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1 Introduction

The class LOGCFL is defined as those sets LOGSPACE-reducible to context-
free languages and it turned out that the class has alternative characteri-
zations based on Boolean circuits, word problems on groupoids and so on.
The class is also known to enjoy approaches from logic such as descriptive
complexity, bounded arithmetic and satisfiability problem. In this note we
will review some of these results together with open problems.

2 What is LOGCFL?

First we will define the class LOGCFL. Throughout this note, we will con-
sentrate on the string language. Let $\Sigma=\{0,1\}$ . We denote the set of finite
strings over $\Sigma$ by $\Sigma^{*}$ . We denote the length of a string $x$ by $|x|$ .

We assume the reader the familiarity with basic definitions of formal
language theory.

Definition 1 A context-free grammar $(CFG)$ is a quadraple $G=\langle N, \Sigma, P, S\rangle$

where,

$\bullet$ $N$ is a finite set of nonterminal symbols,

$\bullet$ $P$ is a finite set of rules of the form $A\Rightarrow G$ a where $A\in N$ and a $\in$

$(N\cup\Sigma)^{*}$ ,

$\bullet$ $S\in N$ is called the start symbol.

A string $w\in\Sigma^{*}$ is generated by $G$ if there exists a finite sequence such that

$s\mathrm{g}_{\alpha_{1}}\mathrm{g}_{\alpha_{2}}s\ldots\Rightarrow wG$ .
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A set $A\subseteq\Sigma^{*}$ is a context-free language (CFL) if there exists a CFG $\mathrm{G}$ such
that

$\forall w\in\Sigma^{*}$ ( $w\in A\Leftrightarrow w$ is generated by $G$).

We will also assume basic notions of Turing machines and computational
complexity.

Deflnition 2 Let $A,$ $B\subseteq\Sigma^{*}.$ $A$ is logspace many-one reducible to $B$ (de-
noted by $A\leq_{m}^{log}B$) if there exists a logspace bounded computable function $f$

such that
$\forall w\in\Sigma^{*}(w\in A\Leftrightarrow f(w)\in B)$ .

Now we can define the class LOGCFL as

Deflnition 3 LOGCFL $=\{A\subseteq\Sigma^{*} : \exists B:CFL(A\leq_{m}^{log}B)\}$ .
Remark. The class LOGCFL is a “uniform” class, that is all sets in
LOGCFL are recursive.

3 Circuit characterization

The class LOGCFL has several alternative characterizations. First we will
give a circuit based characterzation established by $\mathrm{H}$ Venkateswaran [11].

A Boolean circuit with $n$ inputs is a directed acyclic graph $C$ such that
ehac vertices are labeled as follows:

$\bullet$ a vertice of indegree $0$ is called an input and labeled by either one of
$x_{1},$ $\ldots,$ $x_{n},$ $x_{1}^{-},$

$\ldots,$
$x_{n}^{-}$ ,

$\bullet$ a vertice of indegree $\geq 1$ is callled a (inner) gate and labeled by either
one of $\wedge$ and V.

A gate with outdegree $0$ is called an output of the circuit. In this note we
consider only single-output circuits.

The computation of a circuit $C$ on input $x$ with $|x|=n$ is done by
assigning the $i\mathrm{t}\mathrm{h}$ bit of $x$ to each input $x_{i}$ , the complement of $i\mathrm{t}\mathrm{h}$ bit of $x$

to each input $\overline{x}_{i}$ , and evaluating each inner gate using the truth table of its
label. Thus a circuit with $n$ input computes a predicate on $\Sigma$“.

On the other hand, any infinite set $A\subseteq\Sigma^{*}$ contains strings of arbitrary
lengths. So we need infinitely many circuits to decide it. We formalize this
as follows:

25



Deflnition 4 A set $A\subseteq\Sigma^{*}$ is computed by a circuit family $C=\{C_{n}\}_{n\in\omega}$

if for all $n\in\omega_{f}C_{n}$ is a circuit with $n$ inputs and

$\forall x\in\Sigma^{n}(X\in A\Leftrightarrow C_{n}$ accepts $x$ .

We are interested in deciding the complexity of the circuit family which
computs a given $A\subseteq\Sigma^{*}$ . To measure the complexity, we introduce the
following notations:

Let $C$ be a circuit. The size of $C$ (denoted by size$(C)$ ) is the number
of gates in $C$ . The depth of $C$ (denoted by depth$(C)$ ) is the maximum of
lengths of paths from an input to the output. Note that the size and the
depth of a circuit family are functions of the length $n$ of inputs.

A circuit family $\{C_{n}\}_{n\in\omega}$ is called bounded fan-in if indegrees of gates in
$C_{n}$ are bounded by some constant. Otherwise it is called unbounded fan-in.
Further more it is called semi-unbounded fan-in if indegrees of A-gates are
bounded by a constant while those of $\vee$-gates are not bounded.

Now we define circuit complexity classes.

Deflnition 5 Let $i\in\omega$ . We define the class $AC^{i}$ to be the class of sets
$A\subseteq\Sigma^{*}$ which can be computed by an unbounded fan-in family of circuits with
depth $O((\log n)^{i})$ and size $n^{O(1)}$ . The classes $NC^{i}$ and $SAC^{i}$ are defined
in the same manner as $AC^{i}$ for bounded fan-in and semi-unbouded fan-in
circuits.

Note that these circuit classes are non-uniform. In fact, there exists
an $NC^{0}$ circuit family computing a non-recursive set. In roder to consider
inclusion relations between circuit classses and classes defined by other com-
putation models, we need uniform version of these classes. So we define the
following uniform notion.

Definition 6 Let $\{C_{n}\}_{n\in\omega}$ be circuit family. The Direct Connection Lan-
guage $(DCL)$ is the set of $(g, h, l,0^{n})$ where $g$ receives an input from $h$ in
$C_{n}$ and $l$ is a label of $g$ . The family $\{C_{n}\}_{n\in\omega}$ is $U_{E}*$ -uniform if its $DCL$ is
DLOGTIME-computable.

We assume $U_{E}*$ -uniformity for any circuits class unless otherwise stated.
For the relation between LOGCFL and circuit classes, Venkateswaran

[11] proved the following suprising result.

Theorem 1 (Venkateswaran [11]) The class LOGCFL is equal to $U_{E}$. -

uniform SAC1.
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This gives the following inclusions neither of which is known whether it is
proper or not:

$L\subseteq NL$ $c$ LOGCFL $=SAC^{1}\subseteq AC^{1}$ .

The problem whether LOGCFL is closed under complementation op-
eration is not obvious and was proved by Borodin et. al. The proof is
the application of the inductive counting argument by Immerman [6] and
Szelepsc\’enyi [10].

Theorem 2 (Borodin et.al. [1]) The non-uniform SACi is closed under
complementation.

(Proof Idea). Let $C$ be an SAC1 circuit with $n$ inputs whose depth and
width are $|\alpha(n)|$ and $\beta(n)$ respectively. We can transform $C$ so that the
resulting circuit has at most polynomial increase of width and satisfies the
following conditions:

1. synchronicity: all inputs are on row $0$ , output is on row $2|\alpha(n)|$ , and
all gates on row $k$ receive inputs from row $k-1$ ,

2. strict alternation: for $0<k<|\alpha(n)|$ all gates on row $2k$ are AND
gates and all gates on row $2k-1$ are OR gates.

Based on this reformulation of the original circuit, we construct the
inductive counting circuit to compute its complement. The general idea of
the construction is to add two kinds of gates. The first kind is called the
“contingent complement gate”. Let $g$ be a gate in $C$ and $c$ be a number
less than or equal to the width of $C$ . Then a contingent complement gate
$cc(g|c)$ outputs 1 if and only if $g$ outputs $0$ , provided that $c$ is the number
of l’s in the input rows to $g$ .

The second kind is the”counting gate”,denoted by COUNT$(c, k)$ , which
outputs 1 if and only if the number of l’s in the $2\mathrm{k}$-th row of $C$ is equal to
$c$ .

Thus computing the disjunct of all $cc(g|c)$ A COUNT$(c, k)$ for $0\leq c\leq$

$width(C)$ computes the complement of the original gate $g$ on row $2k$ .
Next let us see how each gates above are defined. The definition of The

contingent complement gate $cc(g|c)\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}8$ according to the row of $g$ . If $g$ is
on row $2k$ (that is, $g$ is an AND gate) then

$cc(g|\mathrm{c})=cc(h_{0}|c)\vee cc(h_{1}|c)$
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where $h_{0}$ and $h_{1}$ are inputs to $g$ . If $g$ is on row $2k-1$ (that is, $g$ is an OR
gate) then

$cc(g|c)=c- THRES${$h:h$ is the non-input of $g$ on row $2k-2$ },

where $c$-THRES outputs 1 if and only if the number of l’s in its inputs are
more than or equal to $c$ .

The counting gate COUNT$(c, k)$ is inductively defined as

COUNT$(c, k)=\beta(n)d=0\vee AND(COUNT(d, k-1),$TH1 $(c, k),$ $TH\mathrm{O}(c, k, d))$ ,

where $TH$I $(c, k)$ is the $c$-THRES of all original gates (that is gates in $C$) on
row $2k$ and $TH\mathrm{O}(c, k, d)$ is the $(c-d)$-THRES of all $cc(g|c)$ where $g$ is the
original gate on row $2k$ .

Finally, let $g_{out}$ be the output gate of the original circuit. Then the
complement can be computed by

$\vee$ $(cc(g_{out}|c)\wedge COUNT(c, \alpha(n)-1))$ .
$0\leq c\leq\beta(n)$

Note that throughout the construction, gates like $c\mathrm{c}(g|c),$ TH1 and $TH\mathrm{O}$

are defined using arbitrary threshold gates and replac$e\mathrm{d}$ by SACi subcircuits
which is given by

c-THRES$(x_{1}, \ldots, x_{n})$

$=\vee^{c}$ (k-THRES$(x_{1},$
$\ldots,$$x_{\lfloor\frac{n}{2}\rfloor}k=0)$ A $(c-k)- THRES(x_{\lfloor\frac{n}{2}\rfloor+1’)}\ldots x_{n})$).

Corollary 1 The class LOGCFL is closed under complementation.

This closure property guarantees the robustness of the corresponding
function class. Let $\mathcal{F}_{LOGCFL}$ be the class of functions $f$ : $\Sigma^{*}arrow\Sigma^{*}$ such
that

$\bullet$ there exists a polynomial $p$ such that $|f(\overline{x})|\leq p(|\vec{x}|)$ .
$\bullet$ the predicate “the ith bit of $f(\tilde{x})$ is 1” is computed in LOGCFL.

Then we have

Corollary 2 The class .7 LOGCFL is closed under complementation.
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4 Logic for LOGCFL

It is a fundamental problem in comptational complexity to give logical char-
acterizations, or to find logical properties for complexity classes.

4.1 Descriptive characterization

Descriptive complexity can be seen as an application of model theory to
complexity theory. The intuitive idea is as follows: given an algorithm A for
a problem, we express it by a logical formula $\varphi_{A}$ . Similarly an input to the
algorithm can be exressed by a structure $A$ with universe $\{0,1, \ldots, n-1\}$

where $n$ is the length of the input so that

$A\models\varphi_{A}\Leftrightarrow A$ accepts the input expressed by $A$ .

Generally speaking, the computational complexity of $A$ corresponds to the
logical complexity of $\varphi_{A}$ .

To formalize this correspondence we define

Definition 7 Let $\Phi$ be a class offormulae and $C$ be a complexity class. $We$

say that $\Phi$ captures $C$ (over arithmetical structures) if
1. for all $\varphi\in\Phi$ there exists an algorithm in $C$ which checks whether

$A\models\Phi$ where $A$ is an a$r\dot{\tau}thmetical$ structure.

2. for all $L\in C$ there exists $\varphi\in\Phi$ such that

$A\models\varphi\Leftrightarrow bin(A)\in L$

where bin$(A)$ is a suitable binary coding of $A$ .

For example following correspondence is known:

$\bullet$ The class of existential second order formulae $SO\exists$ captures the class
$NP$ .

$\bullet$ The class of first order formulae $FO$ captures the class $AC^{0}$ .

A descriptive characterization for the class LOGCFL is first given by
Vollmer et. al. by way of generalized quantifiers expressing word problems
for finite groupoids. See [12].

A similar characterization using the alternation path in SACi circuits
are given in Kuroda [9].
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4.2 Satisfiability problem for LOGCFL

Satififiability problems are typical complete problems for several complexity
classes. For example, the satisfiability for propositional formulae called SAT
is $\mathrm{N}\mathrm{P}$-complete. Also restrictions to the form of propositional formulae leads
to complete problems: the satisfiability for Horn formula (Horn-SAT) and
$\mathit{2}\mathrm{C}\mathrm{N}\mathrm{F}(\mathit{2}\mathrm{S}\mathrm{A}\mathrm{T})$ are complete for $\mathrm{P}$ and NL respectively.

The satisfiablity for LOGCFL was given by Gottlob et. al. [5] in a
slightly different form. Boolean conjunctive queries are regarded as seach-
ing witnesses to given conditions over relational databeases. Consider the
following example:

Example 1 Suppose that we have a relational database with the following
relational schema:

u-tokyo(Student, Year, Faculty),
kyoto-u(Student, Year, Faculty),
sisters(Student1, Student2).

We can consider the following $quer\dot{\mathrm{v}}es$ over this database.
$Q_{1}$ : $ansarrow u- tokyo(S1, \mathrm{Y}, F)$ A kyoto-u$(S2, \mathrm{Y}, F’)$ A sisters $(S1, S2)$ ,
$Q_{2}$ : $ansarrow u- tokyo(S1, \mathrm{Y}, F)\wedge kyoto- u(S2, \mathrm{Y}’, F’)\wedge sisters(S1, S2)$,
In general, queries are of the form $Q$ : $ansarrow body$ and if body is a

conjunction of atomic formulae then the query is called a Boolean conjunctive
query.

A Boolean conjunctive query $Q$ is expressed as a hypergraph, that is,
the pair $G=(V, E)$ where

$V=\mathrm{t}\mathrm{h}\mathrm{e}$ set of variables occurring in $Q$ ,
$E=$ { $(v_{1},$

$\ldots$ , $v_{k}$ ) : name$(v_{1},$
$\ldots,$

$v_{k})$ is a conjunct in $Q$}.
A Boolean conjunctive query is called cyclic (acyclic) if the corresponding
hypergraph is cyclic (resp. acyclic). Note that $Q_{1}$ and $Q_{2}$ in example 1 are
cyclic and acyclic respectively.

Now let us briefly formalize this argument. A relatinal schema $R$ consists
of a name $r$ of a relation and a finite ordered list of attributes. In Example
1, sister(Student1, Student2) is a relational scheme with a name sister and
attributes Studentl and Student2.

For an attrubute $A,$ $Dom(A)$ be a countable domain of atomic values.
Let $R=(A_{1}, \ldots, A_{k})$ be a relation. A relation instance is a subset

$S\subseteq Dom(A_{1})\cross\cdots\cross Dom(A_{k})$ so that $|S|<\omega$ . A database schema $DS$

consists of a finite set of relation schemata.
Database db over $DS=\{R_{1}, \ldots, R_{m}\}$ consists of:
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$\bullet$ relation instance $r_{1},$ $\ldots,$ $r_{m}$ for $R_{1},$
$\ldots,$

$R_{m}$ , and

$\bullet$ universe $U \subseteq\bigcup_{R_{i}(A_{1}^{i},\ldots,A_{k_{i}}^{i})\in DS}Dom(A_{1}^{i})\cup\cdots\cup Dom(A_{k_{i}}^{i})$ ,

such that all data values in db are from $U$ .
Now we define conjunctive query on database schema as follows:

Definition 8 Let $DS=\{R_{1}, \ldots, R_{m}\}$ be a database schema. A conjunctive
query $Q$ on $RS$ consists of a rule of the form

$Q:ans(u)arrow r_{1}(u_{1})\wedge\cdots r_{n}(u_{n})$

where $r_{1},$ $\ldots,$ $r_{n}$ are relation names in $DS$, ans is a relation name not in
$DS_{f}$ and $u_{1},$ $\ldots,$ $u_{n}$ are terms of appropriate length.

Next we define the satisfaction relation for conjunctive queries. For a
conjunctive query $Q$ we define $var(Q)$ to be the set of variables occurring
in it and atom$(Q)$ to be the set of atomic formulae occurring in its body.

Definition 9 The answer of a conjunctive query $Q$ on a database db with
associated universe $U$ consists of a relation ans whose arity is equal to the
length of $u$ defined as follows:

ans contains all tuples $uS$ where $S:var(Q)arrow U$ is a substitu-
tion replacing each variable in $var(Q)$ by a value of $U$ so that
$r_{i}(u_{i})S\in \mathrm{d}\mathrm{b}$ for all $1\leq i\leq n$ .

We say that $Q$ evaluates to true on db if there exists a substitution $S$ such
that $r_{i}(u_{i})S\in$ db for all $1\leq i\leq n$ .

We say that $Q$ is a Boolean conjunctive query if its head does not contain
variables.

As stated above, we can associate a hypergraph $H(Q)=(V, E)$ for each
conjunctive query $Q$ which is defined as:

$\bullet$ $V$ is the set of variables occurring in $Q$ ,

$\bullet$ if $r_{i}(u_{i})$ is an atomic formula occurring in the body of $Q$ then $E$ con-
tains a hypergraph consisting of all variables in $u_{i}$ .

$Q$ is an acyclic conjunctive query if $H(Q)$ is acyclic.
Finally we define the satisfiability of (acyclic) Boolean conjunctive query

as follows:
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BCQ: Given a database db and a Boolean conjunctive query $Q$ . Decide
whether $Q$ evaluates to true on $\mathrm{d}\mathrm{b}$ .

ABCQ: Given a database db and an acyclic Boolean conjunctive query $Q$ .
Decide whether $Q$ evaluates to true on $\mathrm{d}\mathrm{b}$ .

Note that $BCQ$ was previously known to be $\mathrm{N}\mathrm{P}$-complete. So the fol-
lowing result is rather surprising:

Theorem 3 (Gottlob et.al. [5]) The problem ABCQ is complete for LOGCFL
under logspace reduction.

4.3 Bounded arithmetic

The main idea of bounded arithmetic is to characterize a given function class
as provably total functions in a weak subsystems of Peano Arithmetic or its
variants. More precisely, let $\Phi$ be a class of formulae.. Then a function $f$

is said to be $\Phi$-definable in a system $T$ if there exists a formula $\varphi\in\Phi$ such
that

$T\vdash(\forall x)(\exists!ty)\varphi(x, y)$ ,
$\mathrm{N}\models(\forall x)\varphi(x, f(x))$ .

S. Buss [2] was the first to give such systems for levels of the polynomial
time hierarchy. Namely, he defined a series of systems $S_{2}^{i}(i\geq 0)$ such that

Theorem 4 For $i\geq 1$ , a function is polynomial time computable with an
oracle from $\Sigma_{i-1}^{p}$ if and only if it is $\Sigma_{i}^{b}$ definable in $S_{2}^{i}$ .

Buss’ systems are defined in the language of natural numbers. On the
other hand, S. Cook and his students developed a theory of binary strings
called two-sort systems and based on this formulation, A. Kolokolova [8] gave
a relation between descriptive complexity and two-sort bounded arithmetic.

Furthermore, the author [9] used Kolokolova’s argument to define a two-
sort system whose provably total functions are exactly those bitwise com-
putable in LOGCFL. In the following we briefly review this work.

The language $L_{2}$ of two sort systems has two kinds of variables, namely

$\bullet$ number variables denoted by lower case letters $x,$ $y,$ $z,$ $\ldots$ , and

$\bullet$ string variables denoted by upper case letters $X,$ $Y,$ $Z,$
$\ldots$

and contains function symbols $Z(x)=0,$ $s(x)=x+1,$ $x+y,$ $x\cdot y,$ $|X|$ (the
length of string $X$ ) and a relation symbol $x\leq y$ . Terms and formulae are
built up in the usual manner. The standard model of $L_{2}$ is the pair $(\mathrm{N}, \Sigma^{*})$ .
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Quantifiers of the form $(\forall x\leq t)$ and $(\exists x\leq t)$ are called bounded num-
ber quantifiers where $t$ is a $\mathrm{t}e\mathrm{r}\mathrm{m}$ not including $x$ . Quantifiers of the form

$\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{s}\mathrm{a}\mathrm{r}\mathrm{e}(\forall X\leq t)\mathrm{a}\mathrm{n}\mathrm{d}(\exists X\leq t)$

are called bounded string quantifiers whose intended

$(\forall X\leq t)\varphi\equiv(\forall X)(|X|\leq tarrow\varphi)$ ,
$(\exists X\leq t)\varphi\equiv(\exists X)(|X|\leq t\wedge\varphi)$

where $t$ is a term not containing $X$ .
We define $\Sigma_{0}^{B}$ to be the class of $L_{2}$-formulae in which all quantifiers are

bounded number quantifiers and $\Sigma_{1}^{B}$ be the class of $L_{2}$-formulae in which all
quantifiers are either bounded number quantifiers, positive occurrences of
bounded existential string quantifiers, or negative appearances of bounded
universal string quantifiers.

We augment the language $L_{2}$ by introducing an operator which applies
to $L_{2}$-formulae. Let $\varphi(g, h, z,\overline{x},\overline{\mathrm{Y}})$ be an $L_{2}$-formula with free variables as
shown and $\alpha(z)$ and $\beta(z)$ be $L_{2}$ terms with the only parameter $z$ . Then we
introduce a new relation

$\mathrm{Q}^{SAC}[\varphi(g, h, z,\overline{x},\overline{\mathrm{Y}}), \alpha(z), \beta(z)](t,n,\overline{p},\overline{Q},X)$ $(*)$

For a class $\Phi$ of $L_{2}$-formulae we define $QL_{2}(\Phi)$ to be $L_{2}$ extended by
$\mathrm{Q}^{SAC}[\varphi]$ for all $\varphi\in\Phi$ . Let $\mathrm{Q}^{SAC}(\Phi)$ be the class of formulae of the form
$(*)$ where $\varphi\in\Phi$ .

The intended meaning of $(*)$ is as follows: Let $C_{\varphi,\alpha,\beta}$ be an SAC1 circuit
with $n$ inputs whose depth and width are $|\alpha(n)|$ and $\beta(n)$ respectively, and
its direct connection language is given by $\varphi(g, h, n,\overline{p},\overline{Q})$ , that is, $h$ receives
an input from $g$ if and only if $\varphi(g, h, n,\overline{p}_{)}\overline{Q})$ . Here $g$ and $h$ denote the

$\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}.\mathrm{o}\mathrm{f}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s},\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{h},\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{i}\mathfrak{h}^{r}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{Q}^{SAc_{[\varphi(g,h,z}\frac{\mathrm{t}}{p}}\frac{}{x},\overline{Y}),\alpha(Z),\beta(z)](t,n,,\overline{Q},X)\mathrm{h}\mathrm{o}1\mathrm{d}_{\mathrm{S}}\mathrm{i}\mathrm{f}\mathrm{t}\mathrm{d}$

only if there exists an “ alternating path” $Z$ from the input $X$ to the gate $t$

which satisfies:

$\bullet$ $Z$ contains no input node whose value is $0$ ,

$\bullet$ $Z$ contains at least one node whose value is 1,

$\bullet$ if $g$ is an AND gate and all its offsprings are in $Z$ then so is $g$ ,

$\bullet$ if $g$ is an OR gate and some of its offsprings is in $Z$ then so is $g$ ,

$\bullet$ the gate $t$ is at the top of $Z$ .
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Note that the circuit $C_{\varphi,\alpha,\beta}$ accepts the input $X$ if and only if there exists
such an alternating path $Z$ .

Since we are interested in the $\mathrm{F}\mathrm{O}$-uniform $SAC^{1}$ , we will concentrate on
the language $QL_{2}(\Sigma_{0}^{b})$ .

Now we will formalize the above conditions to give the defining axiom for
the operator $\mathrm{Q}^{SAC}$ . First of all, the defining axiom for $\mathrm{Q}^{SAC}$ must contain
formulae saying that $\varphi$ defines a circuit. Remember that the combinatorial
structure of circuits is that of directed acyclic graphs. In our setting, circuits
are coded by the tuple $\langle\varphi(g, h, z,\overline{x},\overline{Y}), \alpha(z), \beta(z)\rangle$ . This is explained as
follows:

$\bullet$ each gate in $C_{\varphi,\alpha,\beta}$ is assigned an unique vaiue $g<|\alpha(n)|\cdot\beta(n)$ ,

$\bullet$ for $g,$ $h<|\alpha(n)|\cdot\beta(n),$ $g$ is an input of $h$ if $\varphi(g, h, z,\overline{x},\overline{Y})$ , and

$\bullet$ $C_{\varphi,\alpha,\beta}$ is divided into $|\alpha(n)|$ rows, each containing $\beta(n)$ gates.

So two gates $g$ and $h$ are in the same row if and only if $\lfloor_{\overline{\beta}}n\mathrm{b}\rfloor=\lfloor\frac{h}{\beta(n)}\rfloor$ .
For the sake of readability, we define $\mathrm{r}\mathrm{o}\mathrm{w}_{\beta}(g)=\lfloor_{\partial}\mathrm{b}"\rfloor$ and $\mathrm{c}\mathrm{o}1_{\beta}(g)=$

$Rem(g, \beta(n))$ to denote the vertical and horizontal positions of the gate $g$

respectively. We omit the subscript $\beta$ if it is clear from the context. Note
that these functions are $\Sigma_{0}^{B}$ definable in $V^{0}$ .

Now $\varphi$ gives an edge $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\dot{\mathrm{n}}$ for a directed acyclic graph if whenever
$g<|\alpha(n)|\cdot\beta(n)$ receives an input from $h<|\alpha(n)|\cdot\beta(n)$ then row$(g)\leq l(h)$ .
We define this formally as

$Circuit_{\varphi(g,h,z,\overline{x},\overline{\mathrm{Y}})}^{\alpha,\beta}(n,\overline{p},\overline{Q})$

$\Leftrightarrow(\forall g<|\alpha(n)|\cdot\beta(n))(\forall h<|\alpha(z)|\cdot\beta(z))(\varphi(g, h, n,\overline{p},\overline{Q})$

$arrow \mathrm{r}\mathrm{o}\mathrm{w}_{\beta}(g)<\mathrm{r}\mathrm{o}\mathrm{w}\rho(h))$ .
We will not add formulae to explain what semi-unbounded circuits are.
Instead, we may consider that any $C_{\varphi,\alpha,\beta}$ is an SAC1 circuit by assuming
that

$\bullet$ gates with fan-in more than two are OR gates, and

$\bullet$ gates with fan-in less than or equal to two are AND gates.

Note that negations are only applied to the input row for SACi circuits.
So we assume that inputs already contain the complement for each bit:

Input(X, $n$ )
$\Leftrightarrow|X|=\mathit{2}n+\mathit{2}$ A $(\forall x<n)(X[x]rightarrow\neg X[x+n])$ A $X[2n]$ A $\neg X[\mathit{2}n+1]$ .
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This means that the actual input is given by the first $n$ bits and next $n$ bits
gives the bitwise complement of the input. For a technical reason, we add
two more bits at positions $\mathit{2}n$ and $\mathit{2}n+1$ which always evaluates to 1 and $0$

respectively.
Now we give the formal definition of alternating paths on SAC1 circuits.

The formula $APATH_{\varphi}^{\alpha,\beta}(t, n,\overline{p},\overline{Q}, X, Z)$ is a conjunction of the following
formulae:

$\bullet$ No inputs with the value zero are in the path:

$(\forall g<|\alpha(n)|\cdot\beta(n))$ ($\mathrm{r}\mathrm{o}\mathrm{w}_{\beta}(g)=0$ A $\neg X[g]arrow\neg Z[g]$),

$\bullet$ there exists at least one input with the value one in the path:

$(\exists g<|\alpha(n)|\cdot\beta(n))$ ($\mathrm{r}\mathrm{o}\mathrm{w}_{\beta}(g)=0$ A $X[g]$ A $Z[g]$ ),

$\bullet$ if $g$ is an OR gate and either one of its offsprings is in the path then
so is $g$ :

$(\forall g<|\alpha(n)|\cdot\beta(n))$

$(\exists h_{0}<|\alpha(n)|\cdot\beta(n))(\exists h_{1}<|\alpha(n)|\cdot\beta(n))(\exists h_{2}<|\alpha(n)|\cdot\beta(n))$

($\varphi(h_{i},g, n,\overline{p},\overline{Q})\wedge h_{0}\neq h_{1}$ A $h_{0}\neq h_{2}$ A $h_{1}\neq h_{2}$

$(\exists h<|\alpha(n)|\cdot\beta(n))\varphi(h,g, n,\overline{p},\overline{Q})\wedge Z[h]rightarrow Z[g])$,

$\bullet$ if $g$ is an AND gate and both of its offsprings are in the path then so
is $g$ :

$(\forall g<|\alpha(n)|\cdot\beta(n))(\exists h_{0}<|\alpha(n)|\cdot\beta(n))(\exists h_{1}<|\alpha(n)|\cdot\beta(n))$

$(\varphi(h0,g, n,\overline{p},\overline{Q})\wedge\varphi(h_{1},g, n,\overline{p},\overline{Q})\wedge$

$(\forall h<|\alpha(n)|\cdot\beta(n))(\varphi(h,g, n,\overline{p},\overline{Q})arrow(h=h_{0}\vee h=h_{1}))$

$\wedge Z[h_{0}]$ A $Z[h_{1}]arrow Z[g])$ ,

$\bullet$ the gate $t$ is at the top of $Z$ :

$Z[t]\wedge(\forall g)(g\neq t\wedge Z[g]arrow(\exists h)\varphi(g, h, z,\overline{x},\overline{Y})\wedge Z[h])$ .

So $APATH_{\varphi}^{\alpha,\beta}(t, n,\overline{p},\overline{Q}, X, Z)$ says that there exists an alternating path in
$C_{\varphi,\alpha,\beta}$ starting from the gate $t$ .

Deflnition 10 Let Ax-QSAC $(\varphi)$ be the following axiom:

$\mathrm{Q}^{SAC}[\varphi(g, h,\overline{x},\overline{\mathrm{Y}}), \alpha(z), \beta(z)](t, n,\overline{p},\overline{Q})rightarrow$

( $Circu\iota’t_{\varphi}^{\alpha,\beta}(n,\overline{p},\overline{Q})$ A $Input^{\alpha,\beta}(X,$ $n)arrow(\exists Z)APATH_{\varphi}^{\alpha,\beta}(t,$ $n,\overline{p},\overline{Q},$ $X,$ $Z)$ ).
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Note that the righthand side of Ax-Q $(\varphi)$ is $\Sigma_{1}^{B}(\varphi)$ .
Based on the above formulation, we will now define our system which

captures the class LOGCFL.

Definition 11 The system V-QSAC $(\Sigma_{0}^{B})$ is the $QL_{2}(\Sigma_{0}^{b})$ theory whose ax-
ioms are

$\bullet BASIC_{2f}$

$\bullet Ax- \mathrm{Q}^{SAC}(\varphi)$ for $\varphi\in\Sigma_{0}^{B}$ ,

$\bullet$
$\mathrm{Q}^{SAC}(\Sigma_{0}^{B})$ -bit-comprehension:

$(\exists P)(\forall k<c)(P[k]rightarrow$

$Q^{SAC}[\varphi(g, h, z,\overline{x}, y,\overline{\mathrm{Y}}), \alpha(z), \beta(z)](|\alpha(n)|\cdot\beta(n)-1, n,\overline{p}, k,\overline{Q}, X))$ .

Using the technique developed by Kolokolova [8], the author [9] showed
that

Theorem 5 (K) A function is in $F_{LOGCFL}$ if and only if it is $\Sigma_{1}^{B}$ definable
in V-QSAC $(\Sigma_{0}^{B})$ .

5 Problems
It is an open problem whether a fragment of second order logic captures the
class LOGCFL in the sense of descriptive complexity. Since a second order
existential logic $SO\exists$ captures the class $\mathrm{N}\mathrm{P}$ , it is natural to conjecture that
subsets of $SO\exists$ captures complexity classes inside $\mathrm{N}\mathrm{P}$ .

In fact, Gr\"adel [4] gave a second order existential logic which captures
$\mathrm{P}$ and $\mathrm{N}\mathrm{L}$ . A formula is said to be restricted $SO\exists$ if it is of the form

$(\exists P_{1})\cdots(\exists P_{k})(\forall\vec{y})\varphi(\tilde{P},\vec{y})$ , $(*)$

where $\varphi(\vec{P},\tilde{y})$ is quantifier free. Gr\"adel defined

Definition 12 A formula is $SO\exists- Hom$ if it is a $SO\exists$ formula such that
its quantifier free part is in conjunction nomal form where each conjunct
contains at most one negative literal.

A formula is $SO\exists$-Krom if it is a $SO\exists$ formula such that its quantifier
free part is in conjunction normal form where each conjunct contains at most
two literals.
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Theorem 6 (Gr\"adel [4]) $SO\exists$-Horn captures $P$ and $SO\exists$-Krom captures
$NL$ over arithmetical structures.

The proof uses the fact that the satisPability for Horn formulae and $2\mathrm{C}\mathrm{N}\mathrm{F}$

formulae are complete for $\mathrm{P}$ and NL respectively.
Now, turning our attension back to the class LOGCFL, there is a possi-

bility that the acyclic Boolean conjunctive queries can be used to give a class
of restricted $SO\exists$ formulae which captures the class LOGCFL. To this end,
the formula $\varphi$ in $(*)$ must express the acyclic Boolean conjunctive queries.

References
[1] A.Borodin, S.A.Cook, P.W.Dymond, W.L.Ruzzo and M.Tompa, Two

applications of inductive counting for complementation problems.
SIAM J.Comput., vol.18, No.3, pp.559-578 (1989)

[2] Buss. S. R., Bounded Arithmetic. Ph.D thesis. (1985) Published in 1986
by Bibliopolis, Naples.

[3] Fagin, R., Generalized first-order spectra and polynomial-time recog-
nizable sets. In Comlexity of Computation, R. Karp, ed., SIAM-AMS
Proceedings, 7 (1974), pp.43–73.

[4] Gr\"adel, E., Capturing complexity classes by fragments of second order
logic. Theoretical Computer Science, 101 (1992), pp.35-57.

[5] Gottlob, G., N. Leone and F. Scarcello, The Complexity of Acyclic
Conjunctive Queries, Journal of ACM, vol.43, No.3, pp.431-498 (2001)

[6] Immerman, N., Nondeterministic space is closed under complementa-
tion. SIAM Journal on Computing, 17 (1988), pp.935-938.

[7] Immerman, N., Descriptive Complexity. Guraduate Texts in Computer
Science, Springer (1999).

[8] A.Kolokolova, Systems of bounded arithmetic from descriptive com-
plexity. Ph.D.Thesis, University of Toronto (2005)

[9] Kuroda, S., A bounded arithmetic theory for LOGCFL, to appear in
Archive for Mathematical Logic. (2007)

[10] Szelepsc\’enyi, R., The method of forced enumeration for nondetermin-
istic automata. Acta Informatica, 26 (1988) pp.279-284.

37



[11] H.Venkateswaran, Properties that characterizes LOGCFL. J. Computer
and System Sciences, 42, pp.380-404 (1991)

[12] C.Lautemann, P.McKenzie, T.Schwentick and H.Vollmer, The Descrip-
tive Complexity Approach to LOGCFL. J. Computer and System Sci-
ences, 62(4), pp.629-652 (2001)

38


