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Scattering problem for nonlinear Klein-Gordon equations
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1 Introduction

In this note, we will survey a series of recent joint works with P.I. Naumkin, [11], [12],
[13], [14] for the nonlinear Klein-Gordon equation with a power nonlinearity

- (1) Cug— Autu=pluftu, (tz)eR xR

wherep > 3,p e Rforn=1p>1+2, pcCforn=1andp > 1+;i—§,p€Cfor
n > 2. When p <0, and 1 + 2 < p < p* (n), where p* (n) = oo for n = 1,2, p* (n) = &£2
for n > 3, the completeness of the scattering operator for the nonlinear Klein-Gordon
equation (1) in the energy space was established in papers (1], [2], [9], [26], [27] by using
the Morawetz type estimates and the energy conservation law for n > 3. This result was
extended in [24] to lower space dimensions n = 1,2. The condition u < 0 can be removed
(see [29]) in the case of small initial data. If we are interested in the global in time
existence of solutions to the Cauchy problem for the nonlinear Klein-Gordon equation, it
was shown in [29] for the case of po (n) < p < 1+ £ by LP — L? time decay estimate of -

- the fundamental solution obtained in [20], where py (n) is a positive root of % g;—ip > 1.

When n = 3,p = 2, geﬁp = 1, then the L? — L7 time decay estimates from [20] can
not be applied to the C%,uchy problem (1) even if the nonlinearity is smooth. In the case
of the Cauchy problem, the lower order p was treated in papers [16], [28] and the global
existence of small solutions to the quadratic nonlinear Klein-Gordon equations in three
space dimensions was studied by the method of the vector fields and the method of normal
forms, respectively. In [6], the vector fields method was refined and applied for the case
of p>1+ %, n=1,2,3, u € C under the condition that the initial data have a compact
support (see also [19]). The Cauchy problem (1) for n = 1 with a cubic nonlinearity (p = 3)
was studied by [7], where the sharp L™ - time decay estimates and nonexistence of the
inverse wave operator were obtained. The asymptotic profile of small solutions to (1) for
p =3 and n = 1 was found in [3] for the case of regular data having a compact support.
These methods do not work for the power nonlinearity of (1) since the nonlinearity is not
regular enough. The quadratic nonlinear Klein-Gordon equation for two space dimensions
was considered in papers [25] and [4], where the global existence of small solutions was
proved (see [25]) by using the method of normal forms [28] and the time decay estimates of



linear evolution group [5], and the sharp asymptotic behavior of small solutions was found

(see [4]) by virtue of the vector fields method [16]. Note that the critical nonlinearity

|u| u was out of the scope of these works since it is not smooth. Furthermore, the Cauchy
problem (1) with cubic nonlinearities depending on wu, u, Uz, Uz, Uz Was studied in the
one dimensional case by (23], [22], [15], where the existence of small solutions in the
neighborhood of the free solutions was proved , when the nonlinearity has some special
structure, and if the initial data are small, regular and decay rapidly at infinity. Thus
we can see that the cubic nonlinearity is not necessarily critical in the one dimensional
case (the critical nonlinearity |u|* u was excluded there). If the data are small, regular
and have a compact support, then sufficient conditions on the cubic nonlinearities which
admit global existence and asymptotic behavior of small solutions were given in [3]. This
result was generalized in [31] to the cubic nonlinearities including dissipative terms, such
as — |us|? uy. The nonlinearity |u|2 u was included in these papers, so that the asymptotic
profile differs from the free one. Cubic nonlinearity |u|2 u was considered also in paper [30],
where the sufficient conditions on the complex initilal data were found which yield global
existence and the uniform time decay of order t~2. However the asymptotic behavior
of small solutions was not given for the case of complex data. Recently the asymptotic
behavior of solutions to the nonlinear Klein-Gordon equation with cubic nonlinearity was
considered in papers [17], [18] by applying the hyperbolic polar coordinates of [16], which
implicitly assume a compact support for the solutions (as in papers [3], [4], (6], (7], [16],
[30], [31] ), therefore these methods are not acceptable for the final state problem. Whereas
many works are devoted to the Cauchy problem (1), there are few results on the final state
problem.

We put
= l ‘ y y -1 0 o _1_ . . -1
w=g (au+zb(zV) ut), W =g (au0+zb(zV) ul),
L= Eo; +1A(iV)
and
N (w) = £ 69) (2 w)P (2 w),

where

= (D)vm () = (1) 2)

Then the nonlinear Klein-Gordon equation (1) can be rewritten as a system of equations

2) {ﬁw=N(w), (t,z) € R x R™,

w(0,z) =w’(z), z € R™

The direct Fourier transform ¢ (£) of the function ¢ (z) is defined by

Fo=¢=m1 / @04 (z) da,

Rn
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then the inverse Fourier transformation is given by

Frio=(am)F [ 00 de

n

Denote the usual Lebesgue space L? = {¢ € §';||¢||p» < 00}, where the norm ||@|ly, =

(frn 19 ()P dx)% if 1 <p<ooand ||@llpe = ess.supyern [¢ ()] if p = co. Weighted
Sobolev space is

Hp* = {4 €8 : llgps = |@* 10)" || | < oo},

where m,k € R, 1 < p < o0, (z) = y/1+ |z|%. We also write H™* = HT"*. The usual

Sobolev space is H™ = H;"’O, so the index 0 we usually omit if it does not cause a
confusion. Different positive constants we denote by the same letter C.
We introduce the free evolution group

e—i(iV)t 0
Ut)= ( 0 i )

The operator

J = (iV)U (t) zU (-t) = E (iV) z + i AtV

is useful for obtaining the large time decay estimates of solutions. Since [z, (iV)?] =

a (iV)*"2V it is easy to check that J commutes with £, i.e. [£,J] = 0, however it is
difficult to calculate the action of J on the nonlinearity A/. Therefore we use the first
order differential operator

P = E (tV + z8;)
which is closely related to J by P = Lz — iAJ, and it almost commutes with £, i.e.
[£,P) =iA (V)L VL (see [16)).

2 Results for the super critical case

n 1\ 2
In this section we state the existence of the inverse wave operator W' : (HH‘E’I) —~

n 1\2
(HH’I’I) for super critical case and n = 1,2 which were shown in [13].

n 1\ 2
Theorem 2.1. Let the initial data w® € (Hl"‘i’l) have a small norm ”w0”H1+ﬂL,1- Then

w2
there erist unique solution U (~t) w € C ([0, 00); (HH?'I) ) of the Cauchy problem (2)
such that

1-2

o @)l < 0 +1)73 078
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for allt > 0, where ¢ = o0 forn =1 and 2 < g < co for n = 2. Furthermore there exists
n 1\ 2
a unique final state wt € (H“’i’l) such that

(3) ”U (=) w(t) - w+”H1+!z‘,1 <CO+t)™"
forallt >0, whm'y=g(1-%)(p_1)_1>0

We next consider the final state problem for the nonlinear Klein-Gordon equation

Lw =N (w),
@ {Ilw(t)—U(t)w+lle1iOast——>oo

n o\ 2
with a final state wt € (Hl""z"l) ,n=12

‘ .
Theorem 2.2. Let the final state wt € (H1+5’1) . Then there ezist a time T > 0 and
n i \2
a unique solution U (—t)w € C ([T,oo); (H“‘i’l) ) of the final state problem for the
nonlinear Klein-Gordon eguation (4) such that
n(1-2
v Ollg < €1+ 07%)

forallt > T, where ¢ = oo forn =1 and 2 < ¢ < o© for n = 2. Furthermore the
asymptotics

U (—t)w (t) — wh||ggrega < Ct7
is valid for allt > T, where')f:%(l—-é-) p-1)-1>0

Remark 2.1. By Theorem 2.2, we can define the wave opemto; W, which maps any
n 2 n

final state wt € (H“'?’l) to the solution U (—t)w € (HH"'Z’I) if t > T. If we choose

a sufficiently small norm |w* || ;1+3,1, we can take T = 0. Namely, the wave operator

2 n 1\ 2
W, :wt e (H1+-’—;,1) —uwle (H”f‘l)

n\2
is well defined in the neighborhood of the origin in the (H”’i’l) space. Furthermore if

n i\ 2
wO is also sufficiently small in the norm of (Hl"’f'l) , then by applying Theorem 2.1 for
- the negative time, we can define the inverse wave operator

n o\ 2 n i\ 2
Wil e (H*HY) Swe (H“‘?'l) .
This means that the scattering operator

Sy =Wlw, :wt e (H1+%’1)2 —sw— € (H1+§,1)2

v .
is well defined in the neighborhood of the origin in the (H”T") space.
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In [14], we extended the above results for higher space dimensions. However we can
not consider the neighborhood of the critical value p = 1 + 2/n unfortunately.

Theorem 2.3. Let 1 + ﬁﬁ <p<l1l+ % and n > 3. Suppose that the initial data
w0 € (Hﬂ’l)z, B = max (3,1+ 2) have a small norm |w®||gg6..- Then there exists a
unique solution U (—t)w € C ([0,00); (Hﬁ,l);") to the Cauchy problem (2) such that

—nf{1-2

o @lge < €@ + 73 070)
for allt > 0, where 2 < ¢ < ;»235 Furthermore there exists a unique final state wt €
(HP1)? such that

Q [V (=) () — w{lggan < O L4177
for allt >0, wherey =% (p—1) (1—%) —-1>0.
Theorem 2.4. Let 1 + ;%_—2- <p<1l+%2andn > 3. Suppose that the final state wt €

(Hﬁ'1)2, B = max (3,1 + 2). Then there exists a time T > 0 and a unique solution
U(-t)we C ([T, 00); (Hﬁ'1)2) of the final state problem (4) such that

v @l < 0 +9)F07F)
forallt > T, where2 < g< ;?;’12- Furthermore the asymptotics

U (=t)w () - w"'“w,,1 <ct™
is valid for allt > T, wherey =3 (p—1) (1— %) ~1>0.

Remark 2.2. By Theorem 2.4, we can define the wave operator W, which maps any final
state wt € (H‘B’l)2 to the solution U (—t) w € (H‘f”l)2 ift > T. If we choose a sufficiently
small norm ||wt||ys.1, we can take T = 0. Namely, the wave operator

W, :wt e (Hﬁ'l)2 —uwle (HB’I)2

is well-defined in the neighborhood of the origin in the (H‘B'l)2 space. Furthermore since

the initial data w® are also sufficiently small in the norm of (Hﬁ’1)2, by applying Theorem
2.8 for the negative time we can define the inverse wave operator '

wol:uwle (H/S”l)2 —w” € (Hﬂ’l)z.
This means that the scattering operator
Sy =WI'W,wt e (Hﬂ’l)2 —w” € (_Hﬂ’l)2

is well-defined in the neighborhood of the origin in the (H’G’l)2 space. Our results stated
above include the quadrtic nonlinear Klein-Gordon equation. Therefore in view of the

scattering problem, our results are extensions of the previous works by Klainerman [16]
and Shatah [28]
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3 Results for the critical case

We consider the final state problem to the nonlinear Klein-Gordon equation

(6) { U + U — ugg = pud, (t,z) € R xR,

llu(t) — Fs (¢)llp2 — 0 as t — oo,

where ¢ € R. The function Fg (t) we call a final state, defined by the final data u.. If the
final state Fy (£) can be taken in the form Fy (t) = 2ReU (t) u, where U (t) = F~le~#OF
is the free evolution group, (note that the definition of U (t) is different given in the previous
section) (z) = V1 + 22, and the final problem (6) has a nontrivial solution, then we say
that there exists a usual wave operator for the final state problem (6). However the cubic
nonlinearity is critical in one space dimension and it is impossible to find a solution in the
neighborhood of the free final state Fg (t) = 2ReU (t) us (see (7], Theorem 1 and (8], [21]
for higher space dimensions). So in order to find a solution of (6), we need to modify the
time dependence of the final state Fg (t) as follows

Fs (t) = 2ReU (¢) w4 (1),

where

Dy (8,€) = Ty (€) 3O 184(O)1" ot

is defined with a given final data u. satisfying suitable conditions stated below. Let u
be a solution of the nonlinear Klein-Gordon equation (6), then defining new dependent

variables 7 = } (1 + 1 (i0,) Bt) uand ¥ = 3§ (1 — i (i0) " Bt) u we get a system of
equations
- O+ §(10,) T = § (10:)”! [T+ T (T +T),

8T — i (i0;) T = —& (i8,)  u+ 3> @+ D).

In the case of the real-valued function u we have ¥ (t) = % (t), therefore (7) can be written
as

' ~ .. ~ MK -1~ = 3
(8) Su+1(16;) U = 5 (i0z) ™" (u + u) .
~ Our main result for the final state problem is
’3_%

- 1
Theorem 3.1. Let the final data u, be a real-valued function and uy € Hp ,2<p<
oo, with a small norm ||u+]| 13- - Then there ezists a unique solution @ € C ([1,00); H')

of equation (8). Moreover the asymptotics is true

“ﬁ(t) — U (t) F i, (€) 2 @8+ loge

| <ct,
H!

wherebe(% 5—-51;),2<p$oo.
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Corollary 3.1. Let the final data u,. be a real-valued function and iy € Hp I ,2<p<
o0, with a small norm |5 || RS . Then there ezists a unique solutionu € C ([1,00) ; H')

of the final state problem to the nonlinear Klein-Gordon equation (6) such that

“ — 2ReU () F 'y (£) 71O ‘“+(5)'2‘°5t' <ot
H

wherebe (3,3 -%), 2<p< oo

We now explain our strategy of the proof used in [11]. It was shown in the first theorem
of [11] that

U(t)¢= )10 (x) (i) e X §(0) +0 (+)

uniformly with respect to z € R, where x = £, ¢( = (3;%5> -} <b<land 8(x) =1 for
Ix] < 1; 8 (x) = 0 for |x| = 1. Since the cubic nonlinearity is critical we need a modification
of the final state. Assuming that the solutions have the same time decay rate as that of
the linear equation we find that the leading term in the large time asymptotic behavior of
the nonlinearity is

2l OusPU O =00 (S0 ©F 2 @),

where the notation a ~ b means that the difference a — b is a remainder. Therefore we
need to choose a phase function to remove this term taking the modified final state

Dy (t,€) = Ty (€) eFir(O 12+ ()" logt

as stated above. Define the function @ (t,£) as a solution of the ordinary differential
equation

209 = SO DY
+it" 1B~ ()71 Z A \/;)ZD‘,,,.E“’J' (€3 o¥T
=2 ’

where D,, is the dllatlon operator defined by D¢ = (iw)~/% ¢ ¢(2),E=e 8 Ng= %
A3 = —2“1 Ay = -8, wj =20; —3, a2 =3, 03 = 1, oy = 0, with a final state @ (¢,£) —
Wy (t,€) as t — co. We get from (8)

3 (08) =L g1 0 F (3 +7)".

Hence we find for the difference
d i = —~ ’I: — i ~ = 3
T (e KU~ @ (¢, 5)) = -g— ) tet@F ((u + u)
—&*f**“ﬂuﬂmuofmma

9 —i=1lpr-1 —zt(E) w 3~ 730 .
()4 it LF Zz,\ wJD E¥i ()} D% D



Considering the leading terms of the large time asymptotic behavior for the nonlinearities

@~ ¢ () F7HE) 101 @,
@PE~ U@ F ol TR F 18,

B FD), TxUGF D)
we can see that the right-hand side of (9) is a remainder, indeed through the ordinary

differential equation of @ we will show the last three terms |i|* %, 63,53 are considered as
non resonance terms and have a better time decay, so we have the desired result.

We next consider the initial value problem for the cubic nonlinear Klein-Gordon equa-
tion

(10) Ut + U = Uzp = pu®, (t2) ERXR,
u(0) = ug,us (0) = u1,z €R

where 4 € R and the data ug,u; are real valued. Define a new dependent variable u =
}(v+iia,)™ vt) and initial data uo = § (v +1 (i;) ™ vl) with (z) = y/1+|ef2In
the case of the real-valued function v the nonlinear Klein-Gordon equation (10) can be
rewritten as

(11)

where £ = 0; + 1 (i0,) and

Lu=N(u), (t,z) € R xR,
{ U(O,.’B) =Ug (.’D), z € R,

N (u) = 4ip (i6;) " (Reu)®.

Then a solution of (10) is v = 2Reu.
Main result is

Theorem 3.2. Let uy € H! and the norm |uollgsr be sufficiently small. Then there
exrists a unique global solution u of (11) such that

u(t) € C ([0,00) ; H*?)
and
(), < CQA+8)7E.

Furthermore there exists a unique final state W, € Hoy NH such that

< Cedt— ¢
H1.0

u(t)-U(t) F-IW, exp (%’—1' ()2 'W.,.‘z logt)

and

o~ y — |2
FU (~t)u(t) - Wy exp (%—‘f (€2 7. 10g t) ” <car,
Heo

where v € (0, 7).
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From the result we find that there exists the inverse modified wave operator (MW,)™"
such that

(MW,)™ iy € HY — W, € HIO.
The result yields the result for the Cauchy problem (10).

Corollary 3.2. Let vo € H¥!,v; € H3! be real valued functions and the norm ||vo||ggen +
llv1)lggs e sufficiently small. Then there ezists a unique global solution v of (10) such
that

b () € C(10,00) s HA) N C! ([0,00); H*)
and
o @l < C(1+875.

Furthermore there exists a unique final state W+ € H% nHO! such that

< Clr-i
H1.0

o | s
v (t) — 2Rel (t) F~1W, exp (Ezzﬁ (€)?2 |W+| log t)

and

“]—‘U( t)v (t) — 2ReW, exp (3 lw+' logt)“ < cedri,
H%

where v € (0,1).
Remark 3.1. By [13] we have

-2

= (it)"%9 (%) (1 - ;23) { emi(p-a)?t

xw*((t?—x?)%)exp( 2 =)
-~ ) -~ 2
+0 (‘ W, exp (?_’;l_‘ ©? lW+l logt) t‘%"'}r')
H'{
where the functzon 6(z) =1 for |z| <1 and 6 (x) = 0 for |z| > 1. Therefore regularity of

W+ is needed to obtain a sharp asymptotics of solutions to (11) in L™ sense. That is the
reason why we can not give a sharp asymptotic formula of the solution u (t) in L™ sense.

U (t) F~'W, exp (—2— |W+| logt>
X

We use the operator

T = (i8z) U (¢) 2U (—t) = F 1 {£) e {45, e" QU F = (i8,) x + it,,
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which plays the same role as the operator z + itd, = U (t) zU (—t) which is an important
tool to obtain the time decay estimates of the solutions to nonlinear Schrodinger equations,
where U (t) is the free Schrodinger evolution operator defined by U (t) = F ~le=3lel’tr , see
. The free Klein-Gordon evolution group for the Klein-Gordon equation U (t) is written
as U (t) = e~¥V)t, We have the commutation relation [£,J] = £LJ — JL = 0, since
[x,(i0;)%] = a(i8;)%"28,. However it is difficult to calculate the action of J on the
nonlinearity . Therefore we use the first order differential operator

P = t@z +:rc9t

which is closely related to J by the identity P = Lz —iJ and acts well on the nonlinearity.
Moreover, it almost commutes with £ since [£, P] = —i (i8;) ™" 8L . We note here that the
operator J was used in paper [11], [12] to construct the scattering operator for nonlinear
Klein-Gordon equations with a super critical nonlinearity. We briefly explain our strategy
of the proof in this paper. Nonlinear Klein-Gordon equation (10) is considered as the
relativistic version of nonlinear Schrédinger equation

(12) i'l)t + %vmx =u Ivlz v, (t,.’B) € R x R:
v(0) = vp,z € R.

Therefore the method used in the study of (12) is used to study nonlinear Klein-Gordon
equations. The inverse modified wave operator was constructed in [10], where the main
ideas are to translate the equation into another equation by multiplying the both sides of
(12) by FU (t) and to make use of the factorization technique such that

izz 173 2
Ul = \/% / e~ 6 (y) dy
.. 2

- e"—:%_\/l:f (e%’rqs) (3) = MDFMs,

z2
where M = 57, D¢ (y) = 715¢ (%). By using these ideas, we have from (12)

i(FU(-t)v), = pFMF DM |v]? v
=t FMF | FRMU (—t) o] FRU (—t) v
= W FU(-t)o FU(-t)v + R.
It was shown in [10] that the nonlinear term is decomposed into the remainder term
R and the resonance term ut~!|FU (—t) v|> FU (~t)v. Resonance term is canceled by
replacing FU (—t) v by (FU (—t) v)exp ( flt pr=t | FU (-7) v]? dT) . Therefore a-priori es-
timate of || FU (—t) v||p, follows. In this paper we use the same idea used in the nonlinear

Schrodinger equation. Therefore we multiply both sides of (11) by FU (—t) and put

¢ = (i0;) FU (—t)v to get
@ = FU(=t) (i8N (v)
(13) = Lo+ £ (07) +0 (5F gl
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where f (¢, ) are cubic nonlinearities. The above ordinary differential equation shows
that the nonlinearity can be decomposed into resonance term i%‘it”l l|? ¢ and nonres-
onance terms f (¢, %) and remainder term O (t“% |[d>|i%14,1). It is shown that nonreso-

nance terms have better time decay through integration by parts. Furthermore we can
remove the first term of the right hand side of (13) by multiplying both sides of (13) by

t. -
exp (—- S i el r ldr) .
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