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Functional differential equations of a type similar

to f'(x) =2f2z+1) —2f(2z — 1)
and its application to Poisson’s equation
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This report is devoted to the precise formulation on the solution operator in terms of the
quarkonial decomposition. We apply the quarkonial decomposition to the delay equation and
the Poisson equation.

In this report we intend to apply the special solution of
f'(z) =2f(2z+1) - 2f(2z - 1), f€S, f(0) =1

to the Poisson equation. This solution will be denoted by v and we use the quarkonial decom-
position method. Before we go into the detail, we will describe the quarkonial decomposition.

1 Besov and Triebel-Lizorkin spaces

In this section we will make a brief sketch of the Besov and Triebel Lizorkin spaces. First,
pick ¥, 9, € S that satisfy

XB(2) < %o < XB(4)s XB@)\B2) < ¥1 < XB@\B(1)

Set ¢;(z) := ¢(277+1z) for j > 2. In general given ¢ € S, we set ¢(D)f = F~1(¢ - Ff). Note
that if ¢ is a compactly supported function and f € S, then ¢(D)f is a smooth function. Thus
the norm of ¢(D)f makes sense. Next, given a sequence of Lebesgue measurable functions

{fi}jen, we define

i
4
e P

/Rn (i}“j(ﬂv)l") dz
Z
Iy + t(Lp)] = (ﬁ; ([ 1n@re) i) q

With this preparation in mind, we define the norms. For f € S’ we define

If = Bogll = 1127°¢;(D)f : l4(Lp)ll, 0<p< 00, 0<g< 00, sER
If : Egll = 1127°6;(D)f : Lp(ly)|l, 0<p< o0, 0<g< o0, s€R.

5+ Lo(la)ll

By, and F;, are function spaces consisting of f € S’ such that the norm of f is finite. If we

write A7, then we mean that A5, = B, or Fp,. If A=F, then we tacitly exclude the case

when p = co.



We list key properties of this norms.

Theorem 1.1. Let 0 < p,q < oo and s € R.

1. The definition of the function space Ay, does not depend on the choice of ¢ and ¢,.
2. § C A3, C &' in the sense of continous embedding.

8. If p,q < o0, then S is dense in Aj.
4.

Ay isa quasi-Banach space. That is for f,g € A, and k € C, we have the following
assertions.

(a) ||f : A3l > 0 and we have the equality precisely when f = 0.
() k- £ = Aggll =1kl 1f = Apgl

(c) I+ : Al <cllf + Asll+1lg : As).

(d) The Cauchy sequence is convergent in By .

We also have c in ¢ can be taken 1, if p,g > 1.
5. We have inclusions in the sense of continous embedding.
L,=F) ifl<p<oo
BY, CL,CBy, ifl<p< o0
BY, cUCC Ly C BY,

where UC denotes the set of all bounded and uniformly continous function.

The Sobolev type embedding is also known.

Theorem 1.2. Let 0 < p1,p2,9 < 00 and s1,89 € R. Assume that

n n
$1~—=82‘;2', 81 > 82, P1 < Pp2.

P1
1. If in addition p < oo, then Fyl,, C Fj3.
2. By, C Bl,

Next, we recall the lift property.
Theorem 1.3. Let 0 € R and m € N. Then

6,- H A;q - A;;l
is a continuous mapping. Furthermore the following mappings are all isomorphisms.
1. (1-A): A3, — A;q‘2°.
' . —2
2. (14 (=A)™): Ay, — Ap*™

5 (140 +...4+08,%™) : 4;, — A"

It is not easy to prove Theorem 1.1, But we present a clue to prove it.
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Definition 1.4. Let A C R™ be a bounded set. We define S’4 to be
S'"4:={feS :supp (Ff) C A}.
We set L} := L, NnS'A.

Remark 1.5. Let f € S’4. Take a compactly supported function i that takes 1 on A. Then we
have f = F~1Ff = Fl(¢- Ff) = (2r)3 F 19 * f, which implies f € C*°(R"). In particular
it is meaningful to evaluate f at z € R™.

In view of Remark 1.5 the statement of the following theorem makes sense. The proof can
be found in {1, 7]. However, for convenience for readers we include its proof, hoping that this
theorem along with its proof motivates the readers to study this field.

Theorem 1.6. Let f € S’2(1). Then we have

|Vf(z - )l |f(z —y)l
—_— c sup ——5— 1
S TARE S SR Tne @
sp TE=W o g0 (o), @)
zeRn 1+ y|*
where ¢ depends on r and n.
Proof of (1). To prove this we take ¥ € S so that
xB1) <% < XB(2)-
By the similar reasoning as Remark 1.5 we have f = (27r)%}' —14 x f. Write it out in full:
f@ =@t [ Fwie - (3)
To prove sup M < c sup M we may replace V by 0; for fixed j. That is, we

ek 1+[ylT T aere 14yl
have only to prove it componentwise. Differentiation of (3) then yields

0,0() = (em) [ BF i) (@) dy.

Let us write 8;F ¢ = p for simplicity. By the triangle inequality of integral we obtain

10 f (= — y)| s [ |p(2)f(z—y—2)|
————'Jl e <(2m)2 /n T+l dz.

It is well known that
n n n
A +ly+zr) <ec(l+]z7)A+]yl*).
In fact the proof of this inequality is very simple.* Keeping p € S in mind, we are led to

10f(z —y)| <c/ Ltz f e -y -2)| .

1+y|F ~ 1+y+2|*
<c {(1+§z|§)|P(z)!}lf(:‘-y-Z)l dz < c sup If(z—zi)|.
" Jrn 14|y + 2|7 zeRn 1+ |yl*

This is the desired inequality. B

* We calculate ,
(L+lw+2?) < 1+l +12n?) <2? (141 +12) <2® (14+107) 1+ wI7).
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Proof of (2) Reduction step. First, we may assume that f € S'"2(1=) for some € > 0 by the
dilation argument. Let 9 be a smooth function such that

/f¢(§)d§ = (27)%, supp (FY¥) C Xpq):

Set gi(z) :==¢(tz)f(z), z € R", 0<t < % Then we have

1. MMg,(z) < M f(z) for all t > 0 and z € R™.
. — n ’
2. tl_x.r_rgogt(z) = f(z) forallz € R

3. supp (Fgt) C t-supp (¥) +supp (f) C B (;—) + B(1 —¢) C B(1).

4. gtESforeach0<t<§.

Thus we may assume f € S. |

Proof of (2). To prove this inequality, we first take v € R™ and 0 < r < 1. The constant » will
be fixed sufficiently small.

Let y, € B(z,r) that attains the minimum of |f(-)| in B(v,r). Then by the mean value
theorem we have

IF @) < f @)l +1F () =~ fw)l < nf @I+ esuprIVf(w)l-

v,

By replacing v with z — y we obtain

ife—y)I<  inf [f(2)|+r sup [Vf(w)|, z,y eR"
z€B(z~y,r) wEB(z~y,r)

- Since |B(1)| > 1, we obtain

1

I NTOE ( Lo lf(z)l’dZ> . @

Observe that this is where the integral and hence the maximal operator appears. The inclusion
B(z —y,1) C B(z,|y| + 1) together with (4) gives us

1

f(z— )l < / f)dz) +r s Vi)
B(z,|y|+1)

we€B(z—y,r)
Taking supremum over y € R™ we obtain

1

If(z - y)| 1 / ’ |V £(w)]
sup < If(2)|"dz} +r sup .
yer~ 1+ |3>’|Irt 1+ yl* B(z,lyl+1) | ywer® 1+[y|*

le—y—w|<r

Note that, changing variables w — z := z — w, we obtain

Vi) _ o V=2

up
y,weR™ 1+ i'.'/'e ¥,z€ER™ 1+ Iyl
Jg~y—w|<r |z—yl<r



and if z € B(y,r) with r < 1, we obtain 1 + |y|7* ~ 1+ |2|7 .** Meanwhile it is easy to see

1
1

1 rdz ) ) £z,
e (/B s d) < MW f(z)

Consequently we obtain

sup @ =)l (M(')f(x)-i-r sup IVf(w—Z)I)_

sere 14+ fylv = 2€B(yr) 1+ |2|*

Since we have shown that

Vi-2) . |f@=2)

su — < ¢ sup
zelg‘ 1+|z|7 z€R® 1+'z|$ '

it follows that there exists a constant ¢g > 0 such that

sup ———22 If( y)' CM(r)f($)+CQT sup 'f(z—y)l

(5)

zeR™ + |yl* 2R 1+ 1y*
If we take r = min(1, (2c0) 1), we can bring the most right side to the left side. Since f €
S, every term in (5) is finite. Thus we are allowed to subtract cor sup =——5— ‘f( —ull in (5).

z€R™ l |
Consequently we finally obtain

sup L& If( y)l
F134 ] l

") (z).
This is the desired result. l

To deal with the Poisson equation and the delay equation, it is not suitable to consider
global L,-solution. To deal with the properties of functions we consider the localized function
spaces.

Definition 1.7. We define

A 10c(R™) = {f € D'(R™) : ¢- f € AL,(R™)}.
1.1 Quarkonial decomposition

Having set down the elementary properties of the function spaces, we now turn to describe
the quarkonial decomposition. For details we refer to [3, 4, 8, 9, 10].

Definition 1.8. ¢ € S is a function satisfying

Z Plx—-m)=1

meZn

for all z € R™. Accordingly the number r > 0 is fixed so that

supp (¥) C {|z} <27}. (6)

** See the footnote of the previous page for the similar calculation.
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Definition 1.9. Let 0 < p,q < 0.

1. Let v € Z and m € Z™. Then we define

n
) m; m; + 1
:Qum = H [2—31 ov )

j=1

2. Let 0 < p < o0, v € Z and m € Z". Then we define the p-normalized indicator Xn(f:n by

XI(/":I)I = 2nu/prum *

3. Then, given a complex Sequence A = {Avm}veN,, mez~, We define

A2 byl = Z /\umXS};r); t lg(Lyp)
meZ

A fpall = Z /\umXS}:z; s Lp(lg) || »
meZ

Now we define the quark.
Definition 1.10. Let 8 € No®, v € Ng, m € Z™ and p > r, where r is a positive number
-specified in (6). :
1. ¥P(z) := 2Py(z).
2. (Bqu)um(2) = 270" 3)yf (22 — m).
3. Let the parameters p, g, u satisfy
O<u<p<oo 0<g<ox.

Given a triply parameterized sequence A = {M}gen,» = {N2,.}seNon, veNo, mezn, We
define

IA; apgllp := ﬂi‘;pn 20181128 apq]|-
0

Here we tacitly exclude the case when p = oo if we consider fp,.

We assume
O<u<p<oo, 0<g<oo, 8>0p )

for F-scale and
O<u<p<oo, 0<g<o00, 8> 0p ‘ (8)

for F-scale.
With this preparation in mind, we state the quakonial decomposition.

Theorem 1.11. Suppose that the parameters p,q,u,s satisfy (7) for B-scale and (8) for F-
scale. Let f € S'. Then f € Apq f and only if there ezists a triply indezed sequence A =
{2, } seNon, veNo, mezn Such that f can be expressed as

=3 3 3 ¥olBawm

BENo™ vENg meZ™



with
A+ aggll < oo, (9)
If this is the case, then A can be taken so that

A+ apgll = IIf = Aggll- (10)
2 Integral operation in terms of quarks

Here the function space Ap,((0,1)) is given by

A3,((0,1)) :={f € D'((0,1)) : g € A (R)st.gleo,) = fhy

which is quasi-normed by

If A3, (@ )= _inf _ llg : AR

Pe
gleo,ny=f

It is shown in [7] that there is a “canonical” representative. For all f € A;,((0,1)), there
exists g € A3 (R) such that gl = f and |lg : A3, (R)| < CIf : A3,((0,1))]l, which is
denoted by eztf. Thus our problem can be restated as

Problem 2.1. Solve the following functional-differential equation in [1,2] :
f'(2) = flz—-1), 21, f(z) =¢(z), z€[0,1], 6 € Ay (R).

: 1
Here the parameter satisfies p,q > 1 and s > ;

Since A;,(R) is embedded continuously to C(R), our solution operator in Introduction
makes sense. We shall calculate

z—1
s+ [ gwduzen
0
for g € A;,(R).
As is often the case, a parallel argument to F-scale works for B-scale and F-scale is somehow
more difficult. Thus, in what follows we let A7, = F,,.

2.1 Solution operator

Since the functions are written as the sum of quarks, we have only to derive a solution
formula for each quark. Now that 1 is specified as Y-function, we can obtain a solution
_formula explicitly.

Definition 2.2. Let 8 € Np.

1. We put the moment of 3-degree by cg := / 2P ¢(z) dz.
R
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T

2. We set ¥P(z) := /

—0o0

uP p(u) du — cg Z(Oqu)y,l(x).
=2

3. We define an auxiliary quark by (Bqu); ,,, := 2"”(3"%)\143(2"2: —m).

T

By support condition we have / y? ¢(y) dy is constant, if x > 1. We also have

—00

s o}

Zd’(a"—l):l’

1=2
if z > 2. As a result it follows that ¥#(z) has compact support.

As for cg, we have the following recurrence formula to calculate cg inductively.

Lemma 2.3. Let § € Ng. Then we have

(1) fegl £ ﬂil andcg=1. cg =0 1if B 15 odd.

(2) cop satisfies the following recurrence formula.

B~1
1
B = Coy -
2 (2ﬂ+1)(4ﬂ—1)§=-%2ﬁ+1 ARt

1
for 8 > 1. In particular c; = g

Proof. The fact that co = 1 can be proved from the nomalization condition of the equation
u'(z) = 2u(2z + 1) — 2u(2z — 1).

It can be also proved that 0 < u(z) < 1 and that u is positive and supported in supp (u) =
[—1,1]. Because u can be expressed in terms of infinite convolution. For details we refer to

(5, 6]. Thus the estimate |cg| < ﬁj—l

clear because u is even. Let 8 > 1 and prove (2). By integration by parts and the functional
differential equation we have

220+1 /
/3(2ﬂ+1) u(e) do

£2B+1

- - /R (m) (2u(2z + 1) - 2u(2z — 1)) dz

1 T+ 1\ 1 T — 1)+
= 2ﬂ+1/m( 2 ) T N n( 2 ) (a) de

1 & 9-26 &1

= 2728 Cay - oy = 272B¢
2ﬂ+1_§) 2p+102y - C24 2ﬂ+2ﬁ+L

is immediate. The the last part of assertion (1) is

C2 B

26+1C2y * C2y.
v=0

Equating with respect to cyg, we have the desired result. |



Proposition 2.4. We have

/ i (Bqu)y,m(y) dy = 27 (Bqu)}, () + 527 Y (0qu)s,me1(2)-

-0 1=2
Proof. By the change of variable the lemma follows easily. |

Although we cannot tell that (Bqu); ., is used to decompose the function, we still have a
nice convergence.

Proposition 2.5. Let s > 0 and p > 1. Suppose that || : ape|l, < C. Then

Y Zz"w’ (Bqu)}, m

BENp vENg m=0

is convergent in A, (R) and satisfies the norm estimate

.
S Y 28 L (Bqu) ¢ Aly(R)

VENO m=0

< C 27 OB|NP : apqll,

for alle > 0.

Proof. To prove this assertion we have only to check that 2-¥—#8 (Bqu);, , satisfies the require-
ment of the atom described in [8]. This is easily checked and as a result the desired norm
estimate follows.

2.2 Calculation of (Bqu); ().

By using the functional-differential equation ¢'(z) = 2¢(2x+1)—2¢(2x—1), we can calculate
¥A(z) directly.

Lemma 2.6. Define Ig(¢) inductively by the following formula:

Io(¢)(z) = /;z ¢(u) du, Iﬁ(¢)($) = /:z 15_1(¢)(u) du. (ﬂ = 1,2, . )

Then

— S s 3 o £5E) z — 2P+ +1 chs, Jy
DI ¢ 2B+ -1

Js+1=03jp=0 51 =0 =1

oQ .
In particular we have Ip(¢)(z) = E ¢ (z—_-—l————gl) .

j=0 2
Proof By the functional-differential equation and the size of supp (¢), we have ¢¥~1(2z+1) =
}: —¢B) (z — 7). Thus it follows that

j—O

BV (z) = S ld,(ﬁ) (:c__________— 1~ 2j) .
jgo P 2
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If we use this formula inductively, we have

o(z) = Z %qg(l) (fl_lé:_?g_l)

71=0

_ iil'ifﬁ‘” z-1- 2 =2~ 4js
- 2 22 4

J2=031=0

_ @y (2=2PP 41 R ;
- Z Z EZSE—),SM¢ Y S U Zgﬂ+1-—~,

Je+1=03p=0  j1=0 =1
Thus integrating (§ + 1-times over (—o0, z), we obtain
z—28t1 41 1 Iy
Bow - 35 St (sl )
Ja+1=03js=0 J1=0 =1

The proof is now complete. W

Using Ig(¢), we can express ¥# as an infinite sum of quarks.
Lemma 2.7. We have
B )
VA (x) = (Z(—l)’rﬂP.,zﬁ‘7I,7(¢)(x)) —cg E(Oqu),‘,(z),
=0 =2

where g P, denotes the permutation from g to .

8+1

Proof. Noticing that —— d

s g I3(¢)(z) = ¢(x), we have the desired result by integration by parts.
i

It is easy to see that the differential of (8qu),,m can be written as a finite sum of other
quarks. As a conclusion we can say that quarks generated by Y-function are closed under
differentiation and integration.

2.3 Convergence of the quarkonial decomposition

Finally we consider the convergence of the constructed solution. We will obtain an explicit
formula in terms of quarks. Put a solution operator

*—1
T A5 (01) = 4312, £ = FO+ [ fwd.
We shall decompose this operator in terms of quark and decompose T to each S-level. Define

£+ apg((0,1)) — A2,((1,2))
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by the formula

2V
{/\u,m}ueNo,meZ — Z Z 2—uAu,m(ﬂqu);,m(1‘ - 1)

veENg m=0
2v m—2
c3 Z Z (Z /\V,lz-y) (Oqu)u,m(x - 1)'
veENg m=2 \ I=0

Here we defined a,4((0,1)) as
apq((o, 1)) = {{Ay’m}yENo’mez E apq(R) . Ay‘m = 0, . if Qy,m n (0’ 1) = 0}¢
We also define ap,((1,2)) similarly.

In view of preceding subsection by our notation the solution of
f@) = flz-1)
floy = ¢ho:]—(z ZZ)\ (Bqu)y, ) :
BENg vENg m=0
(0,1}
can be described explicitly in [1,2] as

@ = W+ Y Zz-"xﬂ (Bau)sm(z 1)

ﬁENa uENo m=0

m~2
+ X Z cs (Z A2 ) (Oqu)y,m(z — 1). (11)

BENy vENg m=2 =

Namely, we can express
2"
fAua=1 2 D ulmBauw)sm :
BENg vENg m=0 ”1 2]

{18 m} has apprpnate condition. By Proposxtlon 2.5, the first sum is convergent. In this
subsection we mainly consider the convergence of the second sum. Define

m-2
Tfim =g (Z 2“")\5‘,) .

1=0

We intend to show
Theorem 2.8. There is a constant C independeht on (3 so that

{rlmbvim + f2a(@ I S CHE pdum = Foa((Q D).

Hence the series in (11) converges in Fy ((1,2)).

Proof. We set p2,_ :=27" Z |)\ ;] for m=1,2,...,2". By their definitions we have |70 ml <
J=0

P - Thus for fixed B we have
{rom}m : foa((O DI < {02 mbim = Fag((0, 1)II-



We write [|[{02,,}u,m * fpe((0,1))]] out in full:

2!1
162 b = Fpg(@ I = 11D 8 X2 LP(19))) .
m=0

Note that since {Q, m}mez is disjoint hence we have

/ ZAEJXQ”

j=0

1
S 6- m/ ZIAV,JlXQvJ(z)dz < 6M (ZAVJXQ”J) (y)

for all y € [0,1]. Here M is the Hardy-Littlewood maximal operator. Again by noting that
{Qv,m}mez is disjoint, this estimate can be strengthed to

R
S puomxfh(e) < M (z X, L",’n) @)

m=0 m=0

wsa [ ZIA jIxa.., (@) dz

Recall that p,q > 1. The Fefferman-Stein vector-valued inequality then yields

“{Pﬁm}um : fpq((0,1))]]
(3 8h) < 20

m=0

<C

(z N mxspzn) ).

m==0

This is the desired. Il

As a conclusion we have given an explicit formula. We can write T out in full in terms of
quarkonial decomposition, as is announced in Introduction.

B,V m ﬂ,ll m
+ Z Z 2"’/\" (Bqu)} m(z — 1)
vENp m=0
2v m—2
+ c3 Z Z (z A ,2"") (0gqu)y,m(z — 1).
UENQ m=2

From Proposition 2.5 the second term is convergent in A3 (R). By using Vo . €§ we set

_CB<Z Zz VAﬁ ﬂqu)um( _1) \I’um>

veNy m=0

Then the first term can expressed as

> Zz‘"x‘* Bau)ymz-1) =33 S 68, o (Bqu)m(a).

vENg m=0 BENg vENg meZ
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Thus we can have another expression of the solution operator T : A; /((0,1)) — 4; ,((1,2))

T: Y X ,(Bqu)ym

B.wv,m
2¥ m-2
> (cﬁ > Z 3" M8 277 (0gu)y meav (2) + Zef,mwwqu)u,m(x)).
BENy vENg m=2 [=0 meZ

3 1-dimensional Poisson equation

In the same way as above we can construct the solution operator of the 1-dimensional
Poisson equation

d2
72/ (@) =9(2)
and prove the following.

Theorem 3.1. Suppose that g € A7 (R) is given. Then we can construct the solution operator
g€ A;q(R)zoc — S(g) € A ( ) of the Poisson equation:

Hif(x) =g(17),.'17 eR

Furthermore S is a continuous operator in A (R)ioc-
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