
where w = &N Q and @ is an open set satisfying 602 C &.
The original proof uses the complex structure [33]. In fact, we obtain

-1
_ ocC
e = clgs* + T fal?

for (1), using s(2) of (3) with u replaced by v, where {¢1(2),2(2)} is the
fundamental system of solutions to (4) defined by (5) with z* corresponding to
a critical point of v, denoted by z* € €. Thus, there is a family of holomorphic
functions {sk(z)} defined by (3) for u = vk, and this family is uniformly bounded
on Q by (43). Passing to a subsequence, therefore, we obtain s; — s locally
uniformly in Q.

Introducing the fundamental system of solutions {c,olk(z) wax(2)} to (4) for
s = si(z), we take * = } as a maximum point of v;. Passing to a subsequnece,
the convergence s, — s mentioned above guarantees those of p1x — 10 and
@2k — @20 locally uniformly as analytic functions in Q, because {z}} is in Q\&.
Then, it holds that ¢ = exp (— |jvk||, /2) — O in the analogous relation to (9),

E onif?. (49)

- grC
/2 = cx e’ + —3

Since {vk} is bounded in W1:4(Q) for 1 < g < 2, any blowup point of {vx} must
be zero of the analytic function ¢, and therefore, each blowup point is isolated.
We obtain finiteness of the blowup points in this way, while classification of the
singular limit, (42), is derived by residue analysis, more precisely, singularity
vanishing of so(2) = voz» — 3v3,-

This proves the theorem, but here we obtain oxc;! =~ 1, ie., ||vklo
—2logox as k — oo. From the proof of Theorem 5 descnbed below, on the
other hand, each z; takes a sequence :c’ — zj, where a:’ is a local maximum
point of vx. Thus, we can reformulate z* = :r’ in (44), and conseqeuently, the
rates of blowup ’Uk(ib“,i) — 400 (j = 1,...,¢) are proportional each other.

The other proof of the above theorem uses Theorems 4-5 described in the
following paragraph and the Pohozaev identity instead of the complex structure
[29]. This argument is valid to the non-homogeneous coefficient case.

The second equality of (42) means that (z3,...,z;) € Qx...xQ is a critical
point of

H=H(zy,...,2) = ZR(m,) +Y Glmi, z5).-

i<j
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If it is non-degenerate, then there is a local branch of solutions taking (o,v) =
(0,v0) as an endpoint for vo = vo(z) defined by the first relation of (42) ([3]).
First, the complex structure was used for this purpose, assuming that 2 is
simply-connected and £ = 1 ([53, 31, 42]).

Theorem 3 guarantees that the total degree of the solution set is constant in
each component of [0, +00) \ 87N ([26]). It is actually determined by the genus
of © and explicit formula is given by a detailed blowup analysis [11, 12, 13]. For
example, if £ = 1, then it holds that

lvkllo, = —2log ok + 2log 8 — 8mR(zo) + o(1).
We obtain also

v(z) = 22: GTi 4y o= =1
—8+zff T 8+]zl

if v = v(z) is a uniformly bounded solution to the linearized entire problem

v .
AV = ———— in R2?,

= -
{1+5}

where a;,b € R ([22]).

Blbwup Analysis

Self-similarity is observed in many equations in mathematical physics. Con-
cerning (2) derived from the vorticity equation and the abelian Higgs theory, it
is invariant under the transformation

u(z) = u(pz) + 2log p,

where p > 0 is a constant. This causes the lack of compactness of the family of
(approximate) solutions, and this mechanism is clarified by the blowup analysis
of which ingredients are summarized as follows:

1. scaling invariance of the problem.

2. classification of the entire solution.

3. control at infinity of the rescaled solution.
4. hierarchical argument.

The following theorem, free from the boundary condition, is useful in such
a study, because the effect of boundary conditions is usually lost in the scaling
argument. It also deals with the nonhomogeneous coefficient case with the
lack of the complex structure. Theorem 2 is associated with this theorem by
vk — log og. Actually, we obtain v > 0 in (1) ([6, 27]).

Theorem 4 IfQ C R? is a bounded domain and vy = vg(z) (k=1,2,...) s a
solution sequence to
~Av = Vi(x)e™ in Q
with ‘
0<Vk(z) <C; inQ, / e’ < Cy, (45)
Q

where Cy, Cy are constants, then, passing to a subsequence, there arises the
following alternatives:
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1. {ux} is locally uniformly bounded in .
2. vx — —o0 locally uniformly in Q.

3. There is a finite set S = {:c;} C Q and m; > 47w such that vy — —oo
locally uniformly in Q\ S and

Vi(@)e™dz —= Y m;fer(dz)  in M(R). (46)
g
Furthermore, S is the blowup set of {vk} in Q.

Theorem 5 In the third case of the above theorem, we obtain m; = 8mn; for
some n; € N, provided that Vi, — V uniformly on Q.

Boundedness of the Palais-Smale sequence relative to the Trudinger-Moser
inequality does not follow always. Then, the above theorem is applied to com-
pensate this difficulty in constructing non-trivial solutions to the mean field
equation [40, 18].

There are several differences between the energy quantization described in
the previous chapter. First, the above blowup mechanism occurs only to the
quantized values of mass, realized as the eigenvalue A. Thus, we obtain the
residual vanishing, the disappearance of the regular part of the limit measure
in (46) under the control (45) of the additive constant. Second, global structure
described by the compactness of the domain manifold or the boundary condition
excludes multiple bubbles, prescribing the location of blowup points.

The proof of these theorems are described in [47, 45]. First, we perform the
prescaled analysis to prove Theorem 4. In more precise, if 2 C R? is a bounded
domain, f € L}(Q), and

—Av = f(z) inQ, v=0 on 0%,

then it holds that
) ar? 2
exp | —— |v(z)| ) dz £ —(diam Q)?,
o 112 J

where 0 < § < 47. This implies e-regularity, described by the following lemma,
and then Theorem 4 is obtained by a standard argument.

Lemma 2.1 Let Q C R? be a bounded domain, K C Q a compact set, ¢1,ca >
0, and gg € (0,47). Then, there is C > 0 such that

-Av=V(z)e’, 0<V(z)<c; inQ
o], < ca, / V(g)e® < eo
A |

implies ||[vF || ooy < C.

Once Theorem 4 is proven, then Theorem 5 is reduced to the following case,
where B = B(0, R) C R? and B, = B(0,r).
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Theorem 6 If
—Avg = Vig(x)e¥ , Vi(z) >0 in B

max vg — +00
B

max vg — —00 (0<T<R)
B\B,

lim / Vi(z)e' = a
B

k—oo

/ ev® S CO,
B

then it holds that o € 87N

There is actually the case of o = 8¢ with £ > 2 in the above theorem [15].
However, the conclusion « = 8 arises, provided that

— mi < <
max v — minvg < C and VWil < C. (47)

‘We obtain, furthermore,
v (0)
e <
(1+ e o)

for k = 1,2,... and = € B in this case [26]. If (47) holds for B = Q, then
nj = 1 for any j in Theorem 5 and furthermore, the blowup points z},...,z}
are prescribed by

ve(z) — log (48)

1 * * * 1 * .
5VR()) + Y VaG(af,z3) + &= VigV(e}) =0  (1<j<0
i
similarly to the second equation of (42) ([29]). See [35, 36, 37, 44] for related
results. v
Theorem 6 is proven by the blowup anlaysis. Thus, we take x, € B satisfying
vk(zk) = ||vk|l o With 2x — 0, and put

z";k(x) = vk(ék:c + .'L’k) + 2log5k
O = e U(ER)/2

Then, it holds that
— ATy, = Vi(6kz + )€, Tk < 0= (0) =0 in B(0, R/26)

/ eﬁk < CO)
B(O’R/z‘sk)

and Theorem 4 is applicable to this {Ox}. Thus, {0k} is locally uniformly
bounded in R?, and passing to a subsequence, we obtain ¥y — ¥ locally uni-
formly in R? with '

—AD=V(0)e®, 5<0=5(0) inR?

/ e’ < Cp
R2
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by the elliptic regularity. From this we can infer V(0) > 0 and hence assume
a<Vi(z)<b  (z€B)

for k = 1,2,... without loss of generality, where a,b > 0 are constants. We
obtain, furthermore, ¥ = ¥(]z|) by the method of moving plane [14], which

results in

#(z) = log ! V(0)e® = 8r. (49)

27
(1 + YO |a:|2> R?

Sup + ‘Inf Inequality

We have detected the principal collapse formed at the origin in the proof
of Theorem 6. Now, we have to show the vanishing of residual parts by col-
lecting the other collapses. This is done by the sup + inf inequality proven by
Alexandroff’s inequality originally. Alexandroff’s inequality is also an isoperi-
metric inequality on surface described by its Gaussian curvatue, regarded as a
refinement of Bol’s inequality [2]. Thus, we can show the following lemma [38].

Lemma 2.2 Let B = B(0,1) C R? and a,b > 0 be constants. Then, there are
Co > 0 and ag > 4n such that

—Av=V(z)e’, a<V(z)<b in B
/ V(z)e’ < ap
B

implies v(0) < Cp.

This lemma is regarded as a refinement of Lemma 2.1 under the cost of
V(z) > a. If V = V(x) is restricted to a compact family in C(Q), which is
sufficient for later arguments, then we can apply the blowup analysis for the
proof. In this case, the above ag can be arbitrary in ap < 87 and furthermore,
the case a = 0 is permitted.

Using the above lemma and the scaling invariance of the equation, next, we
show the following lemma [38].

Lemma 2.3 If @ C R? is a bounded domain, K C Q is a compact set, and
a,b > 0 are constants, then there are

a=clab)>1 and ¢y = coa, b, dist (K, 60)) >0

such that
—Av=V(z)e*, a<V(z)<b inQ

implies
supv + ¢; inf v < cs. (50)
K Q

In the other version of (50) proven by the blowup analysis [5], the condition
¢1 = 1 is achieved under the cost of |[VV|, < C. In any case, this sup + inf
inequality induces the key estimate, again by the scaling [27].
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Lemma 2.4 Given a,b > 0 and C; > 0, we obtain v > 0, Co > 0 independent
of 0 < Ry < R/4 such that

~Av=V(z)e’, a<V(z)<Dd in Bg
v(z) +2loglz| <Cy  in Br\Bg,

implies
ev(@) < Cze-—'yv(o) . |m|-2(‘7+1)

for 2Ro < |z| < R/2.
Residual Vanishing

To complete the proof of Theorem 6, first, we recall the blowup argument
to detect the principal collapse. Using the diagonal argument, this process is
refined. More precisely, we obtain 7 — 0 satisfying r2 /82 — +o00 and

/ Vi(z)es — 8,
B(z),2r9)

where |[uk||., = vk(z)) — 400, z4 — 0, and &) = e~vk(@R)/2 0,
If '
sup {vk(z) + 2log |z — 24| | z € B\ B(z},m3)} < +o0, (51)

then Lemma 2.4 is applicable. We have

for £ € Bg/2 \ B(z},7%), and therefore,

+oo
/ Vk(:L')e”k < b-C - (52)2'7 - - / r—2(7+1),rdr
BR/z\B(:v%,'Pg) rg
= s o

This implies
/ Vi(z)e’  — 8w
B

because vx — —oo locally uniformly in B\ {0}, and hence o = 8.
If (51) is not the case, then there is z}, € B such that

sup {vk(z) + 2log lx - mgl} = v (k) + 2log |:1:,1c - argl — +o00.
wEB\B(ftgﬂ‘g)

This implies vk (z}) — +00 and 2} — 0. Furthermore, o} = di/8}; — +oo for
dp = |zt —2)| and b= e—vk(@h)/2
Given |z| < o1 /2, we have

|6t + o} — 2| > |o} - o] ~ Gk le 2 5 |} — |
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and therefore,

Ti(z) = vk(éiw-f—x,lc)—I-QlogJi
< wk(z}) +2log oy, — )| — 2log |6ha + zf — 23] + 2log 6}
1
< wve(ey) + 2log 8 + 2log |2} — 23| — 2log 5 |2k — =4
2log2.
This implies
ADl = 1 1\, 02 1 .
—At, = Vi (O + z))e%, 7 < 2log2 in By
51%:(0) =0,

and passing to a subsequence, we obtain 7} — o' in Cj;%(R?) with 7! = 7!(z)
satisfying

a?

2\2’
<1+,u2a2 |z — T| )

7(z) = log 7l(z) < 2log2  (for z € R?)

#1(0) =0

for some u,a > 0 and T € R2.
This convergence allows us to reformulate z} and 6} by

v(zl) = “Uk“Lw(B(ztﬂri)) — 1o,

8l = e~u(=)/2 , 0 and r3/0k - +oo, where r; = di/4. Similarly to the
above case, it follows that

/ Vi(z)e®™ — 8w
B(z},2r})

with B(x},2r}) N B(z%,2r) = 0.
We shall show o = 16, if

1
sup {vk(m) + 210g3;2(i)111 ’m - x-}cl |z € B\ U B(wi,r{)} < +o00. (52)

=0

is satisfied. It suffices to prove
/ Vie(z)e  — 167 (563)
B(z%,2dx)

because

/ Vi(z)e’ — 0
B\B(29,2dx)

follows from (52) similarly. For this purpose, we take ¥ix(z) = vg(dxz + 29) +
2log d, and obtain

—QAb, = Vi(dyz +27)e™  indp! (B - {z3}).



We put, furthermore,

R < _—_— & Cord
= Tk k 5 = -0,(23)/2 — Zk =i _ 'k
i dp B =C di’ AN
for 7 = 0,1, and then it holds that
5
% O

B(&2,27%) N B(5}, 271) = 0

1 .
sup {z”;k(m) + 210gj;:r_i%nl la: - i’,’cl | ¢ € Brya, \ U B(ft‘:i,ﬁ')} < +00
=0, , =%

/ - V(@)™ —8r  (j=0,1) (54)
B(#,2#)

for Vi(z) = Vi(drz + 23).

We obtain ) = 0 and |% — 3| = 1, and therefore, £} — &' with |5!| =1,
passing to a subsequence. The third relation of (54) and Theorem 4 now imply
@ — —oo locally uniformly in R%\ {0,&!}. Therefore, if 7} — 7! > 0, passing
to a subsequence, then

/ Vi(z)e®™ — 87 (65)
B(&1,1/2)

and hence (53). If 74 — 0, we apply the scaling around Z;. Then, it holds that
(55) by the third relation of (54).

- If (52) is not the case, we continue the process and obtain zZ — 0 and
re — 0 satisfying vi(23) = [Vkll Lo (B(a2 202)) — +00 r2/0% — 0, B(z},2rf) N
B(zl,2r]) =0 for 0<i<j <2 and

/ Vi(z)e™ — 8,
B(z%,2r%)

where 62 = e~v*(=k)/2, To show that o = 24~ in the case of

2
sup {vk(:c) + 2logor<r{1.122 |a: - wfc‘ |z € B\ U B(x{c,rfc)} < 400,
<< i2

we classify the rate d; ; = ‘m}c - a:{:l of concetration to the origin for 0 <i < j <

2. First, we show the residual vanishing inside the ball containing B(a:‘,’e, 27’%)
with a proportional rate. These balls are contained in a larger ball, where the
residual vanishing occurs similarly. We end-up this procedure in finitely many
times, and obtain the conclusion. 0

Profile of vx, = vi(z) in the outer region z € B\ B(zg, dx) is almost similar
to that of the Kelvin transformation of vy = wvi(z) on B(zg,dk), under the
assumption of (47). This is actually proven by the method of moving plane, and
then (48) is obtained [26]. See [25] for the other argument using the Pohozaev
identity.
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3 Higher-Dimensional Mass Quantization
Free Boundary Problem

Putting w = v +log A — log [, e” in (25), we obtain
—Aw =¢" in Q, w = constant on I' = 89, / e¥ =\ (56)
Q

Conversely, if w = w(z) solves (56), then v = w — wr is a solution to (25). By
Theorem 3, we can show the quantized blowup mechanism to (56).

Theorem 7 If Q@ C R? is a bounded domain with smooth boundary 0Q and
{(Ak,w*)} is a solution sequence to (56) satisfying Ak, — Mo, then passing to a
subsequence the following alternatives hold:

L [jw*]l, = 0Q).

2. supq w* — —o0.

3. Ao = 8nL for some £ € N, and there exist T3 €Q (j=1,...,£) satisfying
the second relation of (42) and z], — z}, such that z = ] s a local maz-

imum point of w* = wk(z), wk(:zi) — 400, w¥ — —o0 locally uniformly
in Q\ {=z%,...,%}}, and

e dz — Z 87 a3 (dz) in M(Q).
J

Thus, § = {x3,...,z;} is the blowup set of {wk}.

Higher-Dimensional Case

The problem (56) is regarded as a free boundary problem associated with
plasma confinement, where {w > 0} indicates the plasma region [19, 45]. Higher-
dimensional mass quantization is observed in an analogous problem

-Aw=wi inQ, w = constant on I', / wi =) (57)
Q

where  C R™ (m > 3) is a bounded domain with smooth boundary 8Q =
T, and ¢ = ;25. Furthermore, we can formulate it as the equilibrium self-
gravitating fluid equation described by the field component [45].

Similarly to Theorem 7, we can prove the quantized blowup mechanism,

where the quantized value m, > 0 is defined by

m*=/Uq
B

-AU=U? U>0 inB, U=0 ondB

for U = U(x) satisfying

with B = B(0, R). This U is radially symmetric and exists uniquely for each
R > 0, while m, is independent of R > 0. In the following theorem, G = G(z, z')
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denotes the Green’s function of —A on Q with the Dirichlet boundary condition
and
R(z) = [G(z,2) - T'(z - )]

o=z

where
1

Wi (m = 2) |z|™ 2

is the fundamental solution to —A and wy, is the (m — 1) dimensional volume
of the boundary of the unit ball in R™.

I'(z) =

Theorem 8 IfQQ C R™ (m > 3) is a bounded domain with smooth boundary 82
and {(X\k,w*)} is a solution sequence to (57) with ¢ = -2 satisfying Ak — Ao,
then passing to a subsequence the following alternatives hold:

1. Jlw||_ = 0Q).

k

2. supq w”® — —o0.

= m.f for some £ € N, and there erist 2% € Q and w{c - zj
(G =1,...,£), where S = {z},...,2;} C Q coincides with the blowup
set of {w*} on Q satisfying the second relation of (42), z = z}, is a lo-
cal mazimum point of wk = wh(z), wh(zl) — +o0, w* — —oo locally
uniformly in Q\ S, and

w*(z)dde — Zm*ém; (dz)  in M(Q).

The reverse result, actual existence of the solution sequence described in
the above theorem, is obtained by [52]. It is comparable to [3] for the two-
dimensional case. See also [51, 54]. Similarly to the two-dimensional case,
we obtain vy = w* — wk > 0 in Q by the maximum principle. This {vy},
furthermore, satisfies the boundary estimate. In fact, v € [0,00) +— f(v) = (v +
wr)% is locally Lipschitz continuous in (57), and also if the first two equations

hold for Q = B¢ with B = B(0, 1), then we obtain

—~Av=ly|"2v™? inB, v=constanton 8B

/Iyl-zvidyS/ Iyi"mvidy=/ wldz
B B . Be

by the Kelvin transformation v(y) = |£|™ 2 w(x) with y = z/ |z|*. These struc-
tures are sufficient to guarantee ||vg|| Loo(w) < €, where w is an Q-neighbourhood
of 992. :

Local version comparable to Theorems 4-5 also holds. Actually, there are
e-regularity, self-similarity, classification of the entire solution, and sup + inf
inequality, and these structures guarantee the following theorem. A slight dif-
ference to Theorem 7 is that the entire solution

and also

~Aw=wi, w<w(0)=1 inR™, / wl < +o0 (58)

has a compact support, which, makes the later argument simpler [50}.
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Theorem 9 If  C R™ (m > 3) is a bounded domain and w = wk (k =
2,...) satisfies

-Aw=wl nQ, /QwiSC

for g = 25 and C > 0, then, passing to a subsequence, we obtain the following
alternatives.

1. {w*} is locally uniformly bounded in .
2. w* — —oo locally uniformly in Q.

3. There exist £ € N, z} (j =1,...,£), andx',’; — x} such that z = :lr:j’c s a
local mazimum point of w* = w*(z), w*(z]) — +oo, w*
uniformly in Q\ {z3%,...,z;}, and

— —oo locally

wF(z)lds = Y mun;des(dz)  in M(Q),
: A

where n; € N.

Proof of Theorem 8: We have only to show the third case, assuming wk —
—o00 and |lvg|l,, — -+oo for vy = w* — wk > 0. Henceforth, we drop k for
simplicity. Then, it holds that

w(m)idm - Z m(x0)dz, (dz)

To€ES

in M(Q), where S = {z},...,2}} C Q is a set prescribed in the third case of
Theorem 9, and m(zg) € m.N for each 29 € S§. Thus, we have only to show
m(zo) = m. and the second relation of (42).

For this purpose, we apply the method of duality and scaling [45]. Thus, we
take v = wi > 0 and obtain

f u=\J, w—wr = / G(-, 2" yu(z)dz'.
Q Q
This implies
z) = / V.G(z, 2 )u(z)de'
Q

and therefore,
/ (- Vw)u = // ¥(z) - VG (z, 2’ )u(z)u(z')dzdz’
Q axQ
for ¥ € C§°(02)™, where the left-hand side is equal to

f@ o= == [pvut? oo [ugives 69)
Q g+1

Henceforth, ¢ = ¢4, r denotes a smooth function supported by B(zo, R) and
is equal to 1 on B(zo,R/2). We put ¢(z) = (z — a)p(z) for a € R™ and
© = ¥z0,R, Where 29 € S, B(zo,2R) C Q, and B(2¢,2R) NS = {zo}.
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Then, it holds that
Vﬂ):mﬁp"'(w—a)v%
and therefore,

m
@ vuu=- [ ute s o)

by (59). Thus, we obtain

;% uwiTet / /n Xni/l(m‘)-VzG(m,w')u(wb)u(m’)dxdx’=o(1). (60)

Using @ = @z, 2R, the second term of the left-hand side of (60) is equal to
/ ¥(z) - VG(z, 2" )u(z)u(z')dzdr’
Q%N
=/ Y(z) - VoG(z, z')u(z)p(z)u(z")drdz’
QxQ

= | (@) Va0l u@)o(e)ua)p( ) dods

+[ [ (@) V60 u@)pa@u(@) (1 - pla)deda’.
QxQ
The second term of the right-hand side of the above equality is equal to

m(zo)(zo — a) - z m(zy) VG (zo, zg) + o(1),
zheS\{xo0}

while the method of symmetrization [44] is applied to the first term. Using
K(z,x’) = G(z,3") ~T(z - '),

this term is thus equal to
l/f Y (z, 2 )u’ (x)u’(¢')dzda’
2J Jaxa
+ / W(@) - VoK (2,2 )u0 (@) (@) dzde’,
aQxQ

for u® = ug and pY(z,2') = (Y(z) — ¥(z')) - VI'(z — ).
Since K = K (z,z') € C**(Q x QU x Q), it holds that
/ ¥(@) - VoK (2, 2)u0 (@) (') dzdz’
axQ
=m(z0)2(zo — a) - VoK (2o, Zo) + o(1).
We have, on the other hand,

pS(z,2') =—(m—-2)L(z—2')  in B(zo, R/2) X B(zo, R/2)
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and therefore,

p%(z, 2" )ul (z)u’(z') = —(m - 2T (z — 2')8° (z)@’(2")
)

where ¢ = ¢, r/2 and 4° = u@. Here,
lpy(z,2')| < CT(z — ')
and it holds that
0 < //{; o I(z — ') (1 — @(z')u’(z)u’(z")dzdz’

= (I'x uxo, (1 - @)uf).
This term is o(1) because ||(1 — @)u’||  — 0 and ||T *u°||, = O(1) by |jull; =
O(1). Thus, we obtain |

% / /Q " % (z, 2" ) (z)u’(z’) dzda’

- _mz_ : / / I(z —2')@°(2)a°(z')dzdz’ + o(1),
195°4¢

and (60) is reduced to
-2
— [ wit! —m——// I'(z — 2')a° (z)@%(z")dzda’
2 [uteo-"2 [ [ re-oi@iE)

+m(zo)(mo—a): D, m(2)VaG(2o0,2p)
zo€5\{z0}

+m(zo)*(zo — a) - VoK (20, 20) = o(1).

Since

for y =1+ ¢ =2- 2, it holds that

(m —2)Fo(pu)

+m(zo)(zo — a) - { Z m(z4)VG(zo, 25) + m(wo)VzK(wo,zo)}

zp€S\{zo}
= o(1), (61)
for any a € R™. Here and henceforth,
Folu) = ’71'/,',1“7 — 5 (Teu,u)

and 0-extension is taken to u where it is not defined. Since a is arbitrary, this
implies
m(2$0) VR(zo) + Z m(z5)VzG(zo, ) =0 (62)
zo€S\{2o}



and also
Fo(pu) = o(1). (63)
Using ¢ = "5, we obtain

Foluy) = p™ 2 Fo(u),

where g > 0 and u,(z) = p™u(uz + o).

Beginning the blowup analysis, now we prescribe the suffix k¥ again. First,
there is a maximum point = = z{ of ug = uk(z) in B(zo, 2R) such that 9 — o
from the proof of Theorem 9. Then, the rescaled dx(z) = pPu(urz + z2) is
associated with Wy (z) = pf 2wk (ks + z3), and passing to a subsequence,
W — W locally uniformly in R™, where u; = uk(mg)‘l/ ™ and

AG=d, B<H0)=1 inR™, / B9 < +oo.

This entire solution 1 of (58) is radially symmetric, compactly supported on B
for some B = B(0, L), and

Wi = m,.
Rm
Here, we reformulate @iy = tx(z) by x(z) = pl*(Gux)(uez + 22) and obtain
Foltir) = pp = Fo(pux) — 0. (64)

by (63). It still holds that @x — % = WY locally uniformly in R™, and therefore,
V@ = VI * @. This implies

P == [ @ -3 (ean = (65)
similarly to (60), i.e.,
T ol + // z - VI(z — 2')i(z)i(z")dzdz’ = 0.
g+1Jgm RmxR™ ;

We have, on the other hand,

(D % G, Ug) — (T x4, @) ' (66)‘

passing to a subsequence, because {@x} is bounded in (L! N L*®)(R™). Thus,
Jgm @ — [g~ @7 by (64)-(66), and therefore,

x> %  in LY(R™). (67)

From the proof of Theorem 9, if m(zy) > m., then there exist a local
maximum point z = zi of ux = uk(z) and rQ,r; — 0 such that z} # z%,
T — o,

/ Up — M, / U — M,
B(z,r?) B(z},r})

and B(z?,2r0)NB(z},2r}) = 0. Furthermore, the connected components of the
support of uy containing z9 and z} are contained in B(z9,2r?) and B(z}, 2r}),
respectively, for k large. In the rescaled variables, this means

/ ﬂk > M, / ﬁk — My (68)
B(0,L') B(z},,ri)
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and B(0,2L')NB(z},2r,) = 0 for some L’ > L, z},, and ry, where the connected
components of the support of %, containing 0 and z, are contained in B(0,2L’)
and B(xy,2r),), respectively. Here, it holds that |z}| — 400, because @ — 0
locally uniformly in B(0, L')¢.

The second rescaling is defined by @} (z) = (u},)™Uk(p),z + 3) With u =
ik (z})~/™ > 1. Passing to a subsequence, now we shall show p}, — +o0, which
implies also 7}, — +o00 by (68).

In fact, if this is not the case, then it holds that y) = ﬂk(a:;c)’l/ ™ ~1, We
obtain @} = (- + z}) — @" = aw,? locally uniformly in R", where a > 0 is a
constant and

-AD" = a@}?, 0<@”(0) = maxw , inR™, / DY < +o00.

This implies 7}, ~ 1 with

~ ~ }/
/ 4" = aWy? = My,
m Rm™

and therefore, it holds that

lim @ > lim (@) > 0.
B(0,2L)¢ k JB(z4,2r})

Since this contradicts to (67), we obtain uj — +00, or equivalently, "7"(3{% —
Tk
+00.
Now, we replace the roles of z and z}, and repeat the above argument.

Changing notations, this means -::%Zf% — 0 and therefore, {@ix} concentrates
around x;, € B(0,L)¢. We obtain

/ ﬂ'k — My
B(z},1)

by |z},| — +o0, while |, B(z,,8) @, — 0 follows because (67) is obtained similarly.

This is a contradiction again, and thus, m(zo) = m. for each zo € S. Then,
(42) follows from (62). O
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