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\S 1. Introduction

A capital letter means a bounded linear operator on a complex Hilbert space $H$ . An
operator $T$ is said to be positive (denoted by $T\geq 0$ ) if $(Tx, x)\geq 0$ for all $x\in H$ and
also an operator $T$ is said to be strictly positive (denoted by $T>0$) if $T$ is positive and
invertible. A real valued continuous function $f(t)$ on $(0, \infty)$ is said to be operator monotone
if $f(A)\geq f(B)$ holds for any $A\geq B$ .

K. L\"owner [10] had established the deep theory on operator monotone functions and also
he had given a definitive characterization of operator monotone functions as follows.

Theorem $\mathrm{L}$ (K. L\"owner.) A function $f.\cdot(0, \infty)$ is operator monotone in $(0, \infty)$ if and
only if it has the representation

$f(t)=a+bt+ \int_{0}^{\infty}\frac{t}{t+s}dm(s)$

with $a\in \mathbb{R}$ and $b\geq 0$ and a positive measure $m$ on $(0, \infty)$ such that

$\int_{0}^{\infty}\frac{dm(s)}{1+s}<+\infty$.
Next we state the L\"owner-Heinz inequality which is quite useful tool in this paper.

Theorem LH (L\"owner-Heinz inequality).
$(\mathrm{L}\mathrm{H})t^{\alpha}$ is an operator monotone function for any $\alpha\in[0,1]$ .
Let $\alpha_{j},$

$\beta_{j},$
$\gamma_{j},$ $\ldots\in[0,1]$ for $j=1,2,$ $\ldots,$

$n$ . Then the following (LH-1) and (LH-2) are
immediate consequences of $(\mathrm{L}\mathrm{H})$ .
(LH-1) $( \frac{1}{t^{\alpha_{1}}+..+t^{\alpha_{\hslash}}}+\frac{1}{t^{\beta_{1}}+..+t^{\beta_{n}}}+\frac{1}{t^{\gamma_{1}}+..+t^{\gamma_{n}}}+\ldots)^{-1}$ is an operator mono-
tone function, in particular, $(t^{-}" +t^{-\alpha_{2}}+\ldots+t^{-\alpha_{\hslash}})^{-1}$ is an operator monotone

function.
(LH-2) $(1+t^{-1})^{-\alpha_{1}}+(1+t^{-1})^{-\alpha_{2}}+...$ $+(1+t^{-1})^{-\alpha_{n}}$ is an operator

$monotone|$
function.

Although $(\mathrm{L}\mathrm{H})$ of the Theorem LH was originally proved by Theorem $\mathrm{L}[10]$ and secondly
by Heinz [6], Pedersen [11] gave an elegant proof of Theorem LH without appealing to
Theorem $\mathrm{L}$ and also Bhatia [2, Theorem V. 1.9] has given a nice different proof of Theorem
LH without appealing to Theorem $\mathrm{L}$ (also see Bhatia [3, Theorem 4.2.1]).
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In this short paper, we study concrete examples of operator monotone functions ob-
tained by only applying Theorem LH without appealing to Theorem $\mathrm{L}$ and also we give an
elementary proof of Theorem A $([4][7])$ stated in \S 3 by only applying Theorem $\mathrm{L}\mathrm{H}$ .

We state the following obvious result.

Lemma 1.

(1.1) If $T\geq 0$ , then $T^{\frac{k}{\iota}},-I=(T_{\hslash-}^{\perp}I)(T^{\frac{k-1}{n}}+T^{\frac{k-2}{n}}+\ldots+T^{\frac{1}{n}}+I)$

for any natural number $n$ and $k$ such that $\mathit{1}\leq k\leq n$ , in particular

If $T\geq 0_{f}$ then $T-I=(T^{\frac{1}{n}}-I)$ ( $T^{1}$ -ft $+T^{1}$-ft $+\ldots+\tau_{n}^{\perp}+I$)

for any natural number $n$ .
(1.2) $\lim_{narrow\infty}n(T^{\frac{1}{n}}-I)=\log TholdsforanyT>0$ .

\S 2. Concrete examples of operator monotone functions derived from
$\lim_{narrow\infty}n(T^{\frac{1}{n}}-I)=\log T$ and L\"owner-Heinz inequality

Theorem 2.1.
(i) $f(t)= \frac{\mathrm{l}}{(1+t)\log(1+\frac{1}{t})}$ is an operator monotone function.

(ii) $g(t)=t(1+t) \log(1+\frac{1}{t})$ is an operator monotone function.
Proof. Let $A\geq B>0$ .

(i). We have only to show the following (2.1) on order to (i)
(2.1) $\frac{I}{(I+A)\log(I+A^{-1})}\geq\frac{I}{(I+B)\log(I+B^{-1})}$ .

B.y easy calculations, we have

$\frac{I}{(I+A)n\{(I+A^{-1})^{\frac{1}{n}}-I\}}=\frac{I+A^{-1}-I}{(I+A^{-1})n\{(I+A^{-1})^{\frac{1}{n}}-I\}}$.
$= \frac{\{(I+A^{-1})^{\frac{1}{n}}-I\}\{(I+A^{-1})^{1-\frac{1}{n}}+(I+A^{-1})^{1-}n+\ldots+(zI+A^{-1})^{\perp}n+I\}}{(I+A^{-1})n\{(I+A^{-1})^{\frac{1}{n}}-I\}}$ by (1.1)

$= \frac{1}{n}\{(I+A^{-1})^{-\frac{1}{n}}+(I+A^{-1})^{-_{n}}+\ldots+(I+A^{-1})^{\frac{1}{n}-1}+(I+A^{-1})^{-1}\}\mathrm{z}$

$\geq\frac{1}{n}\{(I+B^{-1})^{-\frac{1}{n}}+(I+B^{-1})^{-\mathrm{Z}}n+\ldots+(I+B^{-1})^{\perp}\hslash^{-1}+(I+B^{-1})^{-1}\}$ by (LH-2)

$= \frac{I}{(I+B)n\{(I+B^{-1})^{1}n-I\}}$

and tending $narrow\infty$ , we have (2.1) by (1.2), so the proof of (i) is complete.

(ii). By the same way as (i), we have (ii).
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By the same way as the proof of Theorem 2.1, we have the following results and we omit
the complete proofs.

Theorem 2.2

(i). $f(t)= \frac{t-\mathrm{l}-\log t}{\log^{2}t}$ is an operator monotone function.

(ii). $g(t)= \frac{t\log^{2}t}{t-1-\log t}$ is an operator monotone function.
Remark 2.1. Let $f(t)$ be a continuous function $(0, \infty)arrow(0, \infty)$ . It is known that $f(t)$

is an operator monotone if and only if $g(t)= \frac{t}{f(t)}=f^{*}(t)$ is also an operator monotone

(for example, $[5][8][9]$ ), $(\mathrm{i})$ is equivalent to (ii) in Theorem 2.1, here we can give direct
and elementary proofs of (i) and (ii) respectively. Although several examples of operator
monotone functions are shown in [9], we state an elementary method to construct concrete
examples of operator monotone functions by only applying Theorem LH without appealing
to Theorem L.

Theorem 2.3. $f(t)= \frac{t(t+2)}{(t+1)^{2}}\log(t+2)$ is an operator monotone function.

Theorem $2.4$ . $.f(t)= \frac{t(t+1)}{(t+2)\log(t+2\rangle}$ is an operator monotone function.
Corollary 2.5.

(i) $f(t)= \frac{(t^{2}-1)\log(1+t)}{t^{2}}$ is an operator monotone function.

(ii) $g(t)= \frac{t(t-1)}{(t+1)\log(1+t)}$ is an operator monotone function.

\S 3. Elementary proof of the result that $f_{p}(t)= \frac{p-1}{p}(\frac{t^{p}-1}{t^{p-1}-1})$ is operator mono-
tone for $–:\leq p\underline{\backslash }l$

’ by only using L\"owner-Heinz inequality

The following Theorem A is shown in [4] by using Bendant-Sharman theorem [1] and
also Theorem A is shown in [7] by using Pick functions closely related to Theorem $\mathrm{L}$ , and
we shall give an elementary proof of Theorem A by only applying L\"owner-Heinz inequality

without appealing to Theorem L.

Theorem A. $f_{\mathrm{p}}(t)= \frac{p-1}{p}(\frac{t^{p}-1}{t^{p-1}-1})$ is an operator monotone function $for-1\leq p\leq 2$ .

$f_{p}(t)$ in Theorem A contains several useful means, for example,

$f_{2}(t)= \frac{t+1}{2}$ (arithmetic mean)
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$f_{1}(t)= \frac{t-1}{\log t}$ (logarithmic mean)

$f_{\frac{1}{2}}(t)=\sqrt{t}$ (geometric mean)

and

$f_{-1}(t)= \frac{2}{t^{-1}+1}$ (harmonic mean)

At first we state the following fundamental result.

Proposition 3.1. $g_{p}(t)= \frac{t-1}{t^{\mathrm{p}}-1}$ is an operator monotone function for $p\in(\mathrm{O}, 1]$ .

Proof. We have only to prove the result for $p= \frac{k}{n}$ for natural numbers $n$ and $k$ such
that $n\geq k\geq 1$ by continuity of an operator.

$g_{\mathrm{p}}(t)= \frac{t-1}{t^{\frac{k}{n}}-1}=\frac{(t^{\frac{1}{\hslash}}-1)(t^{\frac{n-1}{n}}+t^{\frac{n2}{n}}+\ldots+t^{\frac{k}{n}}.+t^{\frac{k-1}{n}}+\ldots t^{\frac{1}{n}}+1)}{(t_{\hslash}^{1}-1)(t^{\frac{k=1}{n}}+t^{\frac{k-2}{n}}+..+t^{\frac{1}{n}}+1)}$

$(^{*})$ $=1+ \frac{t^{\frac{n-1}{n}}+t^{\frac{n-2}{n}}+.\cdots+t^{\frac{k}{n}}}{t^{\frac{k-1}{n}}+t^{\frac{k-2}{n}}+..+t^{\frac{1}{n}}+1}$

$=1+ \frac{1}{t^{\frac{k-1}{n}}+t^{\frac{k-2}{n}}+\ldots+t^{\frac{1}{n}}+1}\sum_{l=1}^{n-k}t^{\frac{n-\iota}{n}}$

$=1+(t^{\frac{-\langle n-k)}{\hslash}}+t^{\frac{-(n-k+1)}{n}}+\ldots+t^{\frac{-(n-1)}{n}})^{-1}+(t^{\frac{-(n-\mathrm{k}-1)}{n}}+t^{\frac{-(n-k)}{n}}+..*+t^{\frac{-(n-2)}{n})^{-1}}$

$+\ldots+(t^{\frac{-1}{n}}+t^{\frac{-2}{n}}+\ldots+t^{\frac{-k}{n})^{-1}}$

so that $g_{p}(t)$ is an operator monotone function by (LH-1). $\square$

For the proof of Theorem $\mathrm{A}$ , it suffices to prove the result for all rational numbers
$p\in[-1,2]$ by continuity of an operator by using Proposition 3.1. We omit its proof.

We remark that $f_{\frac{1}{2}-d}(t)$ and $f_{\frac{1}{2}+d}(t)$ are both operator monotone for $0 \leq d\leq\frac{:}{2}$
, by

Theorem A and it is easily verified that $f_{\frac{1}{2}-d}(t)= \frac{t}{f_{1}(t)\mathrm{B}^{+d}}$ holds.

The complete version of this paper will appear elsewhere with proofs.
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