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Abstract

We are concerned with the initial value problem for a damped wave equation with
a nonlinear convection term which is derived from a semilinear hyperbolic system
with relaxation. We show the global existence and asymptotic decay of solutions
in WP (1 < p < o0) under smallness condition on the initial data. Moreover, we
show that the solution approaches in WP (1 < p < o) the nonlinear diffusion
wave expressed in terms of the self-similar solution of the Burgers equation as time
tends to infinity. Our results are based on the detailed pointwise estimates for the
fundamental solutions to the linearlized equation.

1 Introduction
We consider a nonlinear relaxation system of the form:
u+v, =0, v tu;=f(u)-v, (1.1)

where u and v are unknown functions of ¢ > 0 and z € R, and f(u) is a smooth function
of u under consideration. If we eliminate v from (1.1), we obtain the following damped
wave equation with a nonlinear convection term:

Ut — Ugg + Ut + f(u)z =0. (1'2)
We consider the initial value problem for (1.2) with the initial conditions
'U,(O,.’Z:) = uO(x)i ut(o’x) = ul(x)' (13)

This initial value problem was studied by R. Orive and E. Zuazua (5] when f(u) =
|u|"~1u with v > 2, so that f’(0) = 0. They proved the global existence and asymptotic
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decay of solutions under smallness condition on the initial data uy in H* N L! and u; in
L? N L. Moreover, under the additional condition ug, u; € L?, they observed that when
v = 2, the solution obtained approaches the self-similar solution z(¢,z) of the Burgers
equation z + (|z|2); = 2 which verifies the integral condition [ z(t,z)dz = M, where
M := [(ug + w)(z)dz. When v > 2, it was also observed in [5] that the asymptotic
profile z(t, z) is given by the heat kernel, i.e., the self-similar solution of the heat equation
24 = 2, Which verifies [ 2(t,z)dz = M with the same M.

The main purpose in this paper is to generalize the results in [5] to the case where f(u)
satisfies the so called sub-characteristic condition |f’(0)| < 1. In addition, we develop L?
theory for p including p = 1. In fact, under smallness condition on the initial data u, in
WiPN L and u; in LP N L}, where 1 < p < 00, we prove that the solution exists globally
in time and satisfies the decay estimates

lu(@)llze < C(1+8)734"9 for any 1 < ¢ < o0,
18:u(t) > < C(1 + )70~ 3)"3,

To discuss more detailed large-time behavior of the solution for |f'(0)| < 1, we need
additional consideration. To see this, as in [3,1], we apply the Chapman-Enskog expansion
to (1.1) and derive a viscous conservation law

we + f(w)z = (”(w)wz)z (15)

as the second order approximation of the expansion, where u(w) = 1 — (f'(w))2. Note
that the sub-characteristic condition |f'(w)| < 1 implies the parabolicity of (1.5). It is
expected that the solution of (1.2) can be approximated by the solution of (1.5) or its
simpler version P

wy + (ow + -2—w2)z = YWgg, ' (1.6)

where a = f/(0), 8 = f”(0) and p =1 — (f'(0))®>. When 3 = f”(0) > 0, by the change
of independent and dependent variables * = y + at and w = 3z, (1.6) is reduced to the
Burgers equation z; + (22/2), = pz,, whose asymptotic profile is given by its self-similar
solution (see (2.3) below). Consequently, it is expected that the solution u(t, z) of (1.2) is
approximated by the nonlinear diffusion wave w(¢, z) which is a modification of the self-
similar solution z(t,y) of the Burgers equation and is defined as w(t, z) = f712(¢, z — at).
In fact, under the additional condition ug, u; € L], we show that the solution to the
problem (1.2), (1.3) approaches the nonlinear diffusion wave w(t,z) which verifies the
integral condition [ w(t,z)dz = M, where M := [(ug + u1)(z)dz. More specifically, we
show that

(1.4)

I = w)()llze < CQA+ ) 34D+ for any 1 < g < 0o,
102 (2 — w)()]zs < C(1+t)~2A-2)-14e

as t — 0o, where ¢ is any fixed positive number.
Before closing this section, we give some notations used in this paper. Let F| f] denote
the Fourier transform and F ‘1[ f] denote the Fourier inverse transform of f defined by

FN©=F© = [ festd, FUf@) == [ fe)e=de.
—oo 27 J_oo

(1.7)
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For 1 £ p £ o0, we denote by L? = LP(R) the usual Lebesgue space with the norm
Il - llz»- Let k be a nonnegative integer. Then W*? = W*?(R) denotes the Sobolev space
of L? functions, equipped with the norm || f|lwx». For a € R, let L8 = LZ(R) denote the
weighted L space with the norm || f||;z := ||(1 + |2|)*f||zs. Let X be a Banach space
and let / be an interval on R. Then C(I; X) denotes the space of continuous functions
on the interval I with values in the Banach space X. Also, L*(I; X) denotes the space
of L*™ functions on I with values in X.

2 Main results

In this section we give statements of our main results in this paper. The first result is
concerning the global existence and optimal decay of solutions to the initial value problem
(1.2), (1.3), which can be stated as follows.

Theorem 2.1 Suppose that |f'(0)] < 1. Let 1 < p < oo and assume that ug € Wi N L}
and u; € LP N L. Put

Eq = ||luo|lwre + [luollr + lluallze + |fuaflzr-

Then there is a positive constant & such that if Ey < &, then the initial value problem
(1.2), (1.8) has a unique global solution u(t,z) with

- ueC([0,00); WNL).
Moreover, the solution satisfies

lu@)|lze < CEo(1+ t)"%(l‘%),

3 ! (2.1)
|0zu(t)||z» < CEo(1 + t)“i(l‘i)-a,

for any q with 1 < ¢ < 00 and C is a constant.

Remark 2.2 When p = oo, we should replace the solution space by C([0,00); L) N
L*((0, 00); Whe),

In order to state our second main result concerning the large-time behavior of the so-
lution obtained in Theorem 2.1, we define the nonlinear diffusion wave for (1.2). Consider
the self-similar solution to the Burgers equation

2+ (22/2)s = s, (2.2)

where p = 1 — (f'(0))?, which is a solution of the form z(t,z) = t'%¢(§;). We denote
by z(t,z) = Z(t,z; p, M) the self-similar solution which satisfies the integral condition
[ 2(t, z)dz = M, where M is a parameter. This self-similar solution is given explicitly as

: (e% —1)e ¥’ T
Z(t,z; p, M) = \/E = , Y= : (2.3)
oy [V
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We then define W(t, z) by
W(t,z) = B Z(t,z — ot; p, BM), (2.4)

where a = f'(0), 8= f"(0) and x =1 — (f'(0))?. Here we assumed that 3 = f”(0) > 0.
We see that this W (t, ) has the conserved quantity [ W(t,z)dz = M and satisfies (1.6),

ie.,
we + (ow + ng)z = [Wgy, (2.5)

which is an approximation to the viscous conservation law (1.5) derived form (1.1) by
applying the Chapman-Enskog expansion. We call W (¢, z) defined by (2.4) the nonlinear
diffusion wave for (1.2) if the parameter M is chosen as M = [(ug + u;)(z)dz.

The nonlinear diffusion wave defined above gives the large-time description of the
solution obtained in Theorem 2.1.

Theorem 2.3 Suppose that |f'(0)| < 1 and f(0) > 0. Let 1 < p < oo and assume that
ug € WY N L} and uy € LP N L]. Let u(t, ) be the global solution of the problem (1.2),
(1.8) constructed in Theorem 2.1, and let W(t,x) be the nonlinear diffusion wave defined
by (2.4) with M = [(up + u1)(z)dz. Put w(t,z) =W(t+1,z) and

Ey := [luoliwrs + lluollzy + lluallze + lluallzs-

Then, for any € with0 < e < %, there is a positive constant §; such that if Eq < 6, (where
Ey is given in Theorem 2.1), then we have the following asymptotic relations:

(= w)(t)lze < CEL(1 +t)"80-D)-d+e

182(u — w)()llze < CE1(1 +1)7307) 1, 20
for any q with 1 < g < 00 and C is a constant.
Remark 2.4 A straightforward computation using (2.4) and (2.8) yields
lebw(®)llze < CIMI(L +8)~30-03 (27)

foranyl1 < g<ooandl=0,1,---, where M = [(ug + u1)(z)dz. More precisely, when
M #0, 8Lw(t, ) behaves exactly like 730392 4 L9 ast — oo. Therefore, the estimate
(2.6) gives meaningful asymptotic relations for t — oo, provided that M # 0.

3 Fundamental solutions

The aim of this section is to study the fundamental solutions to the linearized equation
of (1.2):

where o = f'(0). To this end, we consider (3.1) with the initial data

u(0,z) = yo(x), u(0,z) = wy (). (3-2)
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We take the Fourier transform, obtaining

att + 'at + (52 + Cl’l,ﬁ)’a = 01 'l:L(O, é-) = aO(S): at(01 5) = '&1 (6) (33)

The characteristic equation of (3.3) is A2 + A + (£2 + aif) = 0 and the eigenvalues are

MO =3 (- 1+ VI I@+a®)), a@©=5(-1-VI-d@+ad)). (34)
The problem (3.3) is then solved as

a(t, &) = G(t, €)(@(€) +01(€)) + H(¢,€)a0(€), (3.5)

where

\ 1
G(t,€) = x MOt _ alO)),

GEEGL

(3.6)
(14 26" — (14 Ag(€)) ).

S 1
&8 = 5 —wo

We take the Fourier inverse transform of (3.5). This yields the solution formula of the
linearized problem (3.1), (3.2):

u(t) = G(t) * (uo + wa) + H(t) * uo, : (3.7

where G(t,z) and H(t,z) denote the Fourier inverse transforms of G(t,£) and H(t,€) in
(3.6), respectively: '

G(t’ :'C) = f—l[é(tv )](CL‘), H(t’ .’B) = J:-l[f{(t! )](x)» (38)

and * denotes the convolution with respect to z. We call G(t,z) and H(t,z) the funda-
mental solutions of linearized damped wave equation (3.1).
We are interested in the asymptotic expressions of the fundamental solutions together

with their detailed pointwise estimates. To state the results, we introduce the modified
heat kernel:

Golt, z) = —me (=0t /d0t, (3.9)

1
Viamut
where a = f/(0) and p = 1 — (f’(0))?, which is the fundamental solution to the linear
heat equation w; + aw, = pw,,. Then the result for G(¢,z) can be stated as follows.

Theorem 3.1 Let o = f'(0) and p = 1 — (f'(0))?, and assume that |o| < 1. For each
nonnegative integer [, the fundamental solution G(t,z) can be expressed as

G(t,z) = Go(t, ) + GY(t,z) + RY(¢, ) = GY(t,z) + RY(t, 2).
Here Gy(t, x) is the modified heat kernel in (3.9), and GY (t,x) is the singular part given
as follows: We have G (t,z) =0 and

-1
ACA() =3 {e™PHF 5@+ 1) + e QB - )} (3.10)
k=0
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forl>1, where k = (1 +@)/2, v = (1 — @)/2, Pi(t) and Qk(t) are some polynomials of
t of degree k, and & denotes the Dirac delta function. The remainder terms RV (t,x) and
RY (t,z) verify the following pointwise estimates:

|aiR(l)(t, -’L')I < C’t_"-'i"l‘(]_ + t)—%e—c(:c—at)’/z + Ce'c("*'l"")’
lalllngg (t, m)l S C(l + t)_'_gle‘c(z—at)z/t + Ce_c(t.(._lm')

forl >0, where C and ¢ are positive constants.

(3.11)

This theorem shows that the fundamental solution G(t,z) can be well approximated
by the modified heat kernel Gy(t,z) as t — oo.

We have a similar expression also for H(t,z).

Theorem 3.2 Assume the same condition as in Theorem 8.1. For each |l > 0, we can
express H(t,x) as
H(t,z) = HO(t,z) + SO (t, z).

Here the singular part Hg)) (t,z) is given as
1
BLHY(t,2) = {e™Pu(t)8o(x + 1) + e Qu(t)0L*o(x — 1)} (3.12)
k=0

for Il > 0, where k and p are the same as in Theorem 3.1, Isk(t) and Qi (t) are some
polynomials of t of degree k, and 0 denotes the Dirac delta function. The remainder term
satisfies the following pointwise estimate:

18S9 (¢t z)| < C(1 + t)~ T eela—at)’/t 4 Ce=elttlel) (3.13)
for 1 >0, where C and c are positive constants.

As a corollary of the above pointwise estimates of the fundamental solutions, we have
the following LP-L? estimates for solutions to the linearized equation (3.1).

Corollary 3.3 Assume the same condition as in Theorem 8.1 and let 1 < ¢ < p < 00.
Then we have the following LP-L? estimates:

IG®) % dlize < C(1 + )& D))l 1,

11 1 (3.14)
16LG(2) * Blls < CQL+ ) 2G| o + Ce | Bllwi-rs, 121,

and
J0LH ) * Bllzs < O+ 078D F 9]l e + Ce@llwns, 120 (3.15)
Moreover, the solution operator G(t)* is approzimated by Go(t)* in the following sense:
(G = Go)(t) * Bllz» < CEHE=D (1 +8) 4 ||l .e,
184G — Go)(t) * Bllz» < CEHAD5(1 4 )} |gllza + Ce | gllwirs, 12 1.

(3.16)

Here C and c are some positive constants.

We can prove Corollary 3.3 by using Theorem 3.1, 3.2, and omit here.
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4 Fundamental solution in Fourier space

In this section, under the condition |f'(0)| < 1, we consider G(t,£) and H(t,€) in (3.6)
and derive their pointwise estimates, which are crucial in the proof of Theorems 3.1 and
3.2. Here £ is regarded as a complex variable, i.e., £ € C. We divide our computations
into three parts corresponding to the low frequency region |¢| < rp, the middle frequency
region ry < || < Ko and the high frequency region |£| > Kp, respectively. We omit the
proof in this section.

In the low frequency region we have:

Lemma 4.1 There is a positive constant ro such that for any € € C with || < ro, we
have the following expressions:

G(t,€) = Go(t, &) + Ro(t, €),

. oy A R (4.1)
Go(t,€) = e @+ Ry(t,£) = e (@K Ry (1,€) + e Roa(t, )
and X o R
H(t,€) = e+, (8,€) + 7" Ha (2, €).- (4.2)
Here a = f'(0), p=1-(f(0))?, and
|[Ros(t, €)| < CIEIL + [P, |Roa(2,€)| < CeK,
) . . (4.3)
|Hy(t,€)] < Cl€|eCR, | Hy(t,€)] < CeCktt
for |€| < 7o, where C is a positive constant.
Remark 4.2 For G(t,£), we have another expression:
G(t,€) = e @8HNG, (1,€) + €7'Cs (8, €) (4.4)
with él(t, =1+ Ro,l(t,ﬁ) and éz(t, §) = Ro,z(t,£) satisfying
Ié’l (t1£)| < CeC|£|3t’ lGZ(t,é)l < CeCIEIt. (45)

Next we consider in the high frequency region.

Lemma 4.3 For each nonnegative integer l, there is a positive constant K, such that for
any € € C with |§| > Ko, we have the following expressions:

G(t,€) = GU(t, &) + RO, ), H(t,¢) =AYV +59,¢). (4.6)
Here GO (t,€) =0,

-1
GAQ(t’g) = Z {e‘("—"f)tpk(t) + e-(v+i£)tQk(t)}(i€)-—k—l, 1>1,
k=0

RO(t,€) = {e~ 9 B(t) + e HOQ, (1) } (36) (4.7)

+e =0 RY (t,6) + e+ RD (,6), 120,
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and

!
HO(t,) =) {1t B(t) + Q) } (i) 7F, 120,
k=0

50(t,€) = {e" A1) + Q1) } €)™
+e~(-0t80 (1 £) 4 =@+t (1 8), 1>0,

(4.8)

where k = (1+a)/2, v = (1—a)/2 with & = f'(0), and Pi(t), Qx(t), Pi(t) and Qx(t) are
polynomials of t of degree k. Moreover, we have

IR (¢, 8)] + |RY,(5,€)] < CleI72(1 + ¢)+1eCkIT",
1395, &) +189,(8,6)| < ClE|™2(1 + ) +2eCKI7"e

for |€| > Ko, where C 1is a positive constant.

(4.9)

In the middle frequency region, as in [2], we derive the corresponding estimates by
employing the energy method in the Fourier space.

Lemma 4.4 We write £ = 1+ i(, where n, ( € R. Then, for any r > 0, there ezists a

positive constant o(r) depending on r such that if |n| > r and |¢| < o(r), then we have

the following estimates:
IG(t,6)| < C(L+ |n))~te ™%, |H(2,6)| < Ce ™, (4.10)

where p(n) = 1—}’:;5, and C and c are positive constants independent of r.

5 Proof of pointwise estimates

In this section, following [4,2], we give the proof of Theorems 3.1 and 3.2 concerning the
pointwise estimates of the fundamental solutions.

Proof of Theorem 3.1. For each nonnegative integer I, we express G in (3.6) as
G(t.8) = Go(t,€) + GQ(1,6) + RO(, ), (5.1)

where Go and G are given explicitly in (4.1) and (4.7), respectively, and R® is defined
by (5.1). We write the Fourier inverse transform of (5.1) as

G(t,z) = Go(t,z) + GY(t, ) + RO(t, z). (5.2)

Here the first two terms on the right hand side of (5.2) can be given explicitly. In this
proof, we consider the derivative & RV(t, z) and 8 RY(t, z) of the remainder terms.

Lemma 5.1 For each l > 0, we have the following estimate:
1L RO (¢, 2)| < C(1 + t)~Feclz—ati’/t | geclt+iz) (5.3)

fort > 1, where C and c are positive constants.
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Proof. We have

OLRO(t,5) = FO RO (o) = o [ RO e

- o | G@ROGeed (€ =n+id),

where, thanks to the Cauchy integral theorem, we have changed the path of integration
from the real axis to the straight line & = n+1i¢ (with a small fixed ¢ specified later) which
is parallel to the real axis. We divide the above integral into three parts corresponding
to the regions |n| < r, r < |n| £ K and |n| = K, respectively, where r > 0 and K > 0 are
constants which will be specified later. Now we recall the relations

RO = fp— GO, RO =G=Go—GU, RO =AY G,

which follow from (4.1), (4.6) and (5.1). We then substitute these three relations into
the above integral over the regions |n| < r, r < |n] < K, and |n| > K, respectively.
Consequently, we obtain

2r RO, 2)
- / (i8)! Roe=dn + / (€)' Ge=dn
ni<r

r<inl<K

+ [ GerROeedn— [ (g/CQetean— [ (i) Goetsan
Ini2K Inl<K

[nl2r

(5.4)

=h+L+1L—-1— I
where £ = n + i(. We choose (¢ according to the point (¢,z) as follows:

(=dz—at)/t f |z—at|/t<L],
(=46 if |r—at|/t>1 andz—at>0, (5.5)
(=-6 if |z—at|/t>1 andz—at <0,
where § > 0 is a small constant which will be specified later. Note that in any case we have
|€]* < |n|? + 82. For the moment, we assume that 7 and & are so small that r2 + §2 < r}

and é < o(r), while K is so large that K > K, where ¢, Ky and o(r) are the constants
in Lemmas 4.1, 4.3 and 4.4, respectively.

Case 1. Consider the case where |z — at|/t < 1. In this case we take { = §(z — at)/t by
(5.5) so that £ =7+ id6(x — at)/t.
First, we rewrite the term I; by using (4.1) as

h= ./ e (i€)' Ry eX==)dn + et / (€)' Rope®"dn =: Iy + L 5.
[ni<r [nl<r
We substitute the first pointwise estimate in (4.3) into I;; and then use the simple re-
lations —Re(ué?t) = —un’t + ud?(z — at)?/t and Re(ié(z ~ at)) = —6(z — at)?/t. This
gives

il S C [ (e g1 (1 + (€[2)eCk |0 |dn < O(1 + )~ T e 7@/t

Inigr
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provided that § and r are suitably small, where 4 is a positive constant such that v < 4.
Similarly, using the second pointwise estimate in (4.3) and the relation Re(i€z) < —d(x —
at)?/t + |c|6t, we have

|hs| < Ce™ / |€|'eC1et|e€2|dn < CemteSeot’/t,
Inl<r

provided that § and r are suitably small, where c is a positive constant with ¢ < 1. Here
we have used the inequality |¢|2 < |9|? + 62. Thus we have

\I| € C(1 +t)~ 5 eVt (5.6)

Next we estimate I,. When r < |g| < K, we have from (4.10) that |G| < Ce=%™,
provided that r is suitably small and K is suiatbly large, where ¢, is a positive constant
independent of r and K. Therefore, noting that Re(i€z) < —d(z — at)?/t + |aldt, we
obtain

< [ lel1Gleldn < Cotese-eits (5.7)
r<n|l<K
provided that ¢ is suitably small depending on r, where ¢ is a positive constant with

c < corl. .
For I3, we use the expression of RY in (4.7) and write I3 as

= [ (RO + () RS ey
nl>
+e™ /| | {Qut)(3&)™" + (s€)'RY  } 4=y =: IF + I
nl2K
Moreover, we rewrite I as

If = e™P(t) / (in) e dn + e Pi(t) ()7 = (in)™)ekE=+dn
[nl>K [nI=K

+ "t /| I>K(z'g)'lfef,‘g_le*'€<"v+‘>am = I + I, + I,
N2

We estimate each term as follows. For I3;, we see that

If, = e By(t)e-S@-aniet/: / (in) 1€+ gy
[ni>K

because i€(z +t) = —6(z — at)(z +t)/t+in(z +t). Here we observe that e~é(@-et)z+)/t <

e-—&(z—at)a/tecﬁt with ¢; = 1 + @, and that

N1 i ®sinn(z+t . ®© s
[n|2K K n e+t Y

which is uniformly bounded. Consequently, we obtain

+ < 1 1 —Kt ~6(z—at)?/t c16t < —ct ,~8(z—at)?/t
5 < C(1+t)e™e e < Ce % ,
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provided that d is suitably small, where c is a positive constant with ¢ < k. Also, for IQ,' 2
we have

oy -1 1 1 d(z — at)/t _ -
()™ — ()™ = in—d(z—at)/t in in(in—é(z — at)/t) = 0(nl™)

and [e¥(Ett)| < g~8(=-at)?/tee1dt with ¢ = 1 + . Hence we obtain

-k s\ — .\ — i€(zT - — —at)?
II;,-ZI < C(l +t)’e t[|>K|(Z£) 1 _ ('”7) 1”6 £( +t)|dn < Ce e S(z—at)3/t
>

for suitably small §, where 0 < ¢ < s. Similarly, making use of the pointwise estimate of
ng,l in (4.9), we have

I35l < C(1+ t)H’le"‘t/ |€|~2eC1E 7 iel= ) |4y < Ce-dte-te—ati/t
’ Inl2K

provided that d is suitably small and K is suitably large, where 0 < ¢ < k. Summarizing all
these computations, we have |I;7| < Ce~te~%(=-at)?/t  Another term I; can be estimated
just in the same way. Thus we arrive at the estimate

|I3] < Cecte¥(=—at)?/t, (5.8)

The fourth term I can be treated more easily. We have from (4.7) that

I = Ii (e Py(t) /

k=0 InlsK

(ig)l-—k-—leiﬁ(z-ﬁ—t)dn + e—thk(t) / (i§)"k'lei£("t)dn}.
nl<K

Here we note that |e’(@t)| < g=8(=-atf’/tgerét with ¢; = max{l + a,1 — a}. Therefore,
letting x; = min{x, v}, we have

|| < C(Q +t)~lemt / (1+ |E])} (|| 4 | 4@ )dn < Cete 2@/t (5.9)
Inl<K
for suitably small 4, where 0 < ¢ < ;.

Finally, we estimate the term Is which is rewritten by using the expression of Go in
(4.1) as

I5 = / (ié)le—pfateif(z—at)dn.
[nl2r

We have
|Is] < / €[} |e~#"| |ee—et)|dn < Ct~"F e~ te~1m—et/2, (5.10)
Inl2r

provided that 4 is suitably small, where 0 < v < 4.
All these computations from (5.6) to (5.10) prove the desired estimate (5.3) for |z —
at|/t < 1.

Case 2. Next we consider the case where |z —at|/t > 1 and 2 —at > 0. (The case where
|z — at|/t > 1 and z — at < 0 can be treated just in the same way and we omit this final
case.) In this case we take ( = d by (5.5) so that £ =7 + 4.
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For the term I, 1, we see that Re(£2) = n? — 62 and Re(ié(z — at)) = —é|z — at|. Also,
we find that e~9l7-atl < g~8t/2¢-dlz—atl/2 because of |z — at| > t. Therefore we have

lIl,ll < C Ie—p{”t' |§|l+1(1 + |§|2t)80|5|3t|ei§(z—at)Id,n < Ce—'y;te—6|z—at1/2 < Ce—'y(t+|zl)’
Ini<r

provided that 6 and r are suitably small, where 0 < v < 73 < §/2.For the term I,
noting that Re(ifz) = —dz < —é|z — at| + ||dt, we have

12| £ Ce—t / |§|leCIEIt|eiez|dn < Qe e~ dle=atl < Ce—v(tﬂx‘)’

Inlsr

provided that 6 and r are suitably small, where 0 < ¢ < 1 and 0 < vy < min{c, 6}. Thus
we have

|I| < CemitHah) - (5.11)

Similarly, for the term I, I3 and I, we can replace the factor éjz — at|?/t in (5.7), (5.8).

and (5.9) by d|z — at| and obtain
||, |Zsl, |1a] < Ce~te~dl=—otl < Cem (e, (5.12)

provided that é and r are suitably small and K is suitably large, where c is a certain
positive constant and 0 < ¥ < min{c,é}. Also, for the term I5, we have

|Is| < / €[ e~ |e% == |dn < Ct~5 e mte-tle—atl/2 < oy—"Fe700+a)  (513)
Inl2r

provided that 4 is suitably small, where 0 < v < v, < §/2. All these observations show
the desired estimate (5.3) for |z —at|/t > 1 and hence the proof of Lemma 5.1 is complete.
a

The pointwise estimate of 8RR (t,z) given in Lemma 5.1 contains the additional
singularity at t = O (see the term I5 in (5.13)). For the proof of Theorem 3.1 we must
remove this singularity. To this end, we recall (4.6) and write

G(t,€) = GO, &) + RY(¢,€) (5.14)

for each [ > 0, where G (t, &) is given explicitly in (4.7). We write the Fourier inverse
transform of (5.14) as

G(t,z) = GO(t,z) + RO(t,z), (5.15)

where 8. G (t, z) was given explicitly. We show that the remainder term RY (¢, z) satisfies
the pointwise estimate given in (3.11):

Lemma 5.2 For each l > 0, we have the followz'ng pointwise estimate:
ILRA(E, 2)] < C(1 + t)~Fe~cl=—a’/t 4 Ceclt+a) (5.16)

for any t > 0, where C and c are positive constants.
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Proof. We have as the counterpart of (5.4) that

2n8,RY(t2) = [ (1) Rt
= (i€)'Ge*>dn + / (i€)'Ge®=dn
/I;ilsr r<ini<K (5.17)
s [ GerRQean - [ (ie)CQekean
[n|2K inl<K
=Ji+Jp+ J3+ Jy,

where ¢ = 7 + i¢. Here we have used the relation RY = & — GY in the regions || < 7
and r < [g] < K. To estimate the term J;, we compare it with I in (5.4). In the present
case, it suffices to use the expression (4.4) of G instead of the expression (4.1) of Ro. This
suggests that all the estimates for I; in the proof of Lemma 5.1 are valid also for J; if we
replace the exponent | + 1 appearing in the estimates for I; by [. In particular, as the
counterpart of (5.6), we have

L] < O+ t) 5 ee—ot)?/t

for |z — at|/t < 1. The other terms in (5.17) are just the same as those in (5.4), namely,
we have J, = I, J3 = I3 and J; = I;. (Here we do not have any term like I5 having the
additional singularity at ¢t = 0.) These observations give the desired estimate (5.16). This
complete the proof of Lemma 5.2. m]

Now, in order to complete the proof of Theorem 3.1, we show the estimate (3.11) for
8. RY(t,z). Namely, for each [ > 0, we show that

|8ERO(t, )| < Ct~ 5 (1 + t)~hec=—a/t 4 Cgclt+ia) (5.18)

for any ¢ > 0. To see this, we recall the relation R® = RY) — G, and estimate the right
hand side of this equality. For the first term, we apply the estimate (5.16). For the second
term, by a straightforward computation, we have |8.Go(t, z)| < Ct~'F e~%==2"/t. Thus
we obtain

|BERO(t, )| < Ct~F e~ (=-et/t 4 Ce=elt+lah, (5.19)

A combination of the estimates (5.3) for ¢t > 1 and (5.19) for 0 < t < 1 yields the desired
estimate (5.18). This completes the proof of Theorem 3.1. [

The proof of Theorem 3.2 is similar to that of Lemma 5.2 and omitted here.

6 Global existence and decay

In this section we study the initial value problem (1.2), (1.3) and prove the global existence
result stated in Theorem 2.1. First, we rewrite the equation (1.2) as

Ut — Ugx + Ug + AUy = —g(u)a:a (61)
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where a = f(0) and g(u) := f(u) — f(0) — f'(0)u = O(u?). Then, applying the Duhamel
principle, we transform the problem (1.2) (or (6.1)), (1.3) into the integral equation

u(t) = G(t) * (uo + u1) + H(t) * ug — /Ot G(t ~ s) * g(u).(s)ds, (6.2)

where G(t,z) and H(t,z) are the fundamental solutions to the linearized equation (3.1)
and are defined in (3.8).

We want to solve the above integral equation by applying the contraction mapping
principle. For this purpose, we define the mapping ®[u] by

®[u](t) := G(t) * (uo + u1) + H(t) % up — /Ot G(t — 8) * g(u)(s)ds (6.3)

and put
Qo(t) := G(t) * (uo + u1) + H(2) * uo. (6.4)

Let us consider in the Banach space X defined as follows: For 1 < p < oo,

X = {u € C([0,00); W N L*); Jlullx < oo},

lullx = sup [[u(®) |z +sup (1 + £)30=P 4| 9,u(t)|| . (6.5)
t>0 t>0
and for p = oo,
X := {u € C([0,00); L') N L*((0, 00); W™®); ||ullx < oo},
llullx := sup lu(t)l|zs + sup (1 + t)||Bzu(t)|| L. (6.6)
>0 >0
It is also useful to introduce
llully := sup |[u(t)|| + sup (1 + )3 Ju(t)|| s (6.7)
t>0 t>0
Notice that T
u(®)llze < llully( +¢)~30"%) (6.8)

for each ¢ with 1 < ¢ < oo, which follows from the inequality |[ullze < [Jul|pe’®|Jull}4
and the definition of ||u|ly. Also, we see that |jully < C.|lullx, where C, > 1 is the
constant appearing in the Gagliardo-Nirenberg inequality ||u}|z < C,||0,u]|%,||u||}7® with
0=1/(2-1/p).

Let us introduce a closed convex subset S of X by
Sr={u € X; |ullx < R}, (6.9)

where R > 0 is a parameter which will be determined later. We wish to show that for a

suitably chosen R, ® becomes a contraction mapping of Sg. To this end, we prepare the
following: ‘
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Lemma 6.1 (i) Let 1 < p < 0o and assume that ug € WP N L! and u; € LPN L. Then
we have

[@ollx < CoEo (6.10)

for some positive constant Cy, where Eqy is given in Theorem 2.1.
() Letu, v € X. For any given positive number M, we suppose that ||u(t)]| L=, ||v(t)]lze <
M fort > 0. Then we have

18u] — 2[]lix < Cr(llullx + llvllx)lle —vilx, (6.11)
where Cy; = C1(M) is a positive constant depending on M.

Proof. We obtain the proof of (i) by using Corollary 3.3, and omit here. Let us show (ii).
It follows from (6.3) that

() - 204} = - [ 8.6(t =) (o) - s)) e} (612)
Here we claim that

llg() = g(v)llze < C([lullze + [[V]lze=)llw — vl Le,
192(g(u) — gWNllzs < C{(lullzee + [lv]lee) 10w — v}l o (6.13)
+ (105ullze + 10a0ll22)llu — vl L= },
provided that ||ullze, ||v|lte € M, where 1 < p, ¢ < o0, and C = C(M) denotes a
constant depending on M. This follows from the fact that g(u) = O(u?) and hence

g(u) — g(v) = a(u, v)(u —v) with a function a(u,v) = O(|u| + |v|). Consequently, we have
in terms of || - ||x and || - ||y that

I(9(u) = 90)) @) llze < Cllully + wlly)llu = vlly (1 + £) 30973,
182 (9(u) — 9()) (®)llzr < Cllullx + Iwlx)l|u — vix (1 + £)~ 331,

where C = C(M). Now, we take the L! norm of (6.12) and apply (3.14) with | = 1,
p = q = 1. Then, using the first estimate in (6.14), we have

(6.14)

(@0 - 26 Ol < [ 10,60~ ) (9060 — 9) () sds
o (6.15)
< C(M)|[u, vlly /0 (14t — )41+ 5)~4ds < C(M)|[u, vlly,

where we wrote |[u,v]ly := (|lully + |[v]ly)||lu — v|]ly. Next, we want to estimate the
derivative of (6.12). To this end, we decompose the integral on the right hand side of (6.12)
into two pars and write ®[u] — ®[v] = ¥; + ¥,, where ¥, and ¥, are corresponding to the
integrations over [0,¢/2] and [t/2, t], respectively. For the term 8,¥;, we apply (3.14) with

165



Large time behavior of solutions to a semilinear hyperboric system with relaxation

l = 2, ¢ = 1 and then make use of (6.14). Then, writing |[u, v]|x = (||lullx+]|v|x)|u—v|x,
we obtain

t/2
18 91(8) |2 < ]0 162Gt — 5) % (9(u) — 9(0)) (5) 10
< C(M)|[u, o]ix (1 +£)7309)%,

Similarly, for the term 8,1, we apply (3.14) with [ = 1, ¢ = p and then use (6.14). This
yields

18:%(t) 1o < ftﬂ 18:G(t — 5) * 2 (g(1) — 9(v)) ()|l 1»ds

< C(M)|[u,v]|x (1 +t)~ 20—,

Thus we have shown that

102 (@[u] — @[v]) @)llr < CM)|[u, ]| x (1 + 1)~ 204, (6.16)

The desired estimate (6.11) follows from (6.15) and (6.16), and hence the proof of Lemma
6.1 is complete. ]

Proof of Theorem 2.1. We determine the parameter R by R := 2CyEq, where Cj is
the positive constant in (6.10). For this choice of R, we suppose that u, v € Sg. Then,
we have ||lul|x < R and hence |lul]ly £ C.jjullx < C.R (the same for v), where C, > 1
is the constant appeared in the previous Gagliardo-Nirenberg inequality. Therefore, we
have from (6.11) that

I1®fu] - @v]lix < Ci(llullx + lvlix)llu — vllx < 2CRlju — vllx = 4CoCa(Eo) Eollu — vl x,

where the constant C; = C,(M) in (6.11) is evaluated at M = C.R = 2C,CyE; and is
denoted by Cy(Eyp). Consequently, we have

1&fu] - 2[lllx < ~llu - vllx, (6.17)

provided that Ey is so small that 4CoCy(Ep)Ep < 1. On the other hand, letting v = 0 in
(6.17), we have

|@[u] — 2[0]]|x < R/2.
Therefore, noting that ®[0] = &, and using (6.10), we obtain

I2[ullx < l1®ollx + l|®[u] - @[0]]lx < CoEo + R/2=R (6.18)

Thus we have shown by (6.17) and (6.18) that ® is a contraction mapping of Sg, provided
that 4CoCa(Ep) Ep < % Hence we can conclude that the mapping ® admits a unique fixed
point u in Sg, namely, we have u = ®[u]. This fixed point u verifies the estimate (2.1)
and is the desired global solution to the problem (1.2), (1.3). Thus the proof of Theorem
2.1 is complete. O
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7 Asymptotic behavior

The aim of this section is to prove Theorem 2.3 concerning the asymptotic profile of the
solution to the problem (1.2), (1.3).

We denote by W(t,z) be the nonlinear diffusion wave defined by (2.4) with M =
J(uo + u1)(z)dz and put w(t,z) = W(t + 1,z). Then this w(t, z) solves (2.5) and hence
the integral equation

w(t) = Go(t) * wo — g ‘[ Go(t — 8) * (w?)z(s)ds. (7.1)

Here Go(t,z) is the fundamental solution to the linearized equation of (2.5) and is given
by (3.9), and we(z) := W(1,z) is a rapidly decreasing function satisfying [ wo(z)dz =
M = [(uo + u1)(z)dz and :

“'IU()le.p + ”wQHL} < C|M| < O“’LLQ + ulnL: < CEQ (72)

Let u(t,z) be the global solution to the problem (1.2), (1.3) which was constructed in
Theorem 2.1 as a solution to the integral equation (6.2). In order to study the difference
u(t, z) — w(t, z), we subtract (7.1) from (6.2), obtaining

(u — w)(t) = (G — Go)(t) * (uo + u1) + Go(t) * (uo + u1 — wo)

+ H(t) *xup — /Ot G(t - s) * (g(u) — gu2/2)x(s)ds 3
7.

¢ t
- -’;— /0 (G = Go)(t — 8) * (u*)a(s)ds — g /0 Go(t — 5) * (u? — w?);(s)ds
=L +L+L+1L;+1s+ I

We want to estimate the right hand side of (7.2). To do that, we need the following LP-L?
estimate for the solution operator Go(t)*.

Lemma 7.1 ([2]) Let 1 < ¢ < p < oo, and let | > 0 be an integer. Then we have
18LGo(t) * $llzs < CtHE274|g) 1. (74)
Also, if [ ¢(z)dz = 0, then we have
_l(1-1)_4 _1
18LGo(t) * Bllzs < CEIED5 (1 + )73 1@ 3. (75)
Here C and c are positive constants.

The proof is given in Iguchi, Kawashima [2], and is omitted here.
Now we estimate (7.3) by introducing the following quantities:

M(t) = oi‘i‘it(l +8)1|(u — w)(s)ll, N(t):= Ji‘i‘it(l + 8)30=D1¢)| 8, (u — w)(5)|| s

(7.6)
~ where ¢ is any fixed constant such that 0 < ¢ < %

Proof of Theorem 2.3. The proof consists of three claims below. First, we show the
following L! estimate:
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Claim 7.2 There is a positive constant §;(¢) depending on € such that if Ey < 6;(¢), then
we have

(= v)()|r < CEL(1 +1)73*. (7.7)

It suffices to estimate each term on the right hand side of (7.3). For the term I, we
have from (3.16) that

Ml £CQA+ t)’% lluo + usljzr < CEo(1 + t)‘ﬁ.

Also, since [(uo + u1 — wp)(z)dz = 0, we have from (7.5) that
IEallzr < CA+t) " Hluo + u ~ wollyy < CEY(1+18)7E,
where we used (7.2). For I3, we apply (3.15) to obtain
Isllzs < O(1L+ 1) lullzs < CEo(1 +2)73.
Next, we estimate Iy by applying (3.14) with [=1,p=¢=1 as

[ Lallz: < /ot 10:G(t — s) * (g(u) - ﬂu2/2)(s)I|L1ds < CE31+ t)‘é log(2 + t),

where we have used the fact that g(u) — fu?/2 = O(|u|?) and the estimate (2.1). The
term I5 can be estimated similarly. In fact, we have from (3.16) with [ =1, p=¢g=1
that

sl < C/ot 182(G = Go)(t — 5) * (v*)(s) | 1ds < CEJ(1 +1)7% log(2 + ¢),

where we used (2.1). (A more delicate computation can give the present estimate without
* the factor log(2 +t) but we omit it.) Finally, we estimate Is by applying (7.4) with [ = 1,
p = q = 1. We obtain

ellzr < C/: 18:Go(t = 8) * (u* — w?)(s)|ads < Ce) EoM(£)(1 + 1) 4+

for some constant C'(¢) depending on e. Here we have used the inequality ||uZ — w?||;1 <
lu + wfre|lu — w||L1 together with the estimates (2.1) and (2.7) and the definition of
M(t) in (7.6). Summarizing all these estimates, we arrive at

l(w=w)®)||z2 < CE,(1+t) % +CE2(1+1) Y log(2+1) + C(e) EbM (1) (1 +£)~3+. (7.8)

Since log(2 +t) < C(e)(1 + t)%, this yields the inequality M(t) < CE;, + C(¢)E2 +
C(e)EoM (t), from which follows the desired estimate M (t) < CE, if E; is so small that
C(e)Ep < . Thus we have shown the L' estimate (7.7).

Second, we derive the following L estimate:

Claim 7.3 We have
l(w = v)(®)llze < CEL(1 +18)7H5, (7.9)
provided that Ey < 83(¢) with a suitably small §;(¢).
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For the term I, we apply (3.16) with p = 0o, ¢ = 1 and obtain
Iillze < CtE(L+8) " |Jup + w2 < CEot™2(1 4 1)1
Also, for I, we apply (7.5) to obtain
Iz < CEH(1+ 8 F luo + us — woll g < CEt™3(1+14)75.
Similarly, applying (3.15) with p = 0o, ¢ = 1, we have
| Lllze < C(1+ 1) ugllr + Ce*|uolire < CEo(1 +1¢)7"

Next, we estimate I by applying (3.14) withl=1,p=00,¢g=1 as
t
Mz < [ 10.6(6 =) + (9(u) = 6u2/2) (5)mds < CEY(1+ ) log(2 +9),
0

where we used (2.1). Similarly, we estimate I5 by applying (3.16) with = 0, p = oo,
g = 1. We obtain

sl < C’/: (G — Go)(t — s) * B(u?)(8)|| Lods < CEZ(1 +1t) " log(2 + ),

where we have used the inequality [|8;(u?)||zr < Cllullz-||8zullzs with L + 1 =1 and the
estimate (2.1). Finally, we estimate Is. We apply (7.4) with [ = 1, p = o0, ¢ = 1 and
then with l = 1, p = ¢ = co. A combination of the resulting two estimates gives

t .
el = < C/ 18:Go(t — 8) * (u® = w?)(s)llz=ds < C(e) BoEa(1 + )77
0

for some constant C(e) depending on €. Here we have used the inequalities ||u? —w?|| 2 <
lu + wl|rellu — w2 and |Ju? — w?||re < ||ul2e + ||w]|3« and the estimates (2.1), (2.7)
and (7.7). Since log(2 + t) < C(g)(1 + t)¢, these observations show that

(% — w)®) |l < CEt~3(1+t)"% + C(e) BoEr (1 + )1, (7.10)
Therefore, assuming that C(e)Ey < 1, we obtain
I — w)()[lzw < CEt™H(1 + )"+

This combined with (2.1) and (2.7) gives the desired estimate (7.9).
It remains to prove the following estimate for the derivative:

Claim 7.4 We have }
182 (u — v)(B) 2o < CEr(L + 1)~ 30571+, (7.12)

provided that Ey < 83(¢) with a suitably small §3(¢).
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In the following we put v = (1 — %). Notice that 0 <y < § for 1 < p < co. For the
term 8,1, we apply (3.16) with { = 1, ¢ = 1 and then with | = 1, ¢ = p, and combine
them to obtain

18:Tallzr < O (1 4+1) ™ (Jluo + wrllzs + lluo + willz») < CEot~3(14+1)774.

Also, for 8,1, we apply (7.5) with | = 1 and then (7.4) with [ =1, ¢ = p. A combination
of the resulting two estimates gives

"a,,,lzum < Ct—%(l +t)—7—% (”’U,o + Uy — WO”L{ + ”’LLO +u; — wolle) < CElt—i(l + t)—‘Y—%.
Similarly, applying (3.15) with [ =1, ¢ = 1, we have
|I8,,;I3[|Lp S C(l + t)_7_1||U0I|L1 + Ce_ce”’ll,o”wl.p S CEo(l + t)_‘y_l.

Next, we we want to estimate the derivatives 0,1;, j = 4,5,6. To this end, we
decompose each integral I; into two parts and write I; = I, + I, 2, where I, and I;, are
corresponding to the integrations over [0,¢/2] and [t/2, t], respectively. Now, for the term
0141, we apply (3.14) with [ = 2, ¢ = 1, obtaining

t/2
10zTa]lLr < / 182G (t — 8) * (9(u) — Bu?/2)(s)llLeds < CEJ(1+ )™ log(2 + t),
0
where we have used the estimates || (g(u) — Bu?/2)(s)||: < CE§(1+s)~" and |8 (g(u) —
Bu?/2)(s)|ls < CE3(1+ 8)~""1~% (I = 0,1) which follow from (2.1). Also, applying
(3.14) with [ = 1, g = p, we have
t
10zTa2][ e < _// 18:G(t — ) * 8- (g(u) — Bu?/2)(s)(1pds < CEJ(1 + 1)1
t/2

On the other hand, for the term 0,5, we apply (3.16) with [ = 2, ¢ = 1 and then with
l=1, ¢ =1, and combine them to obtain

t/2
1021510l < C /0 182(G — Go)(t — 8) * (u?)(s)|eds < CEJ(1 + 1),

where we have used the estimates ||(u?)(s)|lx < CE2(1 +t)~% and ||8;(u2)(s)||1,p <
CEX1+t)% (I=0, 1). Also, applying (3.16) with [ = 1, ¢ = p, we have

t
18:15.20l e < C/ 16:(G — Go)(t — 8) * 8z (u?)(s)||zrds < CEZ(1 + )™ log(2 +t).
¢/2

Finally, we consider 0;lg; and 8;Js2. For the term 9,15, we apply (7.4) with [ = 2,
g =1 and then with [ = 1, ¢ = p, and combine them to obtain

t/2
18:Tollzs < C j 182Gt — 8) % (u? — w?)(s) | ods

< (t—s)ta+t-s)H(|(w? - w)(8)l + 10a(u? = wP)(8)llzs)ds.

0
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Here we observe that |[u? — w?||;1 < |lu + w|z|lu — wljpr and [|8:(u? — w?)|jr <
10:(w®)|Le + ||0z(w?)|| s Therefore, making use of (2.1), (2.7) and (7.7), we obtain

t/2 .

0z I61 ]l < C’EOE1/ (t— s)’%(l +t—8)"7"3(1+5) " ds < C(e)BoEy (1 +t)™ 71
0

for a constant C(e) depending €. Also, applying (7.4) with [ = 1, ¢ = p, we have

t t
18Il < C / 18:Go(t—s) 8 (W ~w?)(s)| pds < C / (t=5)~3 184 (12 —w?)(s)l| ods.
t/2 t/2
Here we observe that

16z(u* ~ w?)llze < llu + wllzeo |82 — w)llzs + 10s(u + w)|| o lu — wl| e

We know from (2.1) and the definition of N(t) in (7.6) that the first term here is bounded
by CE,N(t)s™3(1 + s)=""'*¢. Also, using (2.1) and (7.9), we can majorize the second
term by CEoE; (1 + s)~"~#+¢. Consequently, we obtain

t
”azIS,2||LP s C(EON(t) + E()El)/ (t —_ 3)_53—5(1 + s)—'y—l—sds
t/2
< C(EoN(t) + EoBy)(1 +t)7 1,

We can summarize all the above computations as

182(u—w) (el z» < CEt™H(1+8)77"5 + C(e) B Ba (1 +£) 7Y + CEoN (£)(1 +8) 7.

’ (7.12)
This yields N(t) < CE; + C(e)EoE; + CEgN(t), from which we can deduce the desired
estimate N(t) < CE, for suitably small Ey, say, Ey < d5(¢). Thus we obtain

182 (w = w)(t)|lz» < CELt™3(1 + )™~ 4te.

which together with (2.1) and (2.7) yields the desired estimate (7.11). This completes the
proof of Theorem 2.3. 0O
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