oooooooogon
1533 0 2007 O 64-85

CPS-translation as adjoint
— extended abstract —

Ken-etsu Fujita (BEH &)
Gunma University (BEBK)
fujita@cs.gunma-u.ac. jp

Abstract

We show that there exist translations between polymorphic A-calculus and a sub-
system of minimal logic with existential types, which form a Galois insertion (embed-
ding). The translation from polymorphic A-calculus into the existential type system
is the so-called call-by-name CPS-translation that can be expounded as an adjoint
from the neat connection. The duality appears not only in the reduction relations but
also in the proof structures such as paths between the source and the target calculi.
From a programming point of view, this result means that abstract data types can
interpret polymorphic functions under the CPS-translation. We may regard abstract
data types as a dual notion of polymorphic functions.

1 Introduction

Galois connections arise, even if we do not aware of, in many parts of computer science [8,
12]. For instance, examples from logics are demonstrated in Backhouse [1], where provability
or implication relation is a partial order on the set of formulae. Other kinds of examples
come from reduction systems, whcih are shown by Danvy-Lawall [2] and Sabry-Wadler [16],
where reduction relation forms a preorder over terms.

On the other hand, the term CPS-translation, in general, denotes a program translation
method into continuation passing style that is the meaning of the program as a function tak-
ing the rest of the computation. The method has been studied for program transformation,
definitional interpreter and denotational semantics [13].

We prove that there exist translations between polymorphic A-calculus A2 (Girard-
Reynolds) and a subsystem of minimal logic A¥ with existential types, which form & Galois
connection and moreover a Galois insertion (embedding). The translation from A2 into A3
is the so-called call-by-name CPS-translation [10, 15] that can be expounded as the adjoint
of the inverse translation. From a programming point of view, this result also means that
abstract data types [7] can interpret polymorphic functions under the CPS-translation. We
may regard the notion of abstract data types as a dual notion of polymorphic functions.

Our main interest is a neat connection and proof duality between polymorphic types
(2nd order universally quantified formulae) and existential types (2nd order existentially

quantified formulae). It is logically quite natural like de Morgan’s duality, and computa-
tionally still interesting, since dual of polymorphic functions with universal type can be
regarded as abstract data types with existential type [7]. Although one can guess the ex-
istence of such a duality from the work of Selinger [14], instead of classical systems like
[9, 14, 17], even intuitionistic systems can enjoy that polymorphic types can be interpreted
by existential types. That is, computationally polymorphic function with universal type
VX.A can be interpreted by abstract data types with existential type, such that the para-
metric polymorphic function AX.M for X can be viewed, under the CPS-translation *, as
an abstract data type (AX.M)* for X, which is waiting for an implementation with type
3X.A* = (VX.A)*. This interpretation also contains proof duality, such that the universal
formulae introduction rule is interpreted by the use of the existential formulae elimination
rule, and the universal elimination by the existential introduction. Moreover, with respect
to reduction relations, we established not only a Galois connection but also a Galois in-
sertion (embedding) from polymorphic A-calculus (Girard-Reynolds) into the calculus with
existential types. From the neat connection between the calculi, the fundamental properties
such as normalization and Church-Rosser are related each other.

65

The paper is organized as follows: Section 2 provides our source and target calculi,

respectively denoted by A2 and A\3. Section 3 is devoted to the CPS-translation * from A2
into A3, Here we demonstrate that the CPS-translation can be expounded as a lower adjoint
of the inverse translation. Then the translations constitute a Galois insertion (embedding)
from A2 into A3. Section 4 gives typing relation correspondence between the calculi and
proof duality between sequences of formulae called paths.

2 Source and target calculi

2.1 Source calculus: A2

We introduce our source calculus of 2nd order A-calculus (Girard-Reynolds), denoted by
A2. For simplicity, we first adopt its domain-free style, and next the Church-style when we
discuss proof terms.

Definition 1 (Types)
A=X|A=>A|VXA

Definition 2 ((Pseudo)A2-terms)
| A25 M =z | Az.M | Ae.M | MM | A X.M | MA
Definition 3 (Reduction rules) (8) (Az.M;)M; — Mi[z := M)
(m) Az.Mz — M, ifz & FV(M)
(B) (AX.M)A — M[X := 4]
(ne) A XMX - M, if X ¢ FV(M)

66

FV (M) denotes a set of free variables in M.

We write —»yo for the compatible relation obtained from the reflexivie and transitive
closure of the one step reduction relation, and “"’j\'z for that from the transitive closure.
In particular, —»g denotes the subrelation of —» restricted to the reduction rules R C

{8,n, Bi,m}. We may write simply (8) for either (8) or (8:), and (n) for either (n) or (n;),
if clear from the context. We employ the notation = to indicate the syntactic identity under

renaming of bound variables.

2.2 Target calculus:)3

We next define our target calculus denoted by A3, which is logically a subsystem of minimal
logic consisting of constant L, negation, conjunction and 2nd order existential quantifica-
tion?.

Definition 4 (Types)
Aux=1|X|-A|ANA|3X.A
Definition 5 ((Pseudo))3-terms)

AsM == z|de.M|MM| (M M)|1let (z,z) =M in M
| (A, M) |let (X,z) =M in M

Definition 6 (Reduction rules) (8) (Az.M;)M,; — M;[z := M)
(n) dz.Mz— M, ifx & FV(M)
(letn) let (zq,z2) = (M, M) in M — Mz := M, 25 := My

(letn,) let (z1,Z9) = My in M|z := (z1,z2)] — M[z := M),
if T1,z9 & FV(M)

(lets) let (X,z) = (A, M) in M — M[X = A,z := M|
(lets,) let (X,z) = M; in M[z := (X,)] = M,z := M), if X,z & FV (M)

We also write simply (1let) for either (lets) or (lets), and (let,) for (let,,) or (lets,).
Similarly we write —,a and —; as done for A2.

1For further introduction of the CPS target calculus A with let-expressions, see also the previous
version [4] of this paper.

3 CPS-translation and Galois connection

3.1 CPS-translation * from A2 into A3

We define a translation, so-called modified CPS-translation * from pseudo A2-terms into
pseudo A3-terms, which preserves not only reduction relations but also typing relations
introduced later. In each case, a fresh and free variable a is introduced, which is called a
continuation variable.

Definition 7 1. z* = za
2. (Az.M)* = let (z,a) = a in M*

Mtla = (z,a)) for My =1z
Mtla = (Aa.M3,a)] otherwise

4 OAX.M)* =1let (X,a) = a in M
5. (MA)* = M*[a := (A", a)]

3. (MiMy)* = {

6. X*=X; (A= A)*=-AINAL (VX.A) =3X.A*

Remarked that M* contains exactly one free occurrence of a continuation variable a, and M*
has neither B-redex nor 7-redex. Let AX.M have type VX.A. Then, under the translation,
the parametric polymorphic function AX.M with respect to X becomes an abstract data
type (AX.M)* for X, which is waiting for an implementation a with type 3X.A* together
with an interface (a signature) with type A*, i.e., (AX.M)* is

abstype X with a: A* is a in M*
in é familiar notation.
Lemma 1 1. We have M{[z := Aa.M}] — 5, (Mi[z := M,))*. _
In particular, M} [z := Aa.M3] —»g (My[z := M,))* provided that M, is not a variable.
2. If My —g M,, then M7 —"Enlet M;.
3. If My —y, My, then My —%,. M3

nlety,

Proof. By straightforward inductions. o
Proposition 1 If we have My —y; My, then My -5 M3.

Proof. By induction on the derivation. O

67

68

3.2 CPS-translation as adjoint

The main problem is how to define or expound an inverse translation. Sabry and Felleisen
[15] have defined the universe of CPS terms, to say, cps(A) = {P | M* — P for some M € A},
for mapping canonical CPS terms back to the original ones. In our terminology, for
P € cps(A), the downset | P o {Q | P —» Q} is a subset of cps(A), and | P, C | P,
if P, - P,. From the definition, for each P € cps(A) there exists some M € A such that
M* - P. If we have M* = P, then the inverse of P, denoted by P*, can be defined as M
fortunately. Otherwise, we would take an approximation P, € | P to P such that P — P,
where | P, C | P. Then there also exists M; € A such that M} — Py, and this process
could be continued. In order to make the plan workable, we should have such a downclosed
set as cps(A), and moreover an inverse of P € cps(A) should be obtained by P! = M from
the inverse image [| P]™* = | M for some M € A. Here we must guarantee that [| P]™* is
principal, i.e., [| P]™* is generated by a single M € A such that [| P]™ = | M. That is,
for any P € cps(A) there uniquely exists M € A such that | M = [| P]™*.

We say that the translation * is monotonic if M; — M, implies My — M. It is
observed that there may not exists P* for some P € cps(A) unless * is monotonic. For
instance, assume that M; — M, but M} — P < Mj for some P, and no other reductions
are possible. Then P! cannot be defined along the above. Moreover, for every normal form
P,y there should be uniquely exists M with P,y = M*.

In order to give an inverse translation following the plan above, first we provide the
mutual inductive definitions, respectively for denotations Univ and continuations C, as
follows:

CecC CeC PeUniv
zC € Univ (Aa.P)C € Univ
Ce€lC Peg Univ CeC Peg Univ
let (z,a) = C in P € Univ let (X,a) =C in P € Univ

cecC

aeC (z,C)eC

CeC Peg Univ cecC

(MAa.P,C) €C (A*,CYeC

We write (Ry, Ry, ..., Ry) for (Ry, (Ry, ..., R,)) withn > 1, and (R;) for R; withn = 1.
C € C is in the form of (R,...,R,,a) where R; (1 <i < n)is z, Aa.P, or A* with n > 0.
We explicitly mention that C € C has exactly one occurence of free variable a such that
C = (Ry,...,Ry,a) with n > 0. P € Univ also has exactly one occurence of free variable
a in such C as a proper subterm of P.

Lemma 2 1. If P, € Univ and P, —)3 P,, then P, € Univ.
2. IfC, € C and C, -3 C,, then Cy € C.

Proof. Let P, P, € Univand C,C; € C. Then Pla := Cy], P[z := Aa.P,], P[X := A*] €
Univ, and Cla := C4],Clz := Aa.Py],C[X := A*] € C. o

Hence, both Univ and C are closed under —»a. Although -»,3 is defined over A3, the
binary relation —,a is well-defined over Univ and C as well.

We employ a preorder @ C P defined by P — @, the reflexive and transitive closure —
of one step reduction —. Then an inverse of P € Univ, denoted by u(P) is defined as an
upper adjoint (left adjoint) of *; as follows:

u(P) &t sup{M € A2 | M* C P}

The existence of sup is not trivial, since C is a preorder here rather than a partial order
in complete lattices [8, 1, 12]. In fact, this definition works well, which can be verified by
case analysis on P € Univ, in the following way:

e Case P=zC =z(Ry,...,Ry,a) withn >0

From the definition of *, u(P) is in the form of N; ... Ny for some term or type Nj,
where
— If R, = z;, then N; = z; from the definition of *.
— If R; =)a.P;, then similarly find the maximum N; such that N E F,.
— If R; = A}, then we take N; = A;.
e Case P = (Aa.P')C
We have no M such that M* = (Aa.P')C. Then we should find the greatest M’ such
that M"™ C P'la := C] C (Aa.P’)C, where a is a linear variable.

o Case P = let (z,a) = C in P’ with C = (Ry,..., Rp,a) (n 2 0)

u(P) is in the form of (Az.M)N; ... N, for some M and N;, where we should find the
greatest M such that M* C P/, and:

— If R; = z; then NV, = z;.

— If R; = \a.P,; then find the greatest NV; such that N} C F,.

— If R; = A} then N; = A;.

e Case P =1let (X,a) = C in P' is handled simiarly.

Here we have a valid induction measure, since continuation variable is linear and we always
choose strictly smaller subterms to.find an upper adjoint. This definition u is summarized
as follows:

1. u(z) = z; u(Aa.P) = u(P); u(A*) = A

2. w(z(Ry, ..., Rn,a)) = z(u(R1)) ... (u(Rn))

3. u((Aa.P)C) = u(Pla:=C))

4. u(let (z,a) = (Ry,..., Rn,a) in P) = (\z.u(P))(u(Ry)). .. (w(Rn))

69

5. u(let (X,a) = (Ri,..., Ry, a) in P) = (AX.u(P))(u(R1))... (u(Ry))

where the clause 1 is for R; such that (Ry,..., R,,a) € C, and the clause 2 through 5 are
for P € Univ.
The discussion above essentially gives a proof to the statement that for any P € Univ,
there uniquely exists M € A2 such that | M = [| P]™*.

On the other hand, usually the definition of inverse translation § can be inductively
given as follows [6, 5], where we write C[] for C' € C with a hole []:

Definition 8 (0) ¥ = z; (\a.P)! = P}, (A*)! = A
(1) (zC)F = C¥laf]
(2) ((a.P)C) = CY(\a.P)]
(3) (Let (z,a) = C in P)} = C¥[Az.P!]
(4) (let (X,a) = C in P)! = C{AX.P!]
5) at =11
(6) (z,C)* = C[[]af]
(7) (Ma.P,C)* = C¥[|(\a.P)¥
(8) (A*,C)F = CH[](A")]

Note that we have Ct = [|RY... R! with left associativity, if C € C is in the form of
(R], veey R,,,a).
Lemma 3 1. (Pla:= C))! = C*PY|
2. Let P,P; € Univand C €C.
(P[z := Aa.Py))! = Piz := P}
(Clz := Aa.P))! = C¥z := P}]

Proof. By induction on the structures of P and C.]

- Proposition 2 (Inverse translation as adjoint) For any P € Univ, we have u(P) =
Pt.

Proof. By induction on the structure of P € Univ. a

In turn, given § as above, a lower adjoint (right adjoint) of § is defined as follows:
(M) ¥ inf{P € Univ| M C P!}

Then the recursive procedure to find [(M) is provided by case analysis on M.

o Case M of z:

We have I(z) = za € Univ, since z C z = (za)*.

70

71

e Case M of Az.M":
From A\z.M' C Az.P* = (let (z,a) = a in P)!, we should find the minimal P € Univ
such that M’ C P*. Then {(Az.M’) is in the form of let (z,a) =a in P.
o Case M of My Ms,:
— Case M = zM,:
We have M, C zR! = (z(R, a))*. Here R is either ' or Aa.P for some P € Univ.
x If M, = ', then l(zz') = z(z',a) from 2" = 2'.

* Otherwise, find the least P € Univ such that M, C P, Then l(zM;) is in
the form of z(P, a).

— Case M = (\z.M3) My
From (Az.M3)M, C (A\z.P*)R! = (let (z,a) = (R, a) in P)!, we should find the
least P and R, respectively such that M3 T P* and M, C RF. As in the previous
case, R is either 2’ or Aa.P’ for some P’ € Univ. Then I((Az.M3)M,) is in the
form of let (z,a) = (z/,a) in P or let (z,a) = (P',a) in P.
— Case M = M M;M,:
From MyM;M, C P'RAR! = (Pla := (Rs, Ry, a)])! = ((Aa.P)(Rg,Rg,a)‘?”, we
should find the least P, R, Ry, respectively, such that My C P*, M, C R}, and
M, T R.. Then I[(M;M3M,) is in the form of Pla := (R}, Ry, a)], where R} is
either] or Aa.P! for P! € Univ together with M; C P* for i = 2,3.
o Case M of AX.M:
From AX.M' C AX.P! = (let (X,a) = a in P)*, we should find the least P € Univ
such that M’ C P!. Then {(AX.M") is in the form of let (X,a) =a in P.
e Case M of M, A:

— Case M = zA:
Since zA C zA = (z(A*, a))*, we have [(z(A*,a)) = zA.
— Other cases can be confirmed similarly.

That is, the procedure ! is summarized in the following, where we write N for either a term
or a type:

1. l(z) = za
2. I(Mz.M) =let (z,a) = a in [(M)
3. IAX.M) = 1let (X,a) =a in [(M)

4. I(MNy...N,) = I(M)[a = (I(N), ..., U(Ny),)]
where I'(z) = x; I'(A) = A*; I'(M) = Aa.l(M) otherwise.

The CPS-translation * is of course the lower adjoint of § from the definitions.

Proposition 3 (CPS-translation as adjoint) For any M € A2, we have (M) = M*.

72

3.3 Galois insertion (embedding)

As expected from the previous propositions, the translations form the so-called Galois
connection between A2 and Univ.

Lemma 4 Let Py, P, € Univ.

1. If P, =5 Py, then P! = P},

2. If P, —=, Py, then P} = P}.

3. If P, =14y Py, then P} —5 PL.

4. If Py 141, Py, then P} —, P}

Proof. By induction on the derivations. O
Lemma 5 Let M € A2 and P € Univ.

1. M* =M and P —g, P

2. If M is in A2-normal, then M* is in A\3-normal.

If P is in A3-normal, then P* is in A2-normal.
Proof. By induction on the structures of M € A2 and P € Univ. m|

Theorem 1 (Galois insertion) (A2, Univ, ,§) forms a Galois connection, in particular
Galois insertion (embedding) such that M* = M. That is, let M,M;,M; € A2 and
P, P,, P, € Univ. Then we have the following properties:

1. If M, -2 Mz then Mf —»33 M;
2. If Py —a P, then P} —y; PL.
8. If M* -y M and P —»a P,

In other words:
P* =50 M if and only if P —»,a M*

Proof. From Lemmata 4 and 5. ' m]
We summarize results induced from the discussion above.

Corollary 1 1. Strong normalization of Univ implies that of A2.
2.)2 is weakly normalizing iff Univ is weakly normalizing.

3. There exists a one-to-one correspondence between A2-normal forms and Univ-normal
forms.

4. A2 is Church-Rosser iff Univ is Church-Rosser.
We remark that A3 itself is not Church-Rosser.

73

5. Given the translation *. Then an inverse translation which satisfies the properties of
Lemma 4 and Lemma 5 (1) above is unique under renaming of bound variables.

6. Let [P be {Q| P —)3 Q} for P € Univ. Then an inverse image of | P is principal,
in the sense that the inverse image of | P is equal to | (P*) that is generated by a
single P € A2.

7. Let [ya [A2]* be {P | M* —»,a P for some M € A2}. Let 1g, [A2]* be {P € Univ |
P —»g, M* for some M € A2}.
Then we have |3 [A2]* C Univ = 1g,[A2]*.
We remark that C is strict, for instance,
(Aa.za)a € Univ, but (Aa.za)a & |3 [A2)*.

4 Proof duality

4.1 Typing relation correspondence

From now on, we consider proof terms in the Church-style, and so are terms in Univ or C.
In particular, we write Aa: A*.P for A-terms in Univ, and (A}, C)ax 4~ for pairs in C. We
give type assignment rules for A2 and A3, respectively, as follows.

A2:
z:Ael

F'Fz: A

F,x:All‘MiAz FFM12A1$A2 'k M;: A
TP AN Ao =D TF MM, : A (= E)

'FM:A N r-M:vX.A
TFMX.M:VX.A (vI) THMA, : A[X := A)) (VE)

where (VI)* denotes the eigenvariable condition X ¢ FV(I').

27
Al
'z:A
Dz AFM: L (=) 'M,:-A Fl_M"’:A(—.E)
F'EAz:AM:-A F|"M1M21..L

THM A NAy T,z1:A1,20: A F M A
I'Flet (z,z)=M; in M: A

Fl"MltAl Pl‘MQiAQ
T'H (M, My) : Aj A Ay

(AI) (AE)

74

'k M: AX = A I'FM:3X.A T,z:AF M;: A1
I'F (A, M)ax4:3X.A I'let (X,z) =M in M; :

where (3E)* denotes the eigenvariable condition X ¢ FV (T, A;).
The typability problem for A7 is decidable, i.e., given I and M, we can find A such that
I'Fya M : A. We give a certain typability for terms & la Church in Univ or C.

(3) (3EY

Lemma 6 For P € Univand C €C,
1. if we have -I'*,a:A* 3 P: B, then B; = 1; and
2. if we have —I™,a:A* bya C : By then By = A} for some A;.

This lemma means that if the unique variable a has some type in the form of A* and other
free variables in P or C, denoted by z, have type - A} for some A;, then P € Umv has type
1 and C € C has type A3 for some A,.

Proof. By simultaneous induction on the structures of P and C.

1. Case of -I™*,a:A* 3 zC : B
B=1,z:-A" € -I'* and ~I"*,a: A* -ys C : A’ for some A’.

2. Case of -I'"*,a:A* s (\d'.P)C : B
B=1,-I*a:A*Fyzs Ad’.P: B, and -I"*,a:A* lya C : B’ for some B'.

By the second induction hypothesis, we have B’ = A™* for some A'.

3. Case of -I'*,a:A*F,3 let (z,a') =C in P: B
I*;a:A*Fya C: A; A Ay, and
-I'™*,a:A* x:A;,a': Ay)3 P: B for some Ay, A,.
From the first induction hypothesis, we have B = 1, and from the second induction
hypothesis, we have A; A A; = A™ for some A’. From the definition, A; = —A§ and
Ag = A for some Aj, Ay.
4. Case of =I"™,a:A* Fya let {(X,a’)=C in P: B
-I™* a:A* 3 C:3X.Ay, and
-I'™*,a:A* z:A; s P: B for some A;.
From the first induction hypothesis, we have B = 1, and from the second induction
hypothesis, we have 3X.A; = A} for some Ay. From the definition, A; = A} for some
As.
5. Case of -I'*,a:A*Fy3a: B
We have B = A*.

6. Case of -I*,a: A* ks (z,C) : B
-I* a:A* s z: By, and -I'*,a: A*)3 C : By for some By, Bs.
By = -A} € -I™ for some A;, and By = A} by the second induction hypothesis.
7. Case of -I'™*,a: A* Fy3 (Aa':A*.P,C): B
-, a:A* Fya Aa’: A™.P: A", and -I'*,a: A* Fa C : B, for some By, By. From the
second induction hypothesis, we have B, = Bj for some Bj.
8. Case of -I'*,a: A* 3 (A],C)ax.ay: B
We have -I'*,a: A* k3 C : A}[X := A}], and B = 3X.Aj.
From the above, the following set of typing rules, denoted by A3, is enough for Univ
and C:
| z:mAl € - -T*a:A*FC: A
- a:A*F2C: L

I a:A*FC:-ATANA} -T*z:-A},a: A3 P: L (AE)
-I*,a:A*+let (z,a)=Cin P: 1

-I*a:A*+C:3X.A7 -I*a:A]FP: 1L
-I'*,a:A*Flet (X,a)=Cin P: 1

(3E)*

-I*,a:A*FC: A} -I™a:AjFP: 1L
-, a:A*F (Aa: A}.P)C : L

(-IE)

-I*,a:A*Fa: A*

z:mAT eI -I™aA*FC:A
I a:A* F (z,C) : ~A] A A}

2 (AlLyar)

-I*,a:AFP: L I a:A*FC: A
-I*,a:A* F (Aa: A}.P,C) : ~A} A A3

(AL))

-[*,a:A* - C: AY[X = A}]
ﬂl"*,a:A" F < ;,C>3X.A‘{ . BXA;
where (3E)* denotes the eigenvariable condition X & FV (T, A;).

€

Lemma 7 1. -I",a:A*Fya P: L if and only if -I",a: A" Fya P: L
2. -I'™ a:A*)3 C: A} if and only if -I"*,a: A* Fag C: A}

Proof. If-part is clear. Only-if-part is by induction on the structures of P and C.

75

Proposition 4 1. If we have -I"*,a:A* k3 P: L then Ty P4 : A,
2. If we have -T*,a: A" 33 C: A} then T, z: A; by (zO): A
Proof. By simultaneous induction on the derivations.

1. Case of zC : L
By the induction hypothesis, we have Iy: A+ C*y] : A. Hence, we have I',z: A4; F
(zC)*: A from z: A; € T.

2. Case of let (z,a) =C in P: L
By the induction hypotheses, we have I',y: A; = Ay - C¥y] : Aand I',z:A; - P¥ .
Aj,. Hence, we have I' - C¥[\z.P¥] : A.

3. Case of let (X,a) =C in P: L
By the induction hypotheses, we have I', y:VX.A; - C*[y] : A and " - P! : A; where
X ¢ FV(T, A;). Hence, we have T' - C*AX.P!] : A.

4. Case of (Aa.P)C: L
By the induction hypotheses, we have I',y: A; - C¥y] : A and T P! : A;. Hence,
we have I' - C*[P!] : A.

5. Case of a : A*
We have z: A + (za)! : A, where (za)! = z.

6. Case of (z,C) : ~A] A A}
By the induction hypothesis, we have T, y: A, C¥y] : A. Hence, we have I, 2: A4; =
Az - C¥2z] : A from z: A; € T, where (2(z,C))} = C¥[2z].

7. Case of (Aa.P,C) : =A] A\ A}
By the induction hypotheses, we have I' - P# : A; and T',y: A F C¥[y] : A. Hence,
we have I', z: A; = Ay F C*zP?)] : A, where (z(Aa.P,C))! = (\a.P,C)¥[2] = CH[=PY].

8. Case of (A;, C)BX.A; . HXAI
By the induction hypothesis, we have T, y: A;[X = Aj] F C![y] : A. Hence, we have
T, z:VX.A; F C*zAy) : A, where (2(A3, C)) = Ct[z4,).

Theorem 2 'ty M : A if and only if =I™*,a: A* Fys M*: L

Proof. If we have I' Fyo M : A, then -I'*,a: A* Fya M* : L by induction on the
derivation. In turn, if we have —=I'*,a: A* Fya M* : L, then we also have —I'*,a: A* I-,\g
M* : L. Hence, from Proposition 4 above, we have I -y, (M*)* : A where (M*)f = M

76

4.2 Duality on formulae, proofs and paths

Well-known duality like de Morgan’s appears on the sets of formulae Form with provability
I or logical implication = relation which forms a partial order. Such a duality is charac-
terised as translations between the tuples (Form,=>). In Gentzen’s sequent calculus LK,
switching formulae between antecident and succedent gives one example under the transla-
tion d: X% = X; (mA)% = A% (AAB)? = A%V B¢, (AV B)? = A* A B¢, (Vz.A)¢ = 3z.A%,
(3z.A) = Vz.A% Then for (Form,+) and (Form,), we have T¢ - A iff ' 4 A%,

Along this line, another translation is negation — between (Form, =) and (Form, <=).
Then we have -A = B iff A « -B.

Yet another example of translations known as sectioning (Curry version of binary oper-
ators) are given in Backhouse [1], as follows:

(AN ¥ X ANX
A=) € XA X

Then we have BN = C iff B = C4=), and commutativity with quantifiers® (3X.B)“AN
iff 3X.BAN, and (VX.B)4=) iff VX.B4=) where X ¢ FV(A). Moreover, (Form,=) is
a poset, and the supremum can be regarded as existential quantification. We may write a
partial order T instead of =. The supremum of the translation (AA) is thought of as the

supremum of the range of the translation. Then, in fact, sup(AA) is given by the following
X:

1. For any B € Form, B4N C X,
2. For arbitrary C € Form, if BN C C for any B € Form, then X C C.

That is, we have sup(AA) = 3X.AA X = TN, where T = 3X.X and 3 commutes with
the translation (AA) from the commutativity. Similarly, we have inf(A=) =VX. A= X =
1(4=) where | = VX.X, as the following X: .

1. For any B € Form, X € B\4=),
2. For arbitrary C € Form, if C © B4=) for any B € Form, then C C X.

Not only with provalibity but also with proof terms, Wadler [17] has introduced the dual
calculus for classical propositional logic. The previous simple example ['* - A <= T - Al
might be involved in the dual calculus. An involutive duality on Au-calculus is revealed on
the dual calculus via translations.

The control and co-control categories by Selinger [14] elegantly reveals, as internal lan-
guages, duality between call-by-value and call-by-name Au-calculi with conjunctions and
disjunctions.

Here we demonstrate another duality on a sequence of formulae from the viewpoint of
proof structures. Following Prawitz [11], we define the notion of paths together with names

of inference rules (R). In particular, introduction rules are denoted by (I), and eliminations
are by (E).

2We refomulate his discussion [1} in the second order intuitionistic logic.

7

Definition 9 (Path) A sequence consisting of formulae A; and inference rules (R;)

Ar(R2)Ag(Ro) .. Ana(Rnr) An
is defined as a path in the deduction II of A2 or A3, as follows:
(i) A; is a top-formula in II, which is not dz’schargéd by an application of (AE) or (3E);
(ii) A; (¢ < n) is not the minor premiss of an application of (= E) or (—E), and either

(a) A; is not the magor premiss of (AE) or (3E), and A;,1 is the formula occurrence
immediately below A; by an application of (R;), or

(b) A; is the magjor premiss of an application (R;) of (AE) or (3E), and Ay, is an
assumption discharged by (R;); and

(iii) A, is either a minor premiss of (= E) or (=E), or the end-formula of II.

We call a path a main path if the path ends with the end-formula of the deduction. We
assign an order to each path 7, denoted by ord(r). A main path has the order 0. A path
that ends with a minor premiss of an application (= E) or (=F) has order n + 1 if the
corresponding major premiss of this application belongs to a path with order n. A length
of the path 7 = A;(R;)Az(Rg) ... Ap—1(Rn-1)A, is defined as n, denoted by len(w).

Let x be either z or X. We simply write let (x1,Xx2,Z3) = M) in M; for

let (x1,¥) = M in let (x2,z3) =y in M

where y is a fresh variable. Similarly, we write let (x1,...,Xn,Z) = M1 in M,, and so on.

Let Mps = Ax1.... AXn.ZN1 ... Ny, be a normal form of A2-terms with n,m > 0 and N; is
either a term or a type. Then,

M,; =1et (x1,--.,Xn,a) = a in (N}, ..., Ny, a)
is also normal in A3. We analyze the proof structure of Mg, in terms of paths. We

define the following inference rules correspondence between A2 and A:
(= D*=(AE), (= E)*=(A]l), (VI)* = (3E), and (VE)* = (3I).

Theorem 3 (Proof duality) Let II be the normal deduction of T'-xa M : A, and II* be
the normal deduction of -I'*,a: A* 3 M* : L. We have a path w of I1, to say:

AI(EI)A2(E2) R Am(Em)Am+1 (Im+1) cee Am+n—1(Im+n)Am+n+1

with the proviso that len(r) > 1 if ord(mw) > 0, ‘
if, and only if, we have a path m™ of II* with the same length and ord(m) + 1 order, such
that

A:n+n+1(Im+ﬂ)*A:n+n—1 cee (Im+1)*A:n+1(Em)*A:n v (E2)*A;(El)*AI-

For a path 7 beginning with a top-formula A; and ending with a conclusion A, we have
the corresponding path 7* beginning with a top-formula A* and ending with A}. The
side condition concerns a technical matter. Since the definition says that (Mz)* = M*[a :=

78

79

(z, a)], we have no corresponding path to the type of . Although the definition of the CPS-
translation can be simplified as (Mz)* = M*[a := (\a.za,a)] for removing the condition,
this simplification might involve an extra n-redex. The path consisting of the type of such
z is not a main path, i.e., the order is greater than 0 and the length is 1.

Proof. If-part is by induction on the derivation.

1. Case of M = z where ord(r) = 0 and len(r) = 1:

z:-A* a:A*
ra: 1 (E)

Then 7* = A* with ord(n*) = 1 = ord(r) + 1 and len(n*) = 1 = len(m).
2. Case of M = M; M,

I, 11,
M, :A=B M,:
M]_MQiB

where 7 = m,(A = B)(= E)B with ord(m) = n + 1. Then we have

[a: A*]
2o
M;:.L
Xa. M —A* Ch . pe
(Aa.M3,a) : ~A* A B*

4 (=5

(AI)

2
M*(a := (Aa.M3,a)] : L
where path 7* = B*(= E)*(A = B)*n} with ord(n*) = ord(r)+1 from the induction
hypothesis ord(w}) = ord(m) + 1.

3. Case of M = A\z: A.M;:
[z A
1T
M1 : B
A(IJZA.MI :A=> B
where 7 = m;B(=1)(A = B). Then we have

(=1)

[x:—-A*] [a:B*
)%}
a:~A*AB* M1

let (z,a) =ain M*: L

(AE)

where ™ = (A = B)*(= I)*B*r} with ord(n*) = ord(w) + 1 from the induction
hypothesis.

80

4. Case of M = M, B:

II;
M, :VX.A
MlB . A[X = B]

where m = m;(VX.A)(VE)(A[X := B]). Then we have

(VE)

a: A*[X := B*]
(B* a) : 3X.A*
z

(3I)

1
Mtla = (B*a)]: L
where m* = (A[X := B])*(VE)*(3X.A*)r} with order(n*) = order(r) + 1.
5. Case of M = A X.M;:
IT;

M1 . A
AX.M; :VX.A

where 7 = m A(VI)(VX.A). Then we have
[a: AY]

(VI)

2,
a:3X.A* M7: L
let (X,a)=ain M} : L

(3E)
where 7* = (VX.A)*(VI)*A*n} with ord(7*) = ord(w) + 1.

Only-if-part:
Case of len(m*) = 1 where 7 = A*.

In this case, we have M = za, and hence My, = z and 7 = A with ord(r) = 0 and
len(m) = 1.

Case of len(n*) > 1.

We let ,
™ = Ay i1 (Im+n)*A’,"n+n_1 oo Img1)* Apa (Em)*Ay, ... (E2)*AS(E))* A} and M;f =
let {X1,...,Xn, @) =a in (N7,..., N}, a), where N; is either a term or a type.

From 7* and Mp;, we have the following structure as a part of the normal proof of

81

)\3:
N;;’l . _'B;;H—l [a . A:n+1] (E)*
(Nm,a) : A, "
Ny :=Bf (N3,...,Np,a):A; (By)"
z: A} (N$,...,N},a) : A (~E)
la: A} z{N},...,Ny,a): L (Lns)*
[a : A:n+n] -L
* A
a: Apingt 1 (Inin)* (rnin-r)
APENE mrn

where (I;)* is either (AE) or (3E), and (E;)* is either (AI) or (VI). Here, we have
N} : -Bj,, for some Biy; (1 <4 < m)if N; is a term, and then A7 = -Bj; A Aj,,.
Otherwise N; is a type to say A}, and then Ny : —Bj,,; is to be deleted from the
figure and A} = 3X.A%, where A}, = A% [X := A}] for some A}, (1<i<m).

Following the proof of Proposition 4, we have the desired derivation of My : Amyn+1
from that of My, : L as follows:

(a) Case of I-part (A; with 1 <4< m+1):

i. Subcase of N;;, = zpm:
From the A} deduction where A%, = (=B}, .1 A Afy1)

. . *
IL‘m . :n+1 a: Am+1
(Tm,a) : A,

(/\Ivar)

we have the A\2 deduction with (Bp41 = Amt1) = Am

Zm : Bmy1 = Ayl Tm : B (é E)
ZmTm : Amy1

ii. Subcase of N, = Aa.Pp;:
From the A} deduction where A}, = (=B} 1 A Afp1)

. *
a: Bm+1

P,:1 a: A
(Aa.Pm,a) : A,

(/\I,\)

we have the A2 deduction with (Bpt1 = Am+t1) = Am

Zm : By = Apa P};‘g : By
sz!n tAmi

(= E)

iil.

iv.

82

Subcase of N}, = A
From the A\ deduction where Ay, ., = A%, [X := A%) and A% = 3X. A,

a:An
(Ar,a) : 3X AL,
we have the A2 deduction with VX.A; ., = Anand Aj, (X := A] = Ay

Zm VXAl
ZmAy, AL [X = Al

€Y

(VE)

Subcase of Ny = z;:
From the A} deduction where A} = (—Bj A A%)
a: AL

zy: B3 (NZ"‘,,_.’]'V;,@ A3
(z1,N3,...,N& a) : A (Ayar)

we have the A2 deduction with (B, = Ay) = 4,

z2:A2

z21: By = Ay sr:l:Bz(

212y A2 = E)

and ZQNz e Nm . Am+1

and hence,
21:Bo= Ay 11: By (
21T AQ

= F)

(Zlm'l)Ng oo Nm . Am+1

Subcase of NJ = Aa.P:
From the A} deduction where A} = (=B} A A3)

a: B; a:An
Pl (N3... Nia):43 (AL
<AG.P1,N;,---1N;;1,’G> : A; ’\)

we have the A\2 deduction with (B = Ap) = A,

z1: By = A, Pf:Bg 2 I.Az

21P1” : Am+1

(= E) :
and zNy...Np: App

and hence,
z1: By = A, Plu:B2

Zle . A2

(= E)

(21PY)N;... Ny : A

vi. Subcase of Ny = A}
From the A} deduction where A} = AY[X := A}] and A} = IX. A%

. OA*
a'Am+1

(Ng,...,Nh,a) : AZ[X := A}
(A¥,N3,...,Np,a) 1 XA

(3I)

we have the A2 deduction with VX. A} = A; and Aj[X := Aj]| = A,

2 A
21 : VX.A) 2y

21 A} Ay[X = Al]

(VE) and 22N2 cee Nm : Am+1

and hence,

21 VXA’Q
7 Al AQ[X = Al

(VE)

(214))Ny.. Ny Amat
(b) Case of minimum segment:
From the A7 deduction
a: AL
z: A} (Nl",...,N,",‘l,a) t A

i
o(N}t,...,Ny,a): L (~E)

we have the A2 deduction
T :.Al

IN1...Np: Amat

(c) Case of E-part (4; withm+2<j<m+n+1):
In this case, we have either A} = —Bj_; A Aj_; or A} = 3X.Aj_, from the
deduction of My, : L.

i. Case of A}, , =By ANA
From the A7 deduction

. A*
a-f_lm+1

a: A,y z(N,...,Nia):L
let (z,,a) =a in z(N},...,Ny,a): L

(AE)

we have the A2 deduction with Bpr1 = Api1 = Ams2

$N1 e Nm . Am+1
ALy :Bp.zNi... Ny : By = Amt1

(=1

83

ii. Case of A;‘n§r2 =3X,.A47,
From the Aj; deduction

a: A:"'*'l
a:Ay.o m?N{‘,...,N;';,,a) i1 @E)
let (Xn,a) = a in o(N},...,N},a): L ‘
we have the A2 deduction with VX,,. A1 = Amt2 |

.’BNl .o .Nm : Am+1
AXn.CL'Nl v Nm . VXn.Am+1

(VI)

ili. Other cases are confirmed similarly. Finally, we have the stated property
for the deduction of Myps = Ax1.... Axn.ZN1 ... Np : Appgne1.

5 Concluding Remarks

The target calculus A3 can be regarded as a subsystem of A2, in the sense of the impredica-
tive encoding of L, A and 3. Along the line of Theorem 2, we have a correspondence such
that I' -y M : A for some M € A2 if and only if -I',a: A* Fys P: L for P € Univ, which
itself does not imply the undecidability of the inhabitation of A>. We conjecture that the
inhabitation problem of A7 is decidable, which remains open.

In the previous conference version [4], we have provided yet another call-by-name CPS-
translation. For the theorem (proof duality), we have introduced the notion of dual paths,
where dual paths form a duality with respect to the so-called paths. On the other hand,
this paper introduced much simpler CPS-translation for the extensional A2-calculus, and

derived a natural form of proof duality. The simple framework can serve as an basis for
~ extensions with control operators, recursions, and so on. For instance, this framework
has been applied for analyzing parametricity in the classical system Au-calculus [9] (A2
plus control operators) in [6]. This CPS-translation is sound and complete with respect
to the equational Bn-theory of the Au-calculus, whose syntactic analysis will appear in a
forthcoming paper with Masahito Hasegawa.

References

[1] R. Backhouse: Galois Connections and Fixed Point Calculus, Lecture Notes in Com-
puter Science 2297 (2002) 89-150.

[2] O. Danvy and J. L. Lawall: Back to Direct Style II: First-Class Continuations, Proc.
of the ACM Conference on Lisp and Functional Programming (1992) 299-310.

[3] K. Fujita: A sound and complete CSP-translation for Au-Calculus, Lecture Notes in
Computer Science 2701 (2003) 120-134.

[4] K. Fujita: Galois embedding from polymorphic types into existential types, Lecture
Notes in Computer Science 3461 (2005) 194-208.

[5] K. Fujita: Galois embedding from universal types into existential types —extended
abstract—, Kyoto University RIMS Kokyuroku 1503 (2006) 121-128.

[6] M. Hassegawa: Relational parametricity and control (extended abstract), Proc. Logic
in Computer Science (2005) 72-81.

[7] J. C. Mitchell and G. D. Plotkin: Abstract types have existential type, Proc. the 12th
Annual ACM Symposium on Principles of Programming Languages (1985) 37-51.

[8] A. Melton, D. A. Schmidt, G. E. Strecker: Galois Connections and Computer Science
Applications, Lecture Notes in Computer Science 240 (1986) 299-312.

[9] M. Parigot: Au-Calculus: An Algorithmic Interpretation of Classical Natural Deduction,
Lecture Notes in Computer Science 624 (1992) 190-201.

[10] G. Plotkin: Call-by-Name, Call-by-Value and the A-Calculus, Theoretical Computer
Science 1 (1975) 125-159.

[11] D. Prawitz: NATURAL DEDUCTION, A Proof Theoretical Study,
ALMQVIST&WIKSELL, Stockholm, 1965.

[12] H. A. Priestley: Ordered Sets and Complete Lattices, A Primer for Computer Science,
Lecture Notes in Computer Science 2297 (2002) 21-78.

[13] J. C. Reynolds: The discoveries of continuation, Lisp and Symbolic Computation 6
(1993) 233-247.

[14] P. Selinger: Control Categories and Duality: on the Categorical Semantics of the
Lambda-Mu Calculus, Math. Struct. in Compu. Science 11 (2001) 207-260.

[15] A. Sabry and M. Felleisen: Reasoning about Programs in Continuation-Passing Style,
LISP AND SYMBOLIC COMPUTATION: An International Journal 6 (1993) 289-360.

[16] A. Sabry and Ph. Wadler: A Reflection on Call-by-Value, ACM Transactions on
Programming Languages and Systems 19-6 (1997) 916-941.

[17] Ph. Wadler: Call-by-value is dual to call-by-name, International Conference on Func-
tional Programming, August 25-29, Uppsala, 2003.

85

