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Matrix functions and unitarily invariant norms
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1 Introduction

The éigenvalues of an n xn Hermitian matrix H are denoted by \;(H) (i =
1,2,---,n) and arranged in increasing order, that is,
 M(H) S Xo(H) S - S 0a(H).

ow(H) =Y \(H),

i=1
n

JB(H) = Y XN(H).

i=n—k+1
A norm || - || on the n x n matrices is called a unitarily invariant norm if
IUXV] = I x]
for all X and for all unitary matrices U and V.

Example 1.1 The following are tipical unitarily invariant norm:
The operator norm || X/, |
Schatten p-norms || X, i= {Z0, A(IXIPH/2, (p 2 1),
Ky Fan k-norms || X || 1= c®(X]), (k=1,2,---,n).
| The following useful result is due to Ky Fan:
[ Xlgey = 1Yl x)(Vk) impies |X|| < |Y|| for every unitarily invariant norm

We begin with a sirnple fact:



Proposition 1.1 Let f(t) be a concave function on an interval I, and let
A, B be n X n Hermitian matrices with the spectra in I. Then for R, S such

that R*"R+S*S=1landfork=1,2,---,n
ow(f(R"AR+ §"BS)) 2 o(R' f(A)R + §"(B)S).
Moreover, if f(¢) is monotone, then
M(f(R*AR+ S*BS)) 2 M\ (R*f(A)R + S*f(B)S).

Proof. Let {\;}, be the eigenvalues of X*AX + Y*BY so that f()\1) <
f(A2) £ --- £ f(An), and let {e;} be the corresponding eigenvectors. Then
the left side of (??) equals f(\;) + -+ + f(Ax). By the concavity of f, we

have
k
D (X H(AX +Y"f(B)Y )ei,e:)

k
— 112 Xe; Xe 12 Ye; Yey

k
12 Xe; Xe; 112 Ve Ye;
S {lIXel| f(<Al|Xe,-||’ eri“>) +[|Ye|| f((B”Yei“, HYe,-H))}

i=1

HA

IA

k k
Y fU(X*AX +Y*BY)e; &) = > f(\).
=1 i=1

Thus, by the min-max theorem, we get the first inequality.

If f(t) is increasing, we can arrange eigenvalues {\}%; as A £ Aip
and f(\;) < f(Ai+1). For any unit vector x that is a linear combination of
e, - €

(X" f(AX+Y"f(B)Y)x,x) = f{((X"AX +Y"BY)x,x))
S (),

for (X*AX +Y*BY)x, x) § k. From this, the second inequality follows. It

can be similarly shown even if f(t) is decreasing. g

113



Corollary 1.2 Let g(t) be a convex function on I. Then for 1 £ k < n and
for all R, S such that R*R+ S*S =1

o®)(g(R*AR+ $*BS)) < o ®(R*g(A)R + S*g(B)S).
Moreover, if g(%) is monotoné,
M(g(R*AR + S*BS)) < M(R*g(A)R + S*¢(B)S).

' Remark: The case k = 7 of the first inequality in the corollary had been
shown by Brown-Kosaki, Hansen-Pedersen.
The second inequality was shown by Bourin.

The case where R, S are scalars are due to Aujla- Silva.

2 Essential results

It is well known that trBA%B = trAB%A. But it is difficult to estimate

trCBA*BC — trCAB*AC.

J. C. Bourin [5] got a nice result to do it. The next special case follows from

it, however we can give a simple and direct proof.

Lemma 2.1 Let A 2 0 and B 2 0, and let Q be an orthogonal projection
such that QB = BQ. If

inf{||Bx| : @x =x, ||x|| =1}

sup{|| Bx|| : (1 - @)x = x, ||x|| = 1},

v

then

trQBA’BQ 2 tr QABAQ,
tr(1 — Q)AB2A(1 - Q)
tr(1 — Q)BA’B(1 - Q).

v
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Corollary 2.2 Let A 2 0 and B 2 0, and let @ be an orthogonal projection
such that @B = BQ.
Suppose the strict inequality:
inf{ ]| Bx]| : @x = x, x| = 1} > sup{| Bx|| : (1 - Q)x = x.|}x|| = 1}.
Then
tr QBA’BQ = tr QAB%AQ & QA = AQ.

Proposition 2.3 Let h(t) be a continuous function on [0, cc).
If h(t) is decrea,éing and th(t) is increasing,

or

if h(t) is increasing and th(t) is decreasing,

then for A, B 2 0 and for every unitarily invariant norm | - |
I AY2R(A + B)AY? 4+ BY2h(A + B)Bi|| 2 ||(A+ B)h(A + B)].

Corollary 2.4 Let A and B be non-negative Hermitian matrices such that

A + B is invertible. Then the following are eqliiva,lent:
(i) H := AY?(A+ B)"1AY? 4 BY/2(A+ B)'BY? £ 1;
(ii) H =1,
(i) AB = BA.

- Remark: We give one fact relevant to the above (i).

(A+B)y "2 A2 A4+ B)™? + +(A+ B)™/2B'*B/*(A+ By /? = 1.

3 Applications

We can easily give another proof of
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Theorem A. (Ando and Zhan)
Let f(t) 2 0 be an operator monotone function on [0, 00) such that f(t) is

continuous at t = 0. Then

If(A+ Bl = 1/(4) + F(B)] | (1)

for every unitarily invariant norm | - | and for all A, B = 0.

Proof We may assume that A+ B is invertible. Then, since (A+B)~1/2A1/2

is contractive, by Hansen-Pedersen’s inequality [7] we have
@(AY*(A+ B)M*(A+ B)(A+ B)Y/24%/%

AY2(A 4 B)"Y2p(A + B)(A + B)"1/241/2,
p(B) 2 BY*(A+B)V*p(A+ B)(A+B)/2B/2.

v(A)

v

Since ¢(t) is increasing and ¢(t)/t is decreasing, by Proposition 2.3 we get

o (p(4) + 9(B)) 2 o™ (AV3(p/1)(A + B)AV? + B2 (1) A+ B)BY?)
> o®(p(4+B)) (1SkSn).

Also we can get the following generalization of (1),
For A;, 20 (12:i{Zk)

oA S 1) F(Al

t=1

Let f(t) be a non-negative concave function on 0 £ t < co. The following

is known:



Theorem B (Rotfel’d [9]) (see also [10, 6, 4, 5])
For A,B20 |
If(A+ Bl = (1F( Al + I1F(B)ll1-

We will extend this to every unitarily invariant norm.
Theorem 3.1 ([12])

Hf(iX+ YDE= 1F0XDE+IAAYDE (WX, Y).

for every unitarily invariant norm | - || .
Now we can slightly improve this as follows:

Theorem 3.2 Let f be a non-negative (not necessarily continuous) concave

function defined on [0,0), and let {X;}(s = 0,1,--- ,k) be a finite set of

matrices. Then there are unitary matrices U;(¢ = 1,--- , k) such that the
inequality

| F(Xo+ X+ + Xl £

| f(Xl) + UL F(IX2)0L + - + U £ (I XD Uk

holds for every unitarily invariant norm.
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