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Properties on relative paracompactness
and their absolute embeddings
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1. Introduction

This report is a summary of [13].

Throughout this note all spaces are assumed to be T and the symbol
denotes an infinite cardinal. The symbol N denotes the set of all natural numbers.
For a subset A of a space X, A% and Int xA denote the closure and the interior

~of A in X, respectively.

Let X be a space and Y a subspace of X. Y is Hausdorff (respectively,
strongly Hausdorff) in X if for every y € Y and every z € Y (respectively,
z € X) with z # y, there exist disjoint open subsets U,V of X such that z € U
and y € V. Y is said to be regular (respectively, strongly regular) in X if for
each y € Y (respectively, y € X) and each closed subset F of X with y ¢ F,
there exist disjoint open subsets U,V of X such that y € U and FNY C V.
Moreover, Y is superregular in X if for every y € Y and each closed subset F'
of X with y & F, there exist disjoint open subsets U,V of X such that y € U
and F C V ([1], [2] and [3)).

As relative notions of paracompactness, the following are known. Let X be
a space and Y a subspace of X. For z € X, a collection A of subsets of X is
said to be locally finite at = in X if there exists a neighborhood of 2 in X which
intersects at most finitely many members of A. In [1], [2] and [3], Y is said to
be 1- (respectively, 2-) paracompact in X if for every open cover U of X, there
exists a collection V of open subsets of X with X = |JV (respectively, Y C JV)
such that V is a partial refinement of &/ and V is locally finite at each point of Y
in X. Here, V is said to be a partial refinement of U if each V € V), there exists
a U € U containing V. We also say that V is a refinement (respectively, an open
refinement, a closed refinement) of U if V is a cover (respectively, an open cover,
a closed cover) of X and a partial refinement of . The term “2-paracompact”
is often simply said “paracompact”. Moreover, Y is said to be Aull-paracompact
in X if for every collection U of open subsets of X with Y C [JU, there exists
a collection V of open subsets of X with ¥ C |JV such that V is a partial .
refinement of A and V is locally finite at each point of Y in X. ([2], [4]). The
1-paracompactness and Aull-paracompactness of Y in X need not imply each



other ([4]), but each of them clearly implies 2-paracompactness of Y in X. When
Y is a closed subspace of X, Y is 2-paracompact in X if and only if Y is Aull-
paracompact in X.

Aull [5] defined that Y is a-paracompact in X if for every collection U of
open subsets of X with Y C |JU, there exists a collection V of open subsets of
X such that Y ¢ JV, V is a partial refinement of &/ and V is locally finite in
X. Recall that 1- and a-paracompactness do not imply each other in general.
But for a regular space X, if Y is a-paracompact in X then Y is 1-paracompact
in X, the converse also holds if, in addition, Y is closed ([17, Theorem 1.3], see
also Proposition 3.1 below for a generalization).

These notions are central in the study of relative paracompactness and the

following relations fold.

Y is 1-paracompact in X
Y is 2-paracompact in X

Y is Aull-paracompact in X

Y is a-paracompact in X

DIAGRAM 1

“Moreover, absolute embeddings of above relative paracompactness are char-
acterized as follows (see also [14]).

Theorem 1.1 (Lupiaifiez [15]; Lupiafiez-Outerelo [17]). For a Tychonoff
(re-spectively, regular) space Y, the following statements are equivalent.
(a) Y is 1- (or equivalently, a-) paracompact in every larger Tychonoff (respec-
tively, regular) space. |
(b) Y is 1- (or equivalently, o-) paracompact in every larger Tychonoff (respec-
tively, reqular) space containing Y as a closed subspace. »
(c) Y is compact.
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Theorem 1.2 (Arhangel’skii-Genedi [3]; see also [9], [20]). For a Tychonoff

(respectively, regular) space Y, the following statements are equivalent.
(@) Y is 2- (or equivalently, Aull-) paracompact in every larger Tychonoff
(respec-tively, reqular) space.
(b) Y is 2- (or equivalently, Aull-) paracompact in every larger Tychonoff
(respec-tively, regular) space containing Y as a closed subspace.



- (¢) Y is Lindeldf.

Arhangel’skil [1, page 98], [2, page 174] asked if one can generalize the notions
above to the well known Michael’s criteria of paracompactness in [18] and [19].
Concerning this problem, Aull [6, Theorem 5] already proved that a subspace
Y of a normal space X is a-paracompact if and only if for every cover of Y by
open subsets of X has a closure-preserving partial open refinement which covers
Y. Moreover, Lupiafiez [16, Theorem 1.3] proved that a subspace Y of a regular
space X is a-paracompact if and only if for every cover U of Y by open subsets
~of X has a partial refinement (or equivalently, a closed partial refinement) A of

U such that A is locally finite in X and Y C Intx(|J A).

In Section 2, we introduce notions of relative paracompactness by using lo-
cally finite (not necessarily open) partial refinement and locally finite closed
partial refinement. We also consider closure-preserving cases.

In Section 3, we discuss locally finite open refinement and closure-preserving
open refinement by using the space Xy, where Xy is a space obtained from X
by letting each point of X \ Y be isolated.

In Section 4, we investigate their basic properties and discuss their absolute
embeddings. In particular, we have

Theorem 1.3. For a Tychonoff (respectively, reqular) space Y, the following
statements are equivalent.
(a) Y is 1-lf- (or equivalently, 1-cp-) paracompact in every larger Tychonoff
(respectively, regular) space.
(b) Y is 1-If- (or equivalently, 1-cp-) paracompact in every larger Tychonoff
(respectively, regular) space containing Y as a closed subspace.
(¢) Y 1is Lindeldf.

Theorem 1.4. A Tychonoff (respectively, regular) space Y is a-lf- (or equiva-
lently, a-cp-) paracompact in every larger Tychonoff (respectively, regular) space
~if and only if Y is compact.

For a-cp-paracompact case, a similar statement to (b) in Theorem 1.1 cannot be
added to Theorem 1.4. Indeed, we replace “every larger Tychonoff (respectively,
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regular) space” by “every larger Tychonoff (respectively, regular) space contain-

ing Y as a closed subspace” in Theorem 1.4, “Y is compact” is replaced by “Y
is paracompact” (see Remark 4.4). In addition, we point out that a Tychonoff
(respectively, regular) space Y is 2- (or equivalently, Aull-) cp-paracompact in
every larger Tychonoff (respectively, regular) space if and only if Y is paracom-
pact (see Theorem 4.5 and Remark 4.6).

In the final section, a remark on definitions of relative paracompactness due
to Grabner et.al. [10], [12] will be given and a gap of a result in [11] will be
pointed out.



For general surveys on relative topological properties, see the Arhangel’skil’s
subsequent articles [1] and [2]. Other undefined notations and terminology are
used as in [7] and [13].

2 Some versions of relative paracompactness

In this section, we newly define some notions of relative paracompactness
and discuss their basic properties.

Let X be a space and Y a subspace of X. We define that Y is 1-lf-paracompact
~ (respectively, 1-lfc-paracompact) in X if every open cover of X has a refinement
(respectively, a closed refinement) of ¢/ which is locally finite at each point of ¥’
in X. We also define that Y is 2-lf-paracompact (respectively, 2-lfc-paracompact)
in X if for every open cover U of X there exists a partial refinement (respectively,
a closed partial refinement) V such that Y C |JV and V is locally finite at each
point of Y in X. Furthermore, Y is Aull-lf-paracompact (respectively, Aull-ifc-
- paracompact) in X if for every collection U of open subsets of X with Y Cc JU,
there exists a partial refinement (respectively, a closed partial refinement) V' of
U such that Y C |JV and V is locally finite at each point of Y. We also say

that Y is a-lf-paracompact (respectively, a-lfc-paracompact) in X if for every

collection U of open subsets of X with Y C | JU there exists a partial refinement
(respectively, a closed partial refinement) V of U such that Y C JV and V is

locally finite in X.
‘Let X be a space and z € X. A collection A of subsets of X is said to be

- closure-preserumg at ¢ in X 1f for every A’ C A with z € UA’ it holds that
z € YA, where A" = {A | A € A'}. The following are known.

Proposition 2.1. For a collection A of subsets of a space X andz € X , each
of the following statements hold.
(a) If A is locally finite at x in X, then A is closure-preserving atz in X.
(b) A is locally finite (respectively, closure-preserving) at « in X if and only
if A" is also locally finite (respectively, closure-preserving) at z in X.
(c) A is locally finite at x in X if and only if A% is point-finite at x and A is
closure-preserving at = in X.

" Hence, we have the following: (a’) If A is locally finite at each point of Y in
X, then A is closure-preserving at each point of ¥ in X. (¥') If A is closure-
preserving at each point of Y in X, then A% is also closure-preserving at each
point of Y in X. (¢) For a collection A of closed subsets of X, A is locally finite
at each point of Y in X if and only if A is point-finite at each point of ¥ and
closure-preserving at each point of Y in X. Grabner et.al. [10], [12] introduced
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some relative notions related to closure-preserving collections; but their notions
do not necessarily satisfy any of (a’), (b') and (¢’) above (for detail, see Section
5). ,
Let X be a space and Y a subspace of X. We define that Y is 1-cp-paracompact
(respectively, 1-cpo-paracompact, 1-cpc-paracompact) in X if every open cover -
of X has a refinement (respectively, an open refinement, a closed refinement)
which is closure-preserving at each point of Y in X. We also define that Y
is 2-cp-paracompact (respectively, 2-cpo-paracompact, 2-cpc-paracompact) in X

if for every open cover U of X there exists a partial refinement (respectively,
an open partial refinement, a closed partial refinement) V such that Y Cc JV
and V is closure-preserving at each point of Y in X (see Remark 5.1 below). We
say that Y is Aull-cp-paracompact (respectively, Aull-cpo-paracompact, Aull-cpc-
paracompact) in X if for every collection U of open subsets of X with Y C | JU
there exists a partial refinement (respectively, an open partial refinement, a
closed partial refinement) V such that Y C |JV and V is closure-preserving at

. each point of Y in X. Moreover, we say that Y is a-cp-paracompact (respec-
 tively, a-cpo-paracompact, a-cpc-paracompact) in X if for every collection Y of

- open subsets of X with Y C |JU there exists a partial refinement (respectively,
an open partial refinement, a closed partial refinement) V such that Y c JV
and V is closure-preserving in X.

Proposition 2.1 (b) induces the following.

Proposition 2.2. Let Y be a subspace of a regular space X. Then, each of the
following statements hold.

(a) IfY is 1-if-paracompact in X, then Y is 1-lfc-paracompact in X.
(b) IfY is 1-cp-paracompact in X, then Y is 1-cpc-paracompact in X.

Remark 2.3. If we replace “1-” by “a-" “2-” or “Aull-” in the statements (a)
“and (b) of Proposition 2.2, then the condition “X is regular” can be weakened
- to “Y is strongly regular in X”.

For closed subspaces, we have the following. Here, notice that 2-cpc-paracom-
pactness of Y in X induces regularity of Y when Y is closed in X.

Theorem 2.4. For a closed subspace Y of a space X, the following statements
are equivalent.

(a) Y is a-lfc-paracompact in X.

(b) Y is 2-cpe-paracompact in X.

(¢) Y is a-lf-paracompact in X and Y is regular.

(d) Y is 2-cp-paracompact in X and Y is regular.

(e) Y is paracompact Hausdorff.
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Aull [5] proved that if a subspace Y of a Hausdorff space X is a-paracompact
in X then Y is closed in X. We improve this fact as follows.

Lemma 2.5. Assume thatY is strongly Hausdorffin X. If Y is a-cp-paracom-
pact in X, then Y is closed in X.

The following corollary immediately follows from Theorem 2.4 and Lemma 2.5.

Corollary 2.6. Assume thatY is strongly Hausdorff in X. | Then, each of the
following statements hold.

(a) Y is a-lfc-paracompact in X if and only if Y is a-cpc-paracompact in X.
(b) Assume that Y is regular. Then, Y is a-lf-paracompact in X if and only
if Y is a-cp-paracompact in X.

Hereafter, the symbol 73 (respectively, 75) denotes the class of all regular
(respectively, Hausdorff) spaces. Moreover, the symbols SH, R, SuR and StR
mean the conditions “Y is strongly Hausdorff in X”, “Y is regular in X", “Y is
superregular in X” and “Y is strongly regular in X”, respectively. The symbol
Cx denotes the family of all closed subsets of X. We denote the condition “Y is
Ts-embedded in X” (see Section 3 for definition) by Ts.

The following implications around 1-paracompactness follow from definitions
, Proposition 2.2 and Theorem 3.4 below.

Y is Y is XeTs " Yis
1-paracompact—— 1-lf-paracompact = 1-lfc-paracompact

in X in X in X

R

Ts
Y is Y is XeTs Y is

1- cpo-paracompact— 1-cp-paracompact:—= 1-cpc-paracompact
in X inX in
DIAGRAM 2

For a-paracompact case, we have the following implications. These impli-
cations directly follow from definitions, Corollary 2.5, Remark 2.3 and Theo-

rem 3.5.



Y is Y is StR Y is
a-paracompact —— a-If- ~paracompact T a- lfc—paracompact
in X in X in
: SH
SuR YeT; SH
Y is Yis StR Y is
Q-cpo-paracompact —- a-cp-paracompact T a- cpc-paracompact
in X in X in X
DiAGrAM 3

Moreover, the following implications hold for 2-paracompact case. These im-
plications follows from definitions, Theorem 2.4, Remark 2.2 and Theorem 3.3
below.

Y is Yis StR Y is
2-paracompact —— 2-If paracompact "= 2-Ifc-paracompact
in X in X in
R YeTs
Yeox | Y € Cx Y€ Cx
Y is Y is StR Y is
2- cpo-paracompact—s 2-cp-paracompact 7= 2-cpc-paracompact
in X in X in X
DIAGRAM 4

Finally, for Aull-paracompact case, we have the following implications. These
implications follow from definitions, Theorem 2.4, Remark 2.3 and Theorem 3.2.

Y is Y is StR Y is
Aull-paracompact —Aull-lf- paracompact—Aull- lfc—paracompact

in X in in X

YET:
R Y € Cx Y € Cx

Y is ' Yis StR Y is
Aull- cpo—paracompact —Aull- cp—paracompact ~Aull-cpc-paracompact

~in X n X in X

DIAGRAM 5
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In Diagram 1, the terms “1-”, “o-”, “2-” and “Aull-” can be replaced by
“I-I£?, “a-If”, “2-If” and “Aull-lf”, respectively. Moreover, these terms can be
replaced by “1-lfc-”, “a-lfc-”, “2-lifc-” and “Aull-lfc-", respectively. Furthermore,
the same is avallable for cpo-, cp- and cpe-..

Let us emphasize the following proposition.

Proposition 2.7. Let Y be a subspace of a space X. If Y is 2-paracompact in
X, then'Y is 1-lf-paracompact in X.

For reverse 1mpl1cat10ns in Diagrams 2, 3, 4, and 5, we have the following
examples.

Example 2.8. There exist a Tychonoff space X and its closed subspace Y such
that Y is o-Ilfparacompact in X, but not 1-cp-paracompact in X (hence, not
2-paracompact in X).

Exémple 2.9. There exist a Tychonoff space X and its closed subspace Y such

~ that Y is Aull-paracompact in X, but not l-paracompact in X (hence, Y is
1-lf-paracompact in X, but not a-paracompact in X).

3 1-¢po-, 2-cpo-, Aull-cpo- and a-cpo-paracompactness
of a subspace in a space |

Y is said to be T- (respectively, T5-) embedded in X if for every closed subset
F of X disjoint from Y (respectively, z € X \ Y), F (respectively, z) and Y are
separated by disjoint open subsets of X ([5], see also [14]).

We often use the following proposition.

Proposition 3.1 ([14]; see also [5], [17]). LetY be a subspace of a space X.
Then, the following statements are equivalent.

(a) Y is 1-paracompact in X and T3-embedded in X.
(b) Y is 2-paracompact in X and Ty-embedded in X.
(¢) Y is Aull-paracompact in X and Ty-embedded in X.

(d) Y is a-paracompact in X and satisfies the following condition (%) : for
every y € Y and every closed subset F' of X wzth FNY =0, there exists

an open subset U of X such thaty € U C T* ¢ X\F.

As was stated in the previous section, we have

Theorem 3.2. Assume that Y is regular in X. Then, Y is Aull-pamcompact
in X if and only if Y is Aull—cpo-pamcompact in X.
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Theorem 3.3. Assume that Y is a closed subspace of X and Y is regular in
X. Then, Y is 2-paracompact in X if and only if Y is 2-cpo-paracompact in X.

Theorem 3.4. Assume that Y is regular in X and T3-embedded in X. Then,
Y is 1-paracompact in X if and only if Y is 1-cpo-paracompact in X.

In Theorem 3.4, the condition “Y is T3-embedded in X ” cannot be removed.
Consider X as the space ¥ = w U A constructing a m.a.d. family A of infinite
subsets of w ([8, 5I}) and ¥ = w.

- Theorem 3.5. Assume thatY is superregular in X (more generally, Y satisfies
the condition (x) in Proposition 3.1(d)). Then, Y is a-paracompact in X if and
only if Y is a-cpo-paracompact in X.

Theorem 3.5 is a generalization of [6, Theorem 5] where X is normal.

Let Xy denote the space obtained from the space X, with the topology
generated by a subbase {U|U isopenin X or U C X \ Y}. Hence, points
~in X \ Y are isolated and Y is closed in Xy. Moreover, X and Xy generate
the same topology on Y ([7]). As is seen in [1], the space Xy is often useful
in discussing several relative topological properties. It is easy to see that Y is
Hausdorff (respectively, regular) in X if and only if Xy is Hausdorff (respectively,

regular).
Lemma 3.6. Let Y be a subspace of a space X. Then, Y is Aull-cpo-paracom-

pact in X if and only if every open cover of Xy has a closure-preserving open
'mﬁnement. .

To prove Theorems 3.4 and 3.5, we have the following lemma which improves
[17, Lemma 1.2].

Lemma 3.7. For a subspace Y of a space X, each of the following statements

hold. ‘

(a) If Y is Ts-embedded in X and 1-cpo-paracompact in X, then Y is Tj-
embedded in X.

(b) Assume that Y satisfies the condition (x) in Proposition 3.1(d). If Y is
a-cpo-paracompact in X, then'Y is Ty-embedded in X.

Corresponding to Proposition 3.1, we have the following result for cpo-paracom-

pact cases. This fact follows from Theorems 3.2, 3.3, 3.4 and 3.5, Proposition 3.1
and Lemma 3.7. Notice that if Y is superregular in X, then Y obviously satisfies
the condition (%) in Proposition 3.1 (d).

Corollary 3.8. Let Y be a subspace of a space X. Then, the following state-
ments are equivalent. '
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(a) Y is 1-cpo-paracompact in X and Ts-embedded in X.
(b) Y is 2-cpo-paracompact in X and Ty-embedded in X.
(¢) Y is Aull-cpo-paracompact in X and Ty-embedded in X.

At the end of this section, we discuss absolute embeddings of 1—; a-, 2-
and Aull-cpo-paracompactness. Corollary 3.9 below immediately follows from
Theorems 1.1, 3.4 and 3.5.

| Corollary 3.9. For a Tychonoff (respectively, regular) space Y, the following
statements are equivalent. |
(a) Y is 1-cpo- (or equivalently, a-cpo-) paracompact in every larger Tychonoff
(respectively, reqular) space. _
(b) Y is 1-cpo- (or equivalently, a-cpo-) paracompact in every larger Tychonoff
(respectively, regular) space containing Y as a closed subspace.
(¢) Y is compact.

Theorems 1.2, 3.2 and 3.3 induce the following.

Corollary 3.10. For a Tychonoff (respectively, regular) space Y, the following
statements are equivalent.
(@) Y is 2-cpo- (or equivalently, Aull-cpo-) paracompact in every larger Ty-
chonoff (respectively, regular) space. -
(b) Y is 2-cpo- (or equivalently, Aull-cpo-) paracompact in every larger Ty-
chonoff (respectively, regular) space containing Y as a closed subspace.
(¢) Y is Lindelof.

4 More on absdlute'embeddings

In this section, we discuss absolute embeddings on other versions of relative
paracompactness defined in Section 2. The results obtained in this section should
be compared with Theorems 1.1 and 1.2.

We actually give characterizations of absolute 1-If and 1-cp-paracompactness
as follows.
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Theorem 4.1. For a Tychonoff (respectively, regular) space Y, the following

statements are equivalent.
(a) Y is 1-lfc-paracompact in every larger Tychonoff (respectively, regular)
~ space.
(b) Y is 1-cpc-paracompact in every larger Tychonoff (respectively, regular)
space. |



(c) Y is 1-lf-paracompact in every larger Tychonoff (respectively, regular) space.

(d) Y is 1-cp-paracompact in every larger Tychonoff (respectively, regular)
space.
(e) Y is Lindeldf. |
In the statements from (a) to (d) above, “every larger Tychonoff (respectively,

regular) space” can be replaced by “every larger Tychonoff (respectively, regular)
space containing Y as a closed subspace”.

The proof of Theorem 4.1 is based on the following fact: let X = A(w;) X
(w+1)\ {{oo,w)} and Y = ({0} X w) U (D(w;) x {w}). Then, Y is not 1-cp-
paracompact in X. '

Example 4.2. There exist a Tychonoff space X and an open subspace Y of X
such that Y is Aull-paracompact in X and 1-cpo-paracompact in X, but neither
1-paracompact in X nor a-cp-paracompact in X.

| For absolute a-If- or a-cp-paracompactness, we have

Theorem 4.3. For o Tychonoff (respectively, regular) space Y, the following
statements are equivalent.
(a) Y is a-lfc-paracompact in every larger Tychonoff (respectively, regular)
space. -
(0) Y is a-cpc-paracompact in every larger Tychonoff (respectively, regular)
space.

(¢) Y is a-lf-paracompact in every larger Tychonoff (respectively, regular) space.

(d) Y is a-cp-paracompact in every larger Tychonoff (respectively, regular)
space.
(e) Y is compact.

Remark 4.4. Notice that in Theorems 4.3, “every larger Tychonoff (respec-
tively, regular) space” cannot be replaced by “every larger Tychonoff (respec-
tively, regular) space containing Y as a closed subspace”. Indeed, for a Tychonoff
(respectively, regular) space Y, the following statements are equivalent:

(a) Y is a-lfe-paracompact in every larger Tychonoff (respectively, regular)
| space containing Y as a closed subspace. :

(b) Y is a-cp-paracompact in every larger Tychonoff (respectively, regular)

space containing Y as a closed subspace.
(c) Y is paracompact.
In the statements (a) and (b) above, “a-lfc-” (or equivalently, “a-cp-") can

be replaced by “o-If-” (or “a-cpc-”). :
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‘Moreover, we characterize absolute embeddings of relative paracompactness
of 2- or Aull-paracompactness types as follows.

Theorem 4.5. For a Tychonoff (respectively, regular) space Y, the following
statements are equivalent.
(a) Y is Aull-lfc-paracompact in every larger Tychonoff (respectively, reqular)
space.
(0) Y is 2-cp-paracompact in every larger Tychonoff (respectively, regular)
space.
(¢) Y is paracompact. ,
In the statements (a) and (b) above, “every larger Tychonoff (respectively,
reqular) space” can be replaced by “every larger Tychonoff (respectively, regular)
space containing Y as a closed subspace”.

Remark 4.6. Theorem 4.5 shows that “Aull-lfc-paracompact” in Theorem 4.5
can be replaced by “Aull-cpc-paracompact”, “Aull-if-paracompact” and “Aull-
cp-paracompact”. Moreover in Theorem 4.5, “2-cp-paracompact” can be re-
placed by “2-lfc-paracompact”, “2-cpc-paracompact” and “2-lf-paracompact”.

5 Concluding remarks

In this section, we give some related remarks to relative paracompactness
discussed in the previous sections. Let Y be a subspace of a space X and F a

collection of subsets of X. In [10] ans [12], Grabner et.al. introduced the following.

two relative notions of closure-preserving collections. It is defined in [12] that F is
closure preserving with respect to Y if for every F' C {F € F|FNY # 0} either
Y c UF or |JF is closed in X. Moreover, F is weakly closure preserving with
respect to Y if for every ' C {F € F|FNY # 0}, it holds that (JF)NY =

U—ﬁx NY. In [10], they assume that F is a collection of closed subsets of X
in the above definitions. As was mentioned in Section 2, the notion of closure
preserving collections with respect to Y above does not satisfy the statements
(a'), (¢') and () stated below Proposition 2.1. Actually, there exists a collection

A of closed subsets of X such that A is locally finite at each point of Y in .

X, but not closure preserving with respect to Y (consider X =w+1, Y =w
and A = {{n}|n < w}). There exists a collection A of subsets of X such that
A is closure preserving with respect to Y, but A" is not closure preserving
with respect to Y (consider, X = (w + 1)? \ ({w} xw), ¥ = (w+1) x {w} and

A = {{n} xw|n < w}). Moreover, there exists a collection .A of closed subsets of

X which is point-finite at each point of Y and closure preserving with respect to
Y, but not locally finite at some point of Y in X (consider X =w+1, Y = {w}
and A = {{n}|n < w}).
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Remark 5.1. In [10], Grabner et.al. defined that Y is weakly cp-paracompact
in X if for every open cover U, there is a closed partial refinement F such
that Y C [JF and F is weakly closure preserving with respect to Y. In [12],
Grabner et.al. modified the definition of weak cp-paracompactness in X as
follows; Y is weakly cp-paracompact in X if for every open cover U, there is
~a (not necessarily closed) partial refinement F such that Y C {JF and F is
weakly closure preserving with respect to Y. They commented in [12] that the
new definition of weak cp-paracompactness in X appears to be weaker. Note
~that Y is 2-cpc-paracompact in X if and only if Y is weakly cp-paracompact in
X (in the sense in [10]). Moreover, Y is 2-cp-paracompact in X if Y is weakly
~ cp-paracompact in X (in the sense of revised definition in [12]). Assuming Y is
strongly regular in X, these notions are equivalent as in Diagram 4.

Remark 5.2. In [11, Lemma 2.2}, Grabner et.al. assert that if a closed collec-
~ tion F is weakly closure preserving with respect to Y and A is a subset of Y’
then AC X\ U(F\{FeF|FNY # 0})X. However, this contains a gap. For,
consider X =w+1, Y =A={w} and F = {{n}|n € w}.

To discuss the notions by Grabner et.al. and our notions defined in Section
2, let us introduce some other notions relative paracompactness. We define that
Y is o' -paracompact (respectively, o' -lf-paracompact, o' -lfc-paracompact) in X if
for every open cover U of X there exists an open partial refinement (respectively,
a partial refinement, a closed partial refinement) V of U such that Y C | JV and
V is locally finite in X.

We also say that Y is a’-cpo-paracompact (respectively, o -cp-paracompact,
o -cpe-paracompact) in X if for every open cover U of X there exists an open
partial refinement (respectively, a partial refinement, a closed partial refinement)
V such that Y C |JV and V is closure-preserving in X. Notice that it is easy to
see that a subspace Y of a space X is o/-cpc-paracompact in X if and only if Y
is cp-paracompact in X in the sense of Grabner et.al. [10]; this fact is pointed
out in [12] assuming that X is Hausdorff. But, in Proposition 5.3 below, we show
that o/-lfc-paracompactness is coincident with o’-cpc-paracompactness without
any additional condition.

The notion of o/-paracompactness is intermediate between a- and 2-paracom-
pactness, and is independent from 1-paracompactness. It is obvious that o'-
paracompactness is equivalent to a-paracompactness for closed subspaces. On
the other hand, there exist a Tychonoff space X and its subspace Y such that
'Y is o/-paracompact in X, but not a-paracompact in X (consider X = w +1
and Y = w). Moreover, there exist a Tychonoff space X and its subspace Y
such that Y is 1-paracompact in X, but not o/-paracompact in X (consider
X =A(w) X (w+1)\ {{oo,w)} and Y = D(wy) X w).

In the rest of this section, we consider the following Proposition 5.3.
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Proposition 5.3. For a subspace Y of a space X, the following statements are
equivalent.

(a) Y is o -lfc-paracompact in X.

(b) Y is o/-cpc-paracompact in X.

(¢) Y is o -lf-paracompact in X and Y* is regular.

(d) Y is o -cp-paracompact in X and 7™ is regular.

(e) Y™ is paracompact Hausdorff.

Grabner et.al. [10, Theorem 35| (respectively, [12, Theorem 8]) proved that
the statements (b) and (e) in Proposition 5.3 above are equivalent assuming that
X is regular (respectively, Hausdorff).

Lemma 5.4. Let Y be a subspace of a space X. Then, the following statements
are.equivalent.

(a) Y is o-If- (respectively, o'-cp-) paracompact in X and VAT regular.

b) V™ is o'-lfc- (respectively, o/ -cpc-) paracompact in X.

() pectively, o'-cpc-) p p

(c) Y is o/-Ifc- (respectively, o/ -cpc-) paracompact in X.

Proposition 5.3 and Lemma 5.4 induce the following.

 Corollary 5.5. Assume that v*is reqular. If Y is o/ -cp-paracompact, then Y

is o'-If-paracompact in X.

Moreover, by applying Theorem 3.5, we have
Corollary 5.6. Assume thatY is closed in X andY satisfies the condition (x)
in Proposition 3.1. If Y is o -cpo-paracompact in X, then Y is o -paracompact
in X.

We conclude this note by the following implications among o'-cases. These
implications directly follow from definitions, Proposition 5.3, Corollaries 5.5 and
5.6. Here, the symbol (*) denotes the condition (x) in Proposition 3.1.

Y is Yis YeT Y is
o/-paracompact — o/-lf-paracompact—"c/- [fc-paracompact
in X in X , in
v VT
Y is Yis YeT Y is
o/- cpo-paracompact —- o~ cp-paracompact =—a’- cpc-paracompact
in X in X ‘ in

| DIAGRAM 6
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