Matrix functions and unitarily invariant norms (行列関数とユニタリ不変ノルム)

Mitsuru Uchiyama (内山 充)
Shimane University (島根大学総合理工学部)

1 Introduction

The eigenvalues of an $n \times n$ Hermitian matrix H are denoted by $\lambda_i(H)$ $(i = 1, 2, \dots, n)$ and arranged in increasing order, that is, $\lambda_1(H) \leq \lambda_2(H) \leq \dots \leq \lambda_n(H)$.

$$\sigma_{(k)}(H) := \sum_{i=1}^{k} \lambda_i(H),$$

$$\sigma^{(k)}(H) := \sum_{i=n-k+1}^{n} \lambda_i(H).$$

A norm $\|\cdot\|$ on the $n \times n$ matrices is called a *unitarily invariant norm* if

$$|\!|\!| UXV |\!|\!| = |\!|\!| X |\!|\!|$$

for all X and for all unitary matrices U and V.

Example 1.1 The following are tipical unitarily invariant norm:

The operator norm ||X||,

Schatten p-norms $||X||_p := \{ \sum_{i=1}^n \lambda_i (|X|)^p \}^{1/p}, (p \ge 1),$

Ky Fan k-norms
$$||X||_{(k)} := \sigma^{(k)}(|X|), (k = 1, 2, \dots, n).$$

The following useful result is due to Ky Fan:

 $||X||_{(k)} \leq ||Y||_{(k)} (\forall k)$ implies $||X|| \leq |||Y||$ for every unitarily invariant norm $|||\cdot|||$.

We begin with a simple fact:

Proposition 1.1 Let f(t) be a concave function on an interval I, and let A, B be $n \times n$ Hermitian matrices with the spectra in I. Then for R, S such that $R^*R + S^*S = 1$ and for $k = 1, 2, \dots, n$

$$\sigma_{(k)}(f(R^*AR + S^*BS)) \ge \sigma_{(k)}(R^*f(A)R + S^*f(B)S).$$

Moreover, if f(t) is monotone, then

$$\lambda_k(f(R^*AR + S^*BS)) \ge \lambda_k(R^*f(A)R + S^*f(B)S).$$

Proof. Let $\{\lambda_i\}_{i=1}^n$ be the eigenvalues of $X^*AX + Y^*BY$ so that $f(\lambda_1) \leq f(\lambda_2) \leq \cdots \leq f(\lambda_n)$, and let $\{\mathbf{e}_i\}$ be the corresponding eigenvectors. Then the left side of (??) equals $f(\lambda_1) + \cdots + f(\lambda_k)$. By the concavity of f, we have

$$\begin{split} &\sum_{i=1}^{k} \langle (X^*f(A)X + Y^*f(B)Y)\mathbf{e}_i, \mathbf{e}_i \rangle \\ &= \sum_{i=1}^{k} \{ \|X\mathbf{e}_i\|^2 \langle f(A) \frac{X\mathbf{e}_i}{\|X\mathbf{e}_i\|}, \frac{X\mathbf{e}_i}{\|X\mathbf{e}_i\|} \rangle + \|Y\mathbf{e}_i\|^2 \langle f(B) \frac{Y\mathbf{e}_i}{\|Y\mathbf{e}_i\|}, \frac{Y\mathbf{e}_i}{\|Y\mathbf{e}_i\|} \rangle \} \\ &\leq \sum_{i=1}^{k} \{ \|X\mathbf{e}_i\|^2 f(\langle A \frac{X\mathbf{e}_i}{\|X\mathbf{e}_i\|}, \frac{X\mathbf{e}_i}{\|X\mathbf{e}_i\|} \rangle) + \|Y\mathbf{e}_i\|^2 f(\langle B \frac{Y\mathbf{e}_i}{\|Y\mathbf{e}_i\|}, \frac{Y\mathbf{e}_i}{\|Y\mathbf{e}_i\|} \rangle) \} \\ &\leq \sum_{i=1}^{k} f(\langle (X^*AX + Y^*BY)\mathbf{e}_i, \mathbf{e}_i \rangle) = \sum_{i=1}^{k} f(\lambda_i). \end{split}$$

Thus, by the min-max theorem, we get the first inequality.

If f(t) is increasing, we can arrange eigenvalues $\{\lambda_i\}_{i=1}^n$ as $\lambda_i \leq \lambda_{i+1}$ and $f(\lambda_i) \leq f(\lambda_{i+1})$. For any unit vector \mathbf{x} that is a linear combination of $\mathbf{e}_1, \dots, \mathbf{e}_k$

$$\langle (X^*f(A)X + Y^*f(B)Y)\mathbf{x}, \mathbf{x} \rangle \leq f(\langle (X^*AX + Y^*BY)\mathbf{x}, \mathbf{x} \rangle)$$

 $\leq f(\lambda_k),$

for $\langle (X^*AX + Y^*BY)\mathbf{x}, \mathbf{x} \rangle \leq \lambda_k$. From this, the second inequality follows. It can be similarly shown even if f(t) is decreasing.

Corollary 1.2 Let g(t) be a convex function on I. Then for $1 \le k \le n$ and for all R, S such that $R^*R + S^*S = 1$

$$\sigma^{(k)}(g(R^*AR + S^*BS)) \le \sigma^{(k)}(R^*g(A)R + S^*g(B)S).$$

Moreover, if g(t) is monotone,

$$\lambda_k(g(R^*AR + S^*BS)) \le \lambda_k(R^*g(A)R + S^*g(B)S).$$

Remark: The case k = n of the first inequality in the corollary had been shown by Brown-Kosaki, Hansen-Pedersen.

The second inequality was shown by Bourin.

The case where R, S are scalars are due to Aujla-Silva.

2 Essential results

It is well known that $trBA^2B = trAB^2A$. But it is difficult to estimate

$$trCBA^2BC - trCAB^2AC$$
.

J. C. Bourin [5] got a nice result to do it. The next special case follows from it, however we can give a simple and direct proof.

Lemma 2.1 Let $A \ge 0$ and $B \ge 0$, and let Q be an orthogonal projection such that QB = BQ. If

$$\inf\{\|B\mathbf{x}\| : Q\mathbf{x} = \mathbf{x}, \|\mathbf{x}\| = 1\}$$

$$\ge \sup\{\|B\mathbf{x}\| : (1 - Q)\mathbf{x} = \mathbf{x}, \|\mathbf{x}\| = 1\},$$

then

$$trQBA^2BQ \ge tr QAB^2AQ,$$
 $tr(1-Q)AB^2A(1-Q)$ $\ge tr(1-Q)BA^2B(1-Q).$

Corollary 2.2 Let $A \ge 0$ and $B \ge 0$, and let Q be an orthogonal projection such that QB = BQ.

Suppose the strict inequality:

$$\inf\{\|B\mathbf{x}\|: Q\mathbf{x} = \mathbf{x}, \|\mathbf{x}\| = 1\} > \sup\{\|B\mathbf{x}\|: (1-Q)\mathbf{x} = \mathbf{x}.\|\mathbf{x}\| = 1\}.$$

Then

$$tr QBA^2BQ = tr QAB^2AQ \Leftrightarrow QA = AQ.$$

Proposition 2.3 Let h(t) be a continuous function on $[0, \infty)$.

If h(t) is decreasing and th(t) is increasing,

or

if h(t) is increasing and th(t) is decreasing,

then for $A,B \ge 0$ and for every unitarily invariant norm $||\cdot||$

$$||A^{1/2}h(A+B)A^{1/2}+B^{1/2}h(A+B)B^{\frac{1}{2}}|| \ge ||(A+B)h(A+B)||.$$

Corollary 2.4 Let A and B be non-negative Hermitian matrices such that A + B is invertible. Then the following are equivalent:

(i)
$$H := A^{1/2}(A+B)^{-1}A^{1/2} + B^{1/2}(A+B)^{-1}B^{1/2} \le 1$$
,

(ii)
$$H = 1$$
,

(iii)
$$AB = BA$$
.

Remark: We give one fact relevant to the above (i).

$$(A+B)^{-1/2}A^{1/2}A^{1/2}(A+B)^{-1/2} + +(A+B)^{-1/2}B^{1/2}B^{1/2}(A+B)^{-1/2} = 1.$$

3 Applications

We can easily give another proof of

Theorem A. (Ando and Zhan)

Let $f(t) \ge 0$ be an operator monotone function on $[0, \infty)$ such that f(t) is continuous at t = 0. Then

$$|||f(A+B)||| \le |||f(A)+f(B)|| \tag{1}$$

for every unitarily invariant norm $||\cdot||$ and for all $A, B \ge 0$.

Proof We may assume that A+B is invertible. Then, since $(A+B)^{-1/2}A^{1/2}$ is contractive, by Hansen-Pedersen's inequality [7] we have

$$\varphi(A) = \varphi(A^{1/2}(A+B)^{-1/2}(A+B)(A+B)^{-1/2}A^{1/2})$$

$$\geq A^{1/2}(A+B)^{-1/2}\varphi(A+B)(A+B)^{-1/2}A^{1/2},$$

$$\varphi(B) \geq B^{1/2}(A+B)^{-1/2}\varphi(A+B)(A+B)^{-1/2}B^{1/2}.$$

Since $\varphi(t)$ is increasing and $\varphi(t)/t$ is decreasing, by Proposition 2.3 we get

$$\sigma^{(k)}(\varphi(A) + \varphi(B)) \ge \sigma^{(k)}(A^{1/2}(\varphi/t)(A+B)A^{1/2} + B^{1/2}(\varphi/t)(A+B)B^{1/2})$$

$$\ge \sigma^{(k)}(\varphi(A+B)) \quad (1 \le k \le n).$$

Also we can get the following generalization of (1),

For
$$A_i \ge 0$$
 $(1 \le i \le k)$

$$|||f(\sum_{i=1}^{k} A_i)||| \leq |||\sum_{i=1}^{k} f(A_i)|||$$

Let f(t) be a non-negative concave function on $0 \le t < \infty$. The following is known:

Theorem B (Rotfel'd [9]) (see also [10, 6, 4, 5])

For $A, B \geq 0$

$$||f(A+B)||_1 \le ||f(A)||_1 + ||f(B)||_1.$$

We will extend this to every unitarily invariant norm.

Theorem 3.1 ([12])

$$||f(|X+Y|)|| \le ||f(|X|)|| + ||f(|Y|)|| \quad (\forall X, Y).$$

for every unitarily invariant norm $\|\cdot\|$.

Now we can slightly improve this as follows:

Theorem 3.2 Let f be a non-negative (not necessarily continuous) concave function defined on $[0, \infty)$, and let $\{X_i\}(i = 0, 1, \dots, k)$ be a finite set of matrices. Then there are unitary matrices $U_i(i = 1, \dots, k)$ such that the inequality

$$\| f(|X_0 + X_1 + \cdots + X_k|) \| \le$$

$$|| f(|X_0|) + U_1^* f(|X_1|) U_1 + \dots + U_k^* f(|X_k|) U_k ||$$

holds for every unitarily invariant norm.

References

- [1] T. Ando, Comparison of norms |||f(A) f(B)||| and |||f(|A B|)|||, Math. Z.,197(1988),403-409.
- [2] T. Ando, X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann., 315(1999)771-780.
- [3] J. S. Aujla, F. C. Silva, Weak majorization inequalities and convex functions, Linear Alg. App., 369(2003),217–233.
- [4] R. Bhatia, Matrix Analysis, Springer, 1996.

- [5] J. C. Bourin, Some inequalities for norms on matrices and operators, Linear Alg. Appl., 292(1999) 139-154.
- [6] L. Brown H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras. J. Operator Theory 23 (1990), no. 1, 3–19.
- [7] F. Hansen, G. K. Pedersen, Jensen's inequality for operators and Löwner's theore m, Math. Ann., 258 (1982), 229–241.
- [8] E. Lieb, H. Siedentop, Convexity and concavity of eigenvalue sums, J. Statistical Physics, 63(1991)811-816.
- [9] S. Y. Rotfel'd, Remarkes on the singular numbers of a sum of completely continuous operators, Functional Anal. Appl., 1(1967), 252–253.
- [10] R. C. Thompson, Convex and concave functions of singular values of matrix sums, Pacific J. of Math.,66(1976) 285-290.
- [11] M. Uchiyama, Inverse functions of polynomials and orthogonal polynomials as operator monotone functions, Trans. of A.M.S., 355 (2004),4111–4123
- [12] M. Uchiyama, Subadditivity of eigenvalue sums, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1405–1412