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ABSTRACT. We show a kind of separability under the theory fn- of
simply typed A-calculus, which gives a sufficient condition for the theory
of the model induced by a cartesian closed category to be identical with
Bn-. Subject to this sufficient condition, we obtain an extensionality of
A-definable arrows of a cartesian closed category.

1. SIMPLY TYPED A-CALCULUS

We focus our attention to two versions of simply typed A-calculus. One
would be the most basic system which has been studied widely so far in a
number of literatures and the other is an extended variant which is naively
obtained by adding the device of finite product to the basic system from
logical and categorical viewpoints. Below we briefly review the definition of
these systems.

In the basic system, we have only one type constant o, from which the
set of simple types is generated by the following grammar:

ou=o0|o—o.

We use letters o, 7, v, ... as meta-variables to designate simple types. Based
on these types we put a restriction on the formation of terms, which are
inductively generated by the following rules:
M:0—57 N:o T M:T

MN: T A M:0—71
where z7 ranges over the set of term-variables of type 0. We use letters
M,N,... as meta-variables to designate these typed terms, and specify the
unique type o of a A-term M by the expression M : 0. We define A, to
be the set of terms of this system. We write =g for the smallest congruence
relation on A_, satisfying

(1) Az7 .M = My Mz := y°] provided y° ¢ FV(M),
(2) (Az°.M)N = M|z := NJ,

where FV(M) stands for the set of free-variables appearing in M, and anal-
ogously =g, for the smallest congruence relation satisfying (1), (2) and

(3) Az Mz° =M  provided z° € FV(M).
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We then denote the formal theories yielding the equalities =4 and =g, by 8,
and A7, respectively. For detailed explanation on the syntactical properties
of the systems 5, and f7-,, see [5, 6] for example.

We next mention the syntax of the extended version of simply typed A-
calculus, which is obtained by incorporating the syntax of finite products
into the above-mentioned basic system. So the set of types are defined by
the following grammar: :

cu=o0|l|loxo|lo—o

where 1 is a type constant to formalise a 0-ary product, namely, a certain
singleton set. As for terms, besides the rules of the basic system we further
adopt the following to represent finite products:

M:oxT M:oxT M:o N:T

Fst M :o Snd M : 7 (M,N):oxT
Since there is no possibility of confusion, to denote types and terms we use
the same meta-variables as those for the basic system. We write Ay, for
the set of extended terms so defined. Between the terms in Ay ,, we define
a relation =g,, by the smallest congruence relation satisfying the axiom
schemes

Fst (M, N) = M,
Snd (M, N) = N,
(Fst M,Snd M) = M,

as well as (1), (2) and (3). We denote the formal theory yielding the equal-
ities =gnr by Bnm_. This extension seems to be reasonable both from the
correspondence with category theory and from the aspect of Curry-Howard
isomorphism, as is mentioned in [1, 7, 9].

2. MODELS AND CARTESIAN CLOSED CATEGORIES

For all the systems mentioned in the preceding section, mathematical
frameworks to serve their denotational semantics have been also well inves-
tigated so far. Here, we first review a usual presentation of models of these
systems according to [4, 8, 9, 10] and then refer to an alternative description
of models based on category theory as is explained in [1, 7).

A typed applicative structure which underlies the semantics of 5., and
Bn-, is given by a 2-tuple
([1%%¢, App)

of mappings such that the first, called type-interpretation, assigns a non-
empty set [o]®P® to each type o of the basic system, and the second assigns
a function
App®" : [o = T]"P x [o]V¥P —s [r]Pe

to each pair of simple types o and 7. In such a typed applicative structure,
an interpretation of free-variables of a term is given by a mapping £, called
an environment, which assigns an element of [¢]¥P® to each term-variable.
Then we say that a typed applicative structure is a model, or typed A-
algebra, of the system (_, if we are able to present a mapping [ ]*™, called
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term-interpretation, which assigns a member [M]§*™ of [o]"P° to each pair
of an environment ¢ and a term M € A_, of type o, which satisfies

Vz? € FV(M) £(2°) = p(z?) = [M]PE™ = [M]F™,
[+]™ = £(2°),
l[MN]]Eerm —_ Appa,r([[M]lféerm’ [[N]zerm)’
M= N = V¢ [M]]ge"“ = [[N]Igem‘.
In case where the term-interpretation further satisfies
M =g N = Vf HM]tEerm — ![N]Zerm
we say that the typed applicative structure is a model of 87_,.
In order to model the system Bnr_,, we need to exténd the conditions
listed above. So we say that a model of 87, is even a model of Anm_, if we

have not only the mapping App but also the three mappings Fst, Snd and
Pair which satisfies

Fst? : [o x 7]¥P® — [o]™P®,
Snd”™" : [o x T]WP® — [r]¥Pe,
Pair”" : [o]"P¢ x [7]%¥P° — [o x T]¥Pe,
for every type o and 7, by which we can introduce a term-interpretation
satisfying
: [[Fst M]liéerm — FStU’T(uMl?rm),
[Snd M ]]?’rm = Snd”" ([M ]]'éerm),
[(M, N)JEE™ = Pair ([MJE™, [N]E™),
M =gpe N = V¢ [M]]ge"“ = [[N]ge"“.
for every M,N € Ay _,.

In general, following the ordinary notation in logic, we write
dE=M=N
for a model & and terms M and N of a system of simply typed A-calculus
if [M ]I‘éerm =[N ]]germ holds for every environment £, For the sake of simplic-

ity, we omit the superscripts to distinguish type-interpretation and term-
interpretation, denoting both of them simply by [] in the rest of this paper.

In the discussions on semantics of simply typed A-calculus, we often
force the following condition on the definition of models, called the weak-
extensionality,

Vd e [o] App”([Az°.M]¢,d) = App™" ([Az7.N]¢, d)
= |[)\.'1}0.M]|£ = [)\sc".N]k
in which the expression £{(z7: d) designates the environment such that the
value of {(z%: d)(y") is defined by d if y™ = 27, and by £(y") otherwise.
Associating this strong property with models enables us to determine the



denotation of a A-abstraction Az?.M uniquely based on its extensional be-
haviour and to make the presentation of term-interpretation considerably
simpler. This might be a main reason why the semantical discussion in
standard literatures, such as [4, 8], deeply depends on the models endowed
with the property of weak-extensionality, which we refer to under the name
of type-frame or Henkin-model.

In the field of category theory, we can find a neat notion comparable with
the models mentioned above. A category C is said to be cartesian closed
if it permit a construction of finite products and exponentials, that is, we
have operations

1 € Ob(C),
A,B € Ob(C) = A x B,AB € Ob(C),

for objects and operations

idg € C(4, A),

Oa GVC(A’ 1),

pa, € C(Ax B,A), aquB€C(AxB,B),

evaB € C(BA x A, B),

f€C(A,B)&ge C(B,C) = go feC(4,0),
fE€C(A,B)&ge C(A,C) = (f,g9) € C(A,B x (),
f_E C(A x B,C) = Cur(f) € C(4, CcB),

for arrows which satisfies

foida=f, idpof=f, (fog)oh=fo(goh),
Opof =04
O1= idla
pago{f,9)=Ff aaseo(f,g9)=g, (f,g)oh=(foh,goh),
(P4,B,494,8) = idaxs,
evp,c o {Cur(f) o pa,B,94,8) = f,
Cur(f) o g = Cur(f o (g o pa,B,94,8)),
Cur(ev4,p) = idpga, | '
for every arrows f,g,h. A cartesian closed category C is said to be well-

pointed if it is possible to discriminate arrows by composition with global
elements of C, that is,

Va € C(1,A) foa=goa = f=g¢g
holds for every A, B € Ob(C) and f,g € C(A, B).
By virtue of this algebraic notion, we actually provide an internal seman-

tics of simply typed A-calculus. To see it, let us suppose C is a cartesian
closed category and X is an interpretation of the type constant o, that is,
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K (o) specifies an object of C. Then, for each type o we inductively assign
an object [0] € Ob(C) by

(o] = K(o),

[1] =1,

[c x 7] = [0]) x [7],
[0 — 7] =[]

Denotation of a term M : o is given by an arrow in C relative to a finite
sequence A = z7',...,z9m of variables which contains all free-variables in
M and the components of which are distinct each other. More precisely, we
- define an object x(A) by

x(4) = (--- (1 x [01]) x [02])-++) x [opm]

and associate an arrow [M] 4 from x(A4) to [¢] by induction on the struc-
ture of M, as follows:
m—i times
[2°)s =qofo--op if 2% is the i element of A,

[Fst M) =po [M],4,
(Snd M) 4 =qo [M],,
[(M,N)]a = ([M]a,[N]a),
[MN]a =evo((M]a,[N]a),
(A\z7.M]) 5 = Cur( [M[z° := y°))ays)  where y° is fresh.
This is regarded as an internal interpretation of M with respect to A. It
is easy to verify that the axiom schemes considered in the previous section
are all satisfied under this manner of interpretation. Thus we can intro-
duce a typed applicative structure #cx = ([], Fst, Snd, Pair, App) whose
components are given by
[o] = €(1, o)),
Fst ©"(s) =pos,
Snd 77 (s) = qos,
Pair”" (s, t) = (s,t),
App?7(s,t) = ev o (s,t),
and it together with the term-interpretation

[M]e = (M]a0 (- (01, €(21")) -+ ), €z ))

is shown to be a model of the system Bnm_,. Under this construction from
cartesian closed categories to models, the condition of weak-extensionality
is known to be equivalent to the condition of well-pointedness. Some of
the known results concerning this categorical construction of models are
summarised in the following proposition.

Proposition 1. For every cartesian closed category C and an interpretation
K of o, the following hold:
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(1) ok gives rise to a model of B, B, and Bnm_,.
(2) Fo x satisfies weak-extensionality if and only if C is well-pointed.

3. EXTENSIONALITY OF A-DEFINABLE ARROWS

Even if a given cartesian closed category C is not well-pointed, we can
ensure that the interpretations of closed terms in &/c x satisfies the condition
of weak-extensionality subject to a certain condition on C. In what follows,
we are to elaborate this result.

Our proof is demonstrated by analogy with the observation in [11] and we
confine our attention to a restricted form of terms, called #-normal forms.
Here &-normal forms are defined by the following induction:

meN & _
My,..., My, € A, are $-normal forms of type oy = -+- = 0 = 0
= )‘xtln . ka .le-)---Tm—)O(Mlel"l ‘e .’L‘Z"‘) e (Mng& . xzk)
is a $-normal form

It is easy to verify for every term M that there exists a unique $-normal
form which equals M under the equality =gy, as is remarked in [3, 11].
Besides, we are able to demonstrate that distinct closed #-normal forms can
be separated into distinct elements of Ay _,(X) with respect to the equality
=gnr. To see it, we let X be the set of variables of type o or of type oxo0 — o
and Ay ,(X) the set {M € Ay, | FV(M) C X}.

Lemma 2. Suppose that M,N € A_, are closed $-normal forms of type
v1 = -+ =y 0. Then M = N holds if and only if MQY* - Q)" =gy
NQY -+ Q" for every QF*,..., Q" € Ax (X).

Proof. To see the if-part, we show the contraposition by induction on the

structure of M and N. The cases to be demonstrated are listed below, in
which we assume that

M= )\xtln e :L‘;" .wf1—+--.—>pm—w(Mlx1ii1 - x;ﬂ) - (me"i’l - m;lz)
and

N = )\x’l{l e x;’l _xgl_—’"'—)a-“—’o(Nlmijl ‘e w;)') e (Nnx‘i)l . x;‘"),
which do not coincide.

Case 1: Suppose i # j. Then it suffice to define Q; = Ayf* -y %, Q; =
Azgt ... 27n.2° where y # z and Qy to be an arbitrary term of type vy for
each k ¢ {i,7}. Indeed, we have MQ;--- Q; =gpr y and NQ;--- @, =gnr 2,
which never coincide under the equality =ggx.

Case 2: Suppose ¢ = j, which entails m = n and py = o} for every k €
{1,...,m}. Then there exists k € {1,...,m} such that My # N,. Without

loss of generality, we may assume that py = vy = -+ = v, = o for
some type vj41,...,vr. Then the induction hypothesis allows us to have
v
e @ QUL, .., QY € Ay (X) such that

MyQY' -+ QF Fpne NeQY' -+ Q1
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Using them, we define Ry, ..., R, € Ax (X) by

. AL b OO Q- Qr, Qi -y ) i s =14,
° Qs otherwise,

in which the variable f is fresh. Now let us suppose MR-+ Ry =gy,
NR; --- R;. Then we have

MiR;--- Ry
=ggr (Af-f (MkRy-+-Re, Qi(MiRy - Ry) -+ (M Ry -+ Ri))) \y"° Fst y
=pnmr (\f-Ri(M1Ry -+ Ry)--- (MmRy -+ Rp)) Ay Fst y
=gne (Af.MRy - R) \y°*°.Fst y
=pnr (\f-NRy - Bj) \y°.Fst y
=ggr (Af.Ri(N1Ry -+ Ry)-++ (NmR1 -+ Ri)) Ay Fst y
=pnr (M-f (NkR1-++ Ry, Qi(N1Ry -+ Ri) -+ (NmRy -~ Ry))) Ay °.Fst y
=gnn NyR;--- Ry,
and therefore

MkQ1 -+ Qr =gnr MxQ1-+ Qic1(Az1 -+ Tm.QiT1 -+ Tm)Qit1 - Qr
=gpn (\f.MgRy-++ Ry) \y°*°.Snd y
=ggn (Af-NiRy--- R;) Ay°*°.Snd y
=ggr NkQ1+* Qic1(Az1 -+ T Qi1+ + T ) Qi1+ +* @r
=ggr NeQ1 -+ Qr. |
This is a contradiction. Hence we obtain MRy - Ry #gpr NRy--- R;. U

By this lemma, we know that the equality of the system (n_, can be reduced
to the equality on a subset of Ax _,(X) without loss of any information, an
element of which can be regarded as a binary tree characterised by the
abstract syntax

tu= | FOx00(t )

in which z varies over the set of term-variables of type o and f over the
set of term-variables of type o X 0 — 0. We use letters s and ¢ as meta-
variables to designate terms in this subset. It is easy to verify that for
every M € Ay (X) there exists a unique term s in the form of a binary
tree such that M =gp, s. This is why a model constructed from a cartesian
closed category induces the same theory as whenever it discriminates distinct
binary trees in Ax (X), that is,

(4) s=t & cxkEs=t
is true for every s,t € Ax,,(X) in the form of a binary tree.

Theorem 3. Suppose C is a cartesian closed category and K an inter-
pretation of o such that the model Ao satisfies (4). Then the follow-
ing conditions are mutually equivalent for every terms M,N € A, of type
I e T 0

(1) M =g, N.
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(2) Zex =M =N.

(3) ok = MQT - Q' = NQT -+ Q) for every QT,...,Q[' € Ay ,(X).
Proof. (1) = (2) is by Proposition 1 and (2) = (3) is clear. So we concentrate
on the direction (3) = (1). Suppose M #g, N and FV(M)UFV(N) =
{z{',..., 2"}, and let us denote the &-normal forms of Az{* ---z7*.M and
Az{t -z * N by M’ and N’ respectively. Then M’ s#g, N’ follows, from
which we can find P{*,..., B*,QT,...,Q} € Ax,(X) such that

Mrplal ...png? lfc #pn N’P{” ...p:kQIl QZT
by Lemma 2. This together with the condition (4) implies
(5) o x M'plffl ...png?...QlTl = N'P{? ...P:kQ’{l Q.

Now suppose e = MQT' -+ Q' = NQT* --- Q" for every QF*,..., Q[ €
Ax,—(X). Then, we obtain
[MP] - PQT - Qe = IM] 1@+ Q) le
=[MQ7" -+ Qe
= [NQT -+ Qe
= I{N'yfl . .y;ngl Q;’tk,
=[NP PPQT - Qe
for every environment { and P*,...,P*,Q%,...,Q]" € Ax_,(X) where
§ = &(y : [P*]e) - (wg* : [P.*]e). This immediately contradicts to the
condition (5). As a result, we can find Q7,...,Q7" € Ax (X) such that
1 l )
ok i MQS Q= NQJ - Q. O
As a by-product of this theorem, we obtain a version of satisfiability of the

rule £ studied in [2] which turns out to be strictly weaker than the weak-
extensionality.

Corollary 4. Suppose C is a cartesian closed category and K an interpre-
tation of o such that the model Ak satisfies (4). Then dox EM =N
implies o x = Az M = Az N for every M,N € A_,.

Proof. Suppose &c x = Az°.M = Az°.N. Then, Theorem 3 ensures exis-
tence of a term P? € Ax (X) such that o x & (Az?.M)P° = (Az°.N)P°.
Hence we have

IMBE(-"?"[P"JE) = ﬂ(/\wa.M)Po]lf
# [(\a®.N)P]¢
= [Nlg(ae gpeye)
for some &, from which &c x = M = N follows. a
Furthermore, the statement above ensures the extensionality of A-definable
arrows, namely, the arrows represented by the interpretation of a closed
term, in a cartesian closed category satisfying (4). In the statement below,

obeying the usual abbreviation, for every f € C(1, B4) we write f! for the
arrow ev(f o O4,id4) € C(4, B). :



Corollary 5. Suppose C is a cartesian closed category and K an interpre-
tation of o such that the model ¢ i satisfies (4). Then the following hold
for every A-definable arrows f,g € [o — 7]:

(1) If App”7(f,a) = App”"(g,a) for every a € [o], then f = g.

(2) If floa =gl oa for every a € C(1, [0)), then fl =g

Proof. (1) From the assumption of A-definability, we may assume that f =
[Az°.M]¢ and g = [Az°.N]¢ for some closed term Az”.M,Az.N € A,,.
Then we have

[[Mk(a:":a) = AppU’T([)\a:a.M]lg, a)
= App”" ([Az°.N]¢, a)
= [N]]E(z":a)
for every a € [o] and £, from which [Az°.M]¢ = [Az®.N], follows by

-Corollary 4.
(2) is immediate from (1). ' a
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