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On the Oseen semigroup with rotating effect
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Department of Mathematical Sciences, School of Science and Engineering,
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1 Introduction

Consider a rigid body R moving through an incompressible viscous fluid £ that
fills the whole three-dimensional space exterior to R. We assume that with restect
to a frame attached to R, the translational velocity u., and the angular velocity w
of R are both constant vectors. Without loss of generality we may assume that
w =T(0,0,a) 1. If the flow is non-slip at the boundry, then the motion is described
by the following equation:

1) v+v-Vo-Av+Vn=g in Q(r), t>0
dive =0 in Q(1), t>0
Wy, ) =wxy ondQs), t>0
v(Y,t) DU #0 aslyl— o0, >0
vy, 0) =voly) |
in the time-dependent exterior domain
Q1) = O(aH)Q
where O(f) denotes the orthogonal matrix
cost —sinz 0
O(f) =|sint cost 0
0 0 1

and Q is a fixed exterior domain in R? with C!! boundary 6Q.
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Over the last several years, the study of well-posedness of the initial boundary
value problem of (1) and related topics has attracted the attention of several authors;
see, e.g.[1]-[36]. Besides the intrinsic mathematical interest, this is probably also
due to the fact that problem (1) is at the foundation of several important engineering
applications. The interested reader is refered to [11] and to the literature cited
therein. »

To treat (1) in the time-independent domain £, we introduce

) x =0y,
u(x, 1) = O() (v(y, £) = Uoo),
px,0) = n(y, 0

Then, we see that (u, p) satisfies the modified Navier-Stokes equations:

3)  w+u-Vu-Au+(OF) us) - Vu

—(wxx)-Vu+wxu+Vn=f in Q x (0, o0)
divu=0 in Q x (0, 00)
u(x, 1) = wXxXx—-0(u, onadQ x(0,00)
u(x,t) » 0 as x| = o0, >0

u(x, 0) = vo(x)
In this paper, we consider only the case where
U = kes
with e3 = 7(0,0, 1) so that
O us = ke3 forallt> 0.

Therefore, the equation (1) leads to the system:

“) U+ u-Vu— Au + kdzu
~(wxx)-Vu+wxu+Vo=f in Q X (0, 00),
divu=0 in Q x (0, 00),
u(x,t) = w X x-ke; ondQx(0,c0),
u(x,t) - 0 as x| - oo, t>0

u(x,0) = vo(x)

One of the interesting questions is to find the unique existence of physically
reasonable stationary solutions to (4) and to show their stability by initial disturbace
in the L3(Q) framework when the external force f is independent of time variable,
which is an extension of results obtained in [47] to the case where w # 0. But, so
far we could not show the existence of stationary solutions of (4) which behave like



- O((Ix]s(x)¢ )~!) and the gradient of which behave like 0((!x|% s(x)f*‘ )~1) with some
small positive constant € as |x| — oo (cf. [47], [48] in the case where a = 0 and also
Theorem 4 below), where s(x) = |x|+x3. Therefore, in this paper we shall only give
the existence of solutions and their decay properties of the linearized equations,
and assuming the existence of physically reasonable stationary solutions of (4), we
shall state their stability theorem.

The crucial step in proving the stability theorem of stationary solutions is to
show the L,-L, decay estimate of the solutions to the following linearized equa-
tions of (4):

(5) U+ Liqu+ V=0 in Q, t>0,
V-u=0 in Q, t>0,
=0 on T,
U=o=f in Q,
Here,

Lk,au=—Au+k63u—(wxx)-Vu+wxu

-~ w = (0,0,a), k and a are real constants, and 4 = (u;, #2,%3) and & are unknown
velocity field and pressure, respectively. The equation in (§) is written componen-
twise as follows:

on

ouy Ouy ( Ouy Ouy _
g At kaxs afm ax; 6x1) "2 T 0
Ouy Ouy duy Ouy\ on

—2 —2 _gfx) =2 — xy 2% =0
3 Auy + kax3 a(x1 B%2 X2 o1 ) +uy + BJC2

ous Ous Ous -Ous on

ot Auz + k3x3 a(x1 ox; *2 ox; ) * dx; 0

To show the existence of solutions to (5), we use the semigroup approach.
Since the pressure term 7 has no time evolution, we have to eliminate 7 by us-
ing the Helmholtz decomposition. Therefore, at this stage we shall introduce
the Helmholtz decomposition. Let D be one of R}, Q and Qz = Q N Bg
(Br = {x € R® | |x| < R}). Let R be a large number such that Bz_s > R’ \ Q
and 1 < g < oo, Set

LDy ={f = (fi, o A) | fi € Lg(D) (i = 1,2,3)},
JD) =T )
Gy(D) = {Vr | x € W (D))

(D) = {u € Cy(D) | divu = 0 in D)
Wa(D) = {n € Ly 10c(D) | Vir € Ly(DY’, fn ndx = 0}
R



Then, we have the Helmholtz decomposition:
Ly(D)’ = Jy(D)® Gy(D), & : direct sum

(cf. [39], [41], [46], [49]). In fact, given f = (f1, /2, f3) € L,,(D)3 let 7 be a weak
solution to the Laplace equation:

6) , Ar=divf inD, oyr=v-f

‘Here, v = (v1,v2,v3) is the unit outer normal to oD and 8, = v - V. Setting
g = f — Vr, we have the decomposition: f = g + Vr, which is required one. In
particular, we know that

Jy(D)={g € Ly(D) | divg =0 inD, v-glsp = 0}
When f = g + Vr with g € J,(D) and 7 € W}(D), we set
o Ppf=g9, Opf=nm

and therefore Pp : Ly(D)* — Jy(D) and Qp : L(D)* — W}(D) are both bounded
linear operators.

Now, using the Helmholtz decomposition we shall formulate (5) in the
semigoup setting. Let us define the operator Lp by the formula:

Lpu = PpLiqu = Pp(=Au + kO3u — (w X x) - Vu + w X u)
with domain: |
Dy(D) = {u € Jy(D) N W}(D) | ulap = 0, (w X x)-Vu € LyD))

And then, problem (5) is written as follows:

® u+ Lou=0 inJy(Q) fort>0
Ul=o = f
u(t) € Dy(Q) fort>0

One of the significant characters of the operator Lg is that the crucial drift
operator (w X x) - V is never subordinate to the viscous term A and equation (8)
provides both parabolic and hyperbolic features. In fact, the following theorem
was proved by Farwig, Nefasova and Neustupa: [9], [10].

Theorem 1. The essential spectrum of Lq coincides with

| {V=Taj + (1€ C1FRe 2 + (Im 2% > 0))

Jj==co



From Theorem 1, we know that the operator Lq does not generate an analytic
semigroup. But, we can show the generation of the continous semigroup and its
decay estimate. Namely, the following two theorems are main results which the
author would like to report in this paper.

Theorem 2. Let 1 < g < oo. Then, Lq generates a C° semigroup {T(f)}sz0 on
J4(€).

Theorem 3. There hold the following estimates for f € J(Q) and t > 0:

9 ”T(I)ﬂ'um) s Cq"t-%(%-%)”ﬂqum) (1<gsrsgoo, g# o)
10) VTNl S Cort 36, o (1 <gs7$3)

Here, the constant C,, depends on ay and ko whenever la| < ag and |k} £ ko but is
independent of a, k, t and f.

Remark 1. Theorem 2 was first proved by Hishida [19] when g = 2 and k = 0.
Later on, Geissert-Heck-Hieber [16] proved Theorem 2 when1 < g < coand k = 0.
Our proof is different from [19] and [16] and based on some new consideration on
the pressure terms.

Theorem 3 plays an essential role in proving the stability theorem. In fact, the
estimates (7) and (10) were proved by Iwashita [42] when a = k = 0, by Kobayashi
and Shibata [44] when a = 0 and £ # 0 and by Hishida and Shibata [24] whena # 0
and k = 0. The restriction: 1 < ¢ £~ £ 3 in (10) is unavoidable at least in the case
where a = k = 0, which was proved by Maremonti-Solonnikov [45].

2 Remark on the stability theorem

‘Consider the original non-linear problem (4) in the case where f = f(x). And then,
the corresponding stationary problem is given as

an w-Vw - Aw + kdsw
~(wxx)-Vw+wxw+Vo=f in Q
divw=20 inQ
w=wXx—key ondQ

w(x) -0 as |x| — oo



Setting u(x, t) = w(x)+2(x, t) and 7(x, t) = 6(x)+«(x, 1) in (4), we have the equation
for z and « as follows:

(12) z,+2z-Vz+2z-Vw+w-Vz— Az + kdsz

—(wxx)Vz+wXxz+Vk=0 , in Q x (0, 00)
divz=0 in Q x (0, o)
z=wXx~-kes ondQx(0,)
z(t,x) » 0 aslx] 200 t>0

2(0, x) = vo(x) — w(x)

Following Kato [43], instead of (12) we consider the integral equation:

(13) | z(t) = T(t)(vo — w) — j(; t T(t — s)[z(s) - Vz(s) + z(s) - Vw + w - Vz(s)] ds

Then, using Theorem 2 and employing the same argument as in Shibata [47] we
have the following theorem.

Theorem 4 (Stability Theorem). Assume that problem (11) admits solutions w(x)
and 0(x). Let o be a small positive number and 3 < q < . Then, there exists a
small positive number € depending on o and q such that if vo — w € J5(Q2) and

(14) wlly, @z, oi@ + 1YWL, winre o + 00 — Wl g S €
then problem (13) admits a unique solution |

2(f) € C([0, ), J3()) N C((0, o), Ly(Q) N W3(Q))
such that

(213,06 + [Zlguuiqre + [VZ13,1/2¢ S Ve
,1_‘.‘31 llz(®) = (vo — w)ll ;) = O

tl_i’% ([Z1g.utq)e + [VZ13,1/24) = 0

Here, we have set

3(1 1 1 3
Elpos = sup SIeC iy 1) = 3 (5 - 5)

Remark 2. Galdi and Silvestre [14] proved the existence of solutions to (11), but
the velocity fields in [14] behave O(|x|™!) when |x| — oo and they did not show
the asymptotic behaviour of the gradient of the velocity fields. We do not know
any existence theorem of solutions to (11) which satisfy (14) as far as the author

checked. But, the author believes the existence of stationary solutions satisfying
(14), because the motion is stabilized by translation.



3 Analysis of the whole space problem

To show theorems 2 and 3, we start with the analysis of the whole space probem:
(15) U+ Lpou+Va=0 in R% >0,

V.u=0 in R? ¢>0,

o =f in R,

with initial data f € Jq(R3). We know that the solution u is given by the following
formula:

exp (_ lO(at)x;zt —kesf? )

u))=Swf = [ 0@t Pro 6) dy
= ! [ ¥R O(at) F [ Pro 10(@)D)] ()

Here, Py3 and Qs are defined as follows:

éj_fi

12

and c(f) is a constant such that j;)k Or3fdx = 0. Set

)f(f)] ), Qwf=F" [L&Q](X) +c(f)

Ppsf = F! [(6 k- i

A s (A)f = AWYS = fo &S s ()P f

v f:’ & AHEPHERN O(ar)T B F(Olang) df](x)

Then, we have the following two theorems:

Theorem 5. Let 1 < g < , kg > 0 and ag > 0. Assume that |k| £ ko and la| £ ao.
(NLety>0,0<e<nm/2and N € NwithN 2 4. Set

C,={1€C|Red 2y}, C,={1€C|Red >0},
2. ={1eC\{0}|largA| s —¢€},
Lyre2R?) = {f € LR | f(x) = 0 for x & Braa),
Lr(R%) = L(Lyre2®), W R’Y)
Then, R(A)Pys € Anal(C,, Lr(R3)) and there exist three operators:
AY (D), AV (1) € Anal(C\ (=00, 0], Lr(R?)), AY,(A) € Anal(Cs, Lr(RY))
such that
Ao g Df = AY D) + AL (2)
AY (D) = (A - Ags + kd3) ' Ps + AY (2)
102AY DS, g, S CATEDY 1
16 AY (DAl o S ClAT D) 1

LR = Ly®)



for any A € Z¢ with |A| 2 ¢ > 0 (ce being some constant depending on €) and 8
with |8] £ 2, and

1Y (WA, ;. S Cy O+ g

Ly®Y) = Ly®3)

for any 2 € Cy, with 4| 2 1 and B with |B| < 2 provided that f € Ly p.2(R?). Here,
the constant C depends on ay and ko but is independent of a and k, and we have set

(A— Bps + k83) g = F5 (A + 167 + ikés) ™ 9(O)(x)
Theorem 6. Let 1 < g < o0, kg > 0,a0 >0, vpandK 2 10ao + 2. Assume that
|kl £ ko, lal £ agand 0 £ v £ yo. Set
3
Lroomp®) = Lo rs2®), HGBrs3)) [log =1l s yaiae
C,={1€C|Re120}

Then, A(A) = Ags 44(A) € C(C+, Lr comp(R3 )) and satisfies the followzng condi-
tions:

sup [A(y + is)lr3 g S Cypa0.k
Jslsk

K
| @ + 190, s S Crax (1 57<2)

K .
sup Jh™72( f [Ay + i(s + 1) = Ay + i, ds)"" S Cpoaox (1S p<4)
O<lhisl -K

K
sup [hI"L2 f (G2 + i(s + B)) = G2y + i)]gs £ 45 < Cypan
0<|hlg] -K

(87 A a)y + is)l < Cyp o xls ™ (1=U/2)

LlLg gr2 @)W, (BR+3)3)

Jorm=0,1,2,3,j=0,1,2and s € Rwith|s| 2 K - 2, and

lim sup[A(y + is) — A(is)]r: g = 0
v—0+ ¢eR
lim [ (G +i9) - Ou Ao =0

lim R~} f TANEPdx =0 (k#0)
RsIxIS2R

R—c0

lim R™? f A IOPdx =0 (k=0)
REIx|2R

R—o00

IAQDS = A ], S Carld = 2l A g

Jorany A, Ay and A; € @: providedthat f € L, ,R+2(R3).



4 An idea of Theorem 2

Since the whole space problem is solvable, to show the existence of solutions to
the equations:

(16) u—Au+ Mpu+Vnr=0 in Q, t>0,
V-u=0 in Q, t>0,

u=0 on T,

Ue=0=f in Q.

with My qu = kdsu — (wx x) - Vu+w Xu, the following theorem plays an essential
role.

Theorem 7. Let 1 < g < oo and set
Lor1(Q) = {f € Ly(Q)’ | f(x) =0 (xI >R - 1))

For every f € Ly r-1(S2), problem (16) admits a unique solution (u, ) hdw’ng the
Jollowing regularity properties:

u € C%([0, %), J(@)) N C'((0, ), Ly(E2)) 0 C*(0, 00), W)

7 € C°((0, ), W}(Q))

and satisfying the following estimates:

Ol @y + 2NVl 0y + 1 bt Mgy + 1O 30, + 197D g
é Cyem[ﬂhq(m

(DD (1), 0, + IO gi0y) S Crpe” I g

forany t > 0. Here, Q, = By N Q (b > R), y > 0 is any real number, and C,, and
C,,» are constants depending on ag and ky whenever la| < ao and k| < ko but are
independent of a, k, t and f.
Moreover, if f € Ly r-1(Q) N Dy(QY), then we have
u € C°([0, o), W2() N C' ([0, =), Lg(€)

t
Hu(t)llwg(m +luOll ) = Cye "ﬂlwg(n)

Now, we shall show Theorem 2 by using Theorem 7.

1 st step

Given f € Dy(Q), let fe Z)q(R3) be an extension of f to the whole space such

that /= f on Qand |fll, ., < Cqllllp, Where we have set

”ﬂlpq(p) = "ﬂle(D) + ”(w X x) ' Vf‘”[,“D)
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Lety € C8°(R3) such that ¢(x) = 1 for [x| £ R — 2 and ¢(x) = 0 for |x| Z R - 1 and
set

v = (1 = @)Sp()f + BI(Ve) - Sps(1)] ]
where B denotes the Bogovski operator satisfying the estimates:

BLCV9) ol 5, S Clll o j=1,2
IBLV)- Vil < Clh,,

. =0,1,2
'W.{(supp(vm)’ /=01

(cf. [37], [38], [41], [16]).

2nd step
To obtain the solution u(f) of (16), we set u(f) = v(f) + w(?), and then w(¢) and n(¢)
satisfy the equations:

w+ Lyggw+Va=F, divw=0 inQXx(0,x)
wlan =0, wl=0=¢f -B[(Ve)-fl=g¢g

Here

== 2AV¢) VSw(O)f - (A)Sw(O)f + ko) (0] = (0 x %) - V)Sw (]
+ (@1 + Lea)BI(V9) - Spa(0)f ]

Observe that
OBI(V¢) - Sw()/] = BI(V¢) - 8,Sps (1) ] )
= B[(Vy) - ASgs() 1+ B[(Ve) - (~k03 + (0 X %) - V = wX)Sgs (1) )]
Therefore, we have
F @l S Cyt ™ 2| fllp,
IF@l,@ < Cyt™ eI Al

- If we write

w(t) = Sq(f)g + f ’ Sa(t — )F(s)ds
then by Theorem 7 we have 0
w(z) € C°([0, ), W(Q) 1 C'([0, ), Ly(R))
Ol 5, + 10Ol S Cye” Al
(Ol S Cye” Il

Therefore, we can construct a solution

u(t) € C°([0, 00), WA(Q)) N C1([0, ), Ly())
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which satisfies the estimate:
00 gy + My S Cy”
t
14O, 0y < Cre" Il

If we define {T(#)}sz0 by the formula: T'(¢)f = u(f), then the uniqueness of solutions
and the denseness of D,(Q) in J,(Q) imply that {T(H)}r0 is a C0 semigroup on
J4(€2). Since we know that the resolvent set of £, contains the complex plane with
positive real part (cf. Theorem 8 below), we see that the generator of {T(#)}z0 is
Ly, which completes the proof of Theorem 2.

5 Anidea of a proof of Theorem 7
To prove Theorem 7, we consider the corresponding resolvent problem:
an A—Au+Mu+Vrn=f, divu=0 inQ, ulsa=0
We construct the parametrix of the form:

DQ)f = (1 = P)Ars k(Do + PR (D P oy
+ B[(Vy) - (Ags o k(D) fo — Rar(DPagflag)]
P S = (1 - 9)Qrs fo + ¢(Qap flag + Par(DParflag)
forAeC, ={1€C|Red>0}and f € L,z-1(Q). Here, fy denotes the zero

extension of f to the whole space, fl, the restriction of f on g,

Fgs oo = fo NS o () i

and u = Rq,(A)g and 8 = pq,(d)g are solutions to the equation:

Au— Au + Miu+ V6 = Pq,g in Qg
divu=20 in Qg

uia.QR =0
We see that

A=A+ M) f + V) S = (I + T)f +S(A)f inQ
div@(A)f = 0 inQ
ulsa =0

Here T is the operator defined by the formula:

(18)  Tf =~ (Vo) @rfo - Oaxflar) — BI(V¥) - V(Qrs /o = Qe Slary)]



and S (1) is a linear operator is defined as follows:

S f =2(V9) : V(Ca(D) ) + (Ap)Ca D) f — k(F39)Ca DS
+ [(w X x) - V]Ca( D) f + B[(Ve) - ACa()f]
— B[(Vg) - MyaCa(A)f1+ B[(Vp) - VBaya()yar/]
— AB[(V¢)  Ca(D)f] + MiaBI(Ve) - Ca(A)f] + (V) Bag a(A)yarS
Ca(A)f = Ags 4(A)fo — Aapa(DyarS

We can show the following lemma which is one of the points in our argument.

Lemma 1. Let 1 < g < oo. Then, there exists the inverse operator (I + T)™! €
L(Lg,r-1(€).

Moreover, we know that
(19) IS @ S CAATH0, A2 1S € Lor1(@)
We can define the operators:
T1(A) € AnalEe, LLgr-1(Q)),  T2(A) € Anal(C., LLgp-1(R)))

such that

d+T+S) =+ Z((I + ) ISY)I+ 1)
Jj=1 '
=1+ Ti(2) + TH(2)
. forAeC, with 4] 2 cand

ITy (D S CATEDA-WDyg o @Aeks Az 1)
IT2 ()@ £ CAU Ml (A€Cs: Red2y>0,1A21)

Here, c is some large positive number, 0 <e<nf2,
Fe=C,U{A€C\{0}|]argl ST —¢, 1A 2 c(e))

and c¢(¢) is some lalrge positive number depending on €, ap and kp whenever |a] < ap
and k| £ ko.

We can also show that (/+ T +S (1))~! exists for 2 with ReA > 0. And therefore,
we set (R(2), (1)) = (P(), P(D))I+T+S (A))~!. Then, (R(1), E(A)) is the solution
~ operator to the equation:

A-A+Mu=f, divu=0 inQ ulsg=0

12



Moreover, using Theorem 5, we have
(20) R(A) = Ri(A) + Ra(d), E(A) = B + E(A) + Eo(A)
R\(A) € AnalEe, LLgz-1(Q), WHQ))
Ra(2) € Anal(C.., LLgr-1(Q), WH(Q))
o € LLgr-1(Q), Wy ()
Ei(A) € AnalEe, LLgr-1(), W4(Q))
E2(2) € Anal(Cy, L(Lgr-1(R), W, (€)))
IVR(() gy £ CIATHI2 Al
DAL= (DA, 0y + IVELDA 0 £ Coll Al

forief, with|d 21

-3
"R2(/l)ﬂlwg(n) § Cyl’“ “ﬂqu“))
IZ2(A) A0 + 1VE2(D SN0y S ColA 1l 0

forreC,.with|d] 2 1andRed 2y >0.
Using the above solution formula of (17), we have

Theorem 8. Let 1 < g < 0o. Then, the resolvent set of L4 contains C..

Moreover, if we define u(f) and n(¢) by the formula:

1 1 +ico
21 H=— | MRyD)fdA+ — AR () fdA
@) wo=g [Fr@rar g [T drwr
6(f) = 1 f e (Bof + E1(A)f) dA L L T e*Ey(A)fdA
T omi o W T 270 Sy

for f € Ly r-1(£2) where

= U{a'-!- se** | 5 2 0}
=+

with large o > 0 and 71/2 < « < &, then we can show Theorem 7 by (20).

6 An idea of Proof of Theorem 3

To show Theorem 3, the main step is to show the following theorem.

Theorem 9 (Local Energy Decay). Let 1 < g < oo. Then, we have
16/ T(H)Pq Myzap S Criifllye t>1

fJorany f€ Lyp1(Q)and j=0,1.

13



We can show Theorem 9 by shifting the contour in the definition of u(¢) in (21)
to the imaginary axis, applying Theorem 6 and using the following lemma:

Lemma 2. Let 0 < k < 1. Let X and | - ||lx be a Banach space and its norm,
respectively. Let f(s) be a function in Li(R, X), which satisfies the condition.

22) sup JhI"" fR 1F(s + B) = f(s)llx ds £ CM

O<jhs1
for some M > 0. Set g(f) = [ " f(s)ds. Then, we have
lg)llx < le™ = 117" Mt
foranytz 1.

By Young’s inequality, we see easily that

(23) “VjSR3 (t)ﬂILr(Rs) s an’th%-%(%-%)“ﬂqu(ﬂ)

for1 < g £r £ oo withgq # o and ¢t > 0. Combining (23) with Theorem 9 by
cut-off technique, we have Theorem 3.
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