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SYMMETRIC OPERATOR WORD EQUATIONS

YONGDO LIM

ABSTRACT. Symmetric matrix word equations have recently been the topic of ac-
tive investigation because of their relationship to the Bessis-Moussa-Villani trace -
conjecture, an open conjecture arising from statistical physics. In this paper we
consider infinite dimensional (operator) word equations and show the uniqueness
of positive definite solutions of some word equations via the non-positive curvature
property of Thompson’s part metric on the space of positive definite operators in a
Hilbert space.
For a nonempty alphabet A, we consider the concatenation monoid generalized
words of the form
| W =AD AR - A
where each A; € A and each exponent p; is a real number, subject to the standard
'exponentia.l laws for adjacent powers with a common base. In particular Ag = I, the
identity, for each j. The reversal W* of the word W is the word written in reverse
order, and the word is symmetric (or “palindromic”) if it is equal to its reversal. A
symmetric word equation for A = {X, A, B} is an equation of the form S(X, A) = B
where S(X, A) is a symmetric word in X and A; we further assume that the exponents
of X are all positive, and other exponents are nonnegative.

Definition 1. A symmetric word equation S(X, A) = B is called (uniquely) solvable
if there exists (uniquely) a positive definite solution X of S(X, A) = B for every pair
of positive definite operators A and B on a Hilbert space.

Example 2. The Riccati matriz equation XAX = B is uniquely solvable. It has
a unique positive definite solution, the geometric mean A~#B of A~ and B :
A7MB = ATV AY2BAYV2)2 A2, Gee ([8]-[10]) for more general setting.
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Example 3. The symmetric word equation X (AX)™ = B appears in [4] which has
the unique solution X = A~14 . B, where A#,B = AY?(A~Y2BA-Y2)t A2 denotes
the t-power mean of A and B.

In [6], Hillar and Johnson proved that every symmetric word equation is solvable

for finite-dimensional case and Armstrong and Hillar [1] have recently showed via the
Browner mapping degree that the symmetric word equation of degree 6

XBX’B3X?BX = A (1)

has multiple positive definite solutions for some 3 x 3 positive definite matrices A and
B solving the conjecture negatively, but it has a unique positive definite solution in

2 x 2 real positive definite letters remaining the conjecture open for 2 x 2 positive .

definite matrices.

Theorem 4 (Armstrong and Hillar, [1]). The symmetric word equation (1) is not
uniquely solvable for 3 x 3 positive definite letters, but is uniquely solvable for 2 x 2
real positive definite letters.

In [14], an explicit form of the unique solution of (1) in 2 x 2 real positive definite
letters is given by -
| X = (sB™1 + B~3)#(tI — A)~}
where ¢ > tr(A) and s > 0 are uniquely determined by the simultaneous equations

2
fif:ftr;%) - g — tr([(sB~! + B-8)#(:I — A)~B).
For a Hilbert space E, let B(E) denote the set of bounded linear operators, S (B) C
B(E) the symmetric operators, and  C S(E) the set of positive definite operators
on E. We define a closed positive order on S(E) by A < B if B — A is positive

semidefinite. The Thompson (or part) metric on 2 given by
d(A, B) = max{log M(A/B),log M(B/A)}

M(A/B) := inf{A > 0 : A < AB}. A. C. Thompson [17] (cf. [15]-[16]) has shown
that Q) is a complete metric space with respect to this metric and the corresponding
metric topology on 2 agrees with the relative norm topology. It is easy to see that

d(A, B) = d(A™Y, BY) = d(M"AM, M*BM)
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for any invertible operator M. The Léwner-Heinz ineqﬁality

0<A<B=A'< B, te|0,1]
is equivalent to the following nonpositive curvature property of Thompson’s part
metric (cf. [2], [3], (12}, [13]).
Theorem 5. For A,B,C €,

d(A#:B, A#.C) < td(B,C), t € [0, 1].

Theorem 6. Symmetric word équatz'ons through degree 5 is um'Quely solvable.

Proof. Let S(X, A) = B be a symmetric word equation with degree n < 5. By the
Riccati Lemma (Example 2), we assume that n > 3. If n = 3, then the only non-
trivial equation is XAXAX = B, which has the unique positive definite solution
X = A7'4#,,3B from XAXAX = X(AX)? = B if and only if X = A~14,3B
(Example 3). If n = 4, then up to equivalence it is enough to consider the equations
XAXA™XAX = B and XAX2AX = B. By the Riccati Lemma,
XAXA"XAX =B <= XAX =B#A™ < X = (B#A™)#A™,
XAX’AX =B += (XAX)=B <> XAX = B2 <= X = A" '$4B"2.
Let n = 5. In this case, non-trivial equations (up to equivalence) are XAX3AX = B
and XAXA™XA™XAX = B. Let

F(X) = (B#X)#A™, g(X) = [B#(A"XA™)|#A™.

By the invariance properties and non-positive curvature property, f and g are strict

contractions for the Thompson metric and hence by completeness of the metric have

unique fixed points, respectively. Then the proof follows from (XAX)X(XAX) = B
if and only if XAX = B#X™! if and only if X = (B#X~1)#A~! if and only if X =
£(X), and (XAX)(A™XA™)(XAX) = B if and only if XAX = B#(AmXA™)! if
and only if X = [B#(A™XA™)"1]#A™! if and only if X = g(X). O
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