Concrete examples of operator monotone functions obtained

by only applying Löwner-Heinz inequality

```
東京理科大学 古田孝之 (Takayuki Furuta)
Tokyo University of Science
```

§1. Introduction

A capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \ge 0$) if $(Tx, x) \ge 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by T > 0) if T is positive and invertible. A real valued continuous function f(t) on $(0, \infty)$ is said to be operator monotone if $f(A) \ge f(B)$ holds for any $A \ge B$.

K. Löwner [10] had established the deep theory on operator monotone functions and also he had given a definitive characterization of operator monotone functions as follows.

Theorem L (K. Löwner.) A function $f: (0, \infty)$ is operator monotone in $(0, \infty)$ if and only if it has the representation

$$f(t) = a + bt + \int_0^\infty \frac{t}{t+s} dm(s)$$

with $a \in \mathbb{R}$ and $b \ge 0$ and a positive measure m on $(0, \infty)$ such that

$$\int_0^\infty \frac{dm(s)}{1+s} < +\infty.$$

Next we state the Löwner-Heinz inequality which is quite useful tool in this paper.

Theorem LH (Löwner-Heinz inequality). (LH) t^{α} is an operator monotone function for any $\alpha \in [0, 1]$. Let $\alpha_j, \beta_j, \gamma_j, ... \in [0, 1]$ for j = 1, 2, ..., n. Then the following (LH-1) and (LH-2) are immediate consequences of (LH). (LH-1) $\left(\frac{1}{t^{\alpha_1} + ... + t^{\alpha_n}} + \frac{1}{t^{\beta_1} + ... + t^{\beta_n}} + \frac{1}{t^{\gamma_1} + ... + t^{\gamma_n}} + ...\right)^{-1}$ is an operator monotone function, in particular, $(t^{-\alpha_1} + t^{-\alpha_2} + ... + t^{-\alpha_n})^{-1}$ is an operator monotone function. (LH-2) $(1 + t^{-1})^{-\alpha_1} + (1 + t^{-1})^{-\alpha_2} + ... + (1 + t^{-1})^{-\alpha_n}$ is an operator monotone function.

Although (LH) of the Theorem LH was originally proved by Theorem L [10] and secondly by Heinz [6], Pedersen [11] gave an elegant proof of Theorem LH without appealing to Theorem L and also Bhatia [2, Theorem V.1.9] has given a nice different proof of Theorem LH without appealing to Theorem L (also see Bhatia [3, Theorem 4.2.1]). In this short paper, we study concrete examples of operator monotone functions obtained by only applying Theorem LH without appealing to Theorem L and also we give an elementary proof of Theorem A ([4][7]) stated in §3 by only applying Theorem LH.

We state the following obvious result.

Lemma 1.
(1.1) If
$$T \ge 0$$
, then $T^{\frac{k}{n}} - I = (T^{\frac{1}{n}} - I)(T^{\frac{k-1}{n}} + T^{\frac{k-2}{n}} + ... + T^{\frac{1}{n}} + I)$
for any natural number n and k such that $1 \le k \le n$, in particular
If $T \ge 0$, then $T - I = (T^{\frac{1}{n}} - I)(T^{1-\frac{1}{n}} + T^{1-\frac{2}{n}} + ... + T^{\frac{1}{n}} + I)$
for any natural number n .
(1.2) $\lim_{n \to \infty} n(T^{\frac{1}{n}} - I) = \log T$ holds for any $T > 0$.

§2. Concrete examples of operator monotone functions derived from $\lim_{n\to\infty} n(T^{\frac{1}{n}} - I) = \log T$ and Löwner-Heinz inequality

Theorem 2.1. (i) $f(t) = \frac{1}{(1+t)\log(1+\frac{1}{t})}$ is an operator monotone function. (ii) $g(t) = t(1+t)\log(1+\frac{1}{t})$ is an operator monotone function. Proof. Let $A \ge B > 0$. (i). We have only to show the following (2.1) on order to (i) (2.1) $\frac{I}{(I+A)\log(I+A^{-1})} \ge \frac{I}{(I+B)\log(I+B^{-1})}$. By easy calculations, we have $\frac{I}{(I+A)n\{(I+A^{-1})^{\frac{1}{n}}-I\}} = \frac{I+A^{-1}-I}{(I+A^{-1})n\{(I+A^{-1})^{\frac{1}{n}}-I\}}$ $= \frac{\{(I+A^{-1})^{\frac{1}{n}}-I\}\{(I+A^{-1})^{-\frac{1}{n}}+(I+A^{-1})^{1-\frac{2}{n}}+...+(I+A^{-1})^{\frac{1}{n}}+I\}}{(I+A^{-1})n\{(I+A^{-1})^{\frac{1}{n}}-I\}}$ by (1.1) $= \frac{1}{n}\{(I+A^{-1})^{-\frac{1}{n}}+(I+A^{-1})^{-\frac{2}{n}}+...+(I+A^{-1})^{\frac{1}{n}-1}+(I+A^{-1})^{-1}\}$ $\ge \frac{1}{n}\{(I+B^{-1})^{-\frac{1}{n}}+(I+B^{-1})^{-\frac{2}{n}}+...+(I+B^{-1})^{\frac{1}{n}-1}+(I+B^{-1})^{-1}\}$ by (LH-2) $= \frac{I}{(I+B)n\{(I+B^{-1})^{\frac{1}{n}}-I\}}$

and tending $n \to \infty$, we have (2.1) by (1.2), so the proof of (i) is complete. (ii). By the same way as (i), we have (ii). $\mathbf{58}$

By the same way as the proof of Theorem 2.1, we have the following results and we omit the complete proofs.

Theorem 2.2

(i).
$$f(t) = \frac{t - 1 - \log t}{\log^2 t}$$
 is an operator monotone function.
(ii). $g(t) = \frac{t \log^2 t}{t - 1 - \log t}$ is an operator monotone function.

Remark 2.1. Let f(t) be a continuous function $(0, \infty) \to (0, \infty)$. It is known that f(t) is an operator monotone if and only if $g(t) = \frac{t}{f(t)} = f^*(t)$ is also an operator monotone (for example,[5][8][9]), (i) is equivalent to (ii) in Theorem 2.1, here we can give direct and elementary proofs of (i) and (ii) respectively. Although several examples of operator monotone functions are shown in [9], we state an elementary method to construct concrete examples of operator monotone functions by only applying Theorem LH without appealing to Theorem L.

Theorem 2.3. $f(t) = \frac{t(t+2)}{(t+1)^2} \log(t+2)$ is an operator monotone function. Theorem 2.4. $f(t) = \frac{t(t+1)}{(t+2)\log(t+2)}$ is an operator monotone function. Corollary 2.5.

(i)
$$f(t) = \frac{(t^2 - 1)\log(1 + t)}{t^2}$$
 is an operator monotone function.

(ii)
$$g(t) = \frac{t(t-1)}{(t+1)\log(1+t)}$$
 is an operator monotone function.

§3. Elementary proof of the result that $f_p(t) = \frac{p-1}{p} \left(\frac{t^p-1}{t^{p-1}-1}\right)$ is operator monotone for $-1 \le p \le 2$ by only using Löwner-Heinz inequality

The following Theorem A is shown in [4] by using Bendant-Sharman theorem [1] and also Theorem A is shown in [7] by using Pick functions closely related to Theorem L, and we shall give an elementary proof of Theorem A by only applying Löwner-Heinz inequality without appealing to Theorem L.

Theorem A.
$$f_p(t) = \frac{p-1}{p} \left(\frac{t^p-1}{t^{p-1}-1} \right)$$
 is an operator monotone function for $-1 \le p \le 2$.

 $f_p(t)$ in Theorem A contains several useful means, for example,

$$f_2(t) = \frac{t+1}{2}$$
 (arithmetic mean)

$$f_1(t) = rac{t-1}{\log t}$$
 (logarithmic mean)
 $f_{rac{1}{2}}(t) = \sqrt{t}$ (geometric mean)

 and

$$f_{-1}(t) = \frac{2}{t^{-1} + 1}$$
 (harmonic mean)

At first we state the following fundamental result.

Proposition 3.1. $g_p(t) = \frac{t-1}{t^p-1}$ is an operator monotone function for $p \in (0,1]$.

Proof. We have only to prove the result for $p = \frac{k}{n}$ for natural numbers n and k such that $n \ge k \ge 1$ by continuity of an operator.

$$g_{p}(t) = \frac{t-1}{t^{\frac{k}{n}} - 1} = \frac{(t^{\frac{1}{n}} - 1)(t^{\frac{n-1}{n}} + t^{\frac{n-2}{n}} + \dots + t^{\frac{k}{n}} + t^{\frac{k-1}{n}} + \dots t^{\frac{1}{n}} + 1)}{(t^{\frac{1}{n}} - 1)(t^{\frac{k-1}{n}} + t^{\frac{k-2}{n}} + \dots + t^{\frac{1}{n}} + 1)}$$

$$(*) = 1 + \frac{t^{\frac{n-1}{n}} + t^{\frac{n-2}{n}} + \dots + t^{\frac{k}{n}}}{t^{\frac{k-1}{n}} + t^{\frac{k-2}{n}} + \dots + t^{\frac{1}{n}} + 1}$$

$$= 1 + \frac{1}{t^{\frac{k-1}{n}} + t^{\frac{k-2}{n}} + \dots + t^{\frac{1}{n}} + 1} \sum_{l=1}^{n-k} t^{\frac{n-l}{n}}$$

$$= 1 + \left(t^{\frac{-(n-k)}{n}} + t^{\frac{-(n-k+1)}{n}} + \dots + t^{\frac{-(n-1)}{n}}\right)^{-1} + \left(t^{\frac{-(n-k-1)}{n}} + t^{\frac{-(n-k)}{n}} + \dots + t^{\frac{-(n-2)}{n}}\right)^{-1}$$

$$+ \dots + \left(t^{\frac{-1}{n}} + t^{\frac{-2}{n}} + \dots + t^{\frac{-k}{n}}\right)^{-1}$$

so that $g_p(t)$ is an operator monotone function by (LH-1). \Box

For the proof of Theorem A, it suffices to prove the result for all rational numbers $p \in [-1, 2]$ by continuity of an operator by using Proposition 3.1. We omit its proof.

We remark that $f_{\frac{1}{2}-d}(t)$ and $f_{\frac{1}{2}+d}(t)$ are both operator monotone for $0 \le d \le \frac{3}{2}$ by Theorem A and it is easily verified that $f_{\frac{1}{2}-d}(t) = \frac{t}{f_{\frac{1}{2}+d}(t)}$ holds.

The complete version of this paper will appear elsewhere with proofs.

References

[1] J.Bendat and S.Sherman, Monotone and convex operator functions,, Trans. Amer. Math. Soc., **79**(1955), 58-71.

[2] R.Bhatia, Matrix Analysis, GTM 169, Springer-Verlag, New York, 1997.

[3] R.Bhatia, Positive Definite Matrices, Princeton Univ. Press, 2007 (in press).

 [4] J.I.Fujii and Y.Seo, On parametrized operator means dominated by power ones, Sci. Math., 1(1998), 301-306.

[5] F. Hansen and G.K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann., 258(1982),229-241.

 [6] E.Heinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann., 123(1951), 415-438.

[7] F.Hiai and H.Kosaki, Means for matrices and comparison of their norms, Indiana Univ. Math. J., 48(1999), 899-936.

[8] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.

[9] M.K. Kwong, Some results on matrix monotone functions, Linear Alg and Appl., 118(1989), 129-153.

[10] K. Löwner, Über monotone MatrixFunktionen, Math. Z., 38(1934), 177-216.

[11] G.K.Pedersen, Some operator monotone functions, Proc. Amer.Math. Soc., 36(1972), 309-310.

> Department of Mathematical Information Science Tokyo University of Science 1-3 Kagurazaka, Shinjukuku Tokyo 162-8601 Japan e-mail: furuta@rs.kagu.tus.ac.jp