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1 Introduction and Results

We consider a time dependent problem for the Navier-Stokes equations with free interface in
a bounded domain  C R™ (n 2 2). Physically, we consider the following model. There is a
bottle which contains a half of water with stopper. Suppose we were in a space shuttle with
this bottle, then an air bubble floats in water under zero gravity as the right-hand side of the
picture.

We formulate such a model mathematically. Let Q7 C £ be occupied by the fluid of viscosity
pt > 0 which is given only on the initial time ¢ = 0, while for ¢t > 0 it is to be determined. T
denotes the boundary of Qf and 9Q denotes the boundary of . Q) is strictly contained in Q,
namely Qf C © and the distance between I'g and 89 is positive. Put Q7 = Q\ (Qf UT,). QF
is occupied by the fluid of viscosity 4~ > 0. v; is the unit outward normal to I'; of Qf and vgq
is the unit outward normal to 89Q. We write I' = I'g and Q* = an We assume that I' is a C%!
hypersurface while 9 is a C'! one.

The velocity vector field v¥(z,t) = (vik, ..., vE)*, where M* denotes the transpose of M,
and the pressure % (z,t) for z € QF satisfy the free boundary problem for the Navier-Stokes
equations:

v + (vE . Vo —DivSE(v*, 6 =f* in Qf, t>0
dive® = 0 inQF t>0
[S+(’U+,9+) - S (v7,0)wlr, =0, U+|r«t =v7|p, t>0
vlan=0,  v¥=0=vf, (1.1)



where S% (v, %) are stress tensors defined by
S*(v*,0%) = u=D(w*) — 6%I, {D(v*)}j = Ov{ /0y + v /Dz;,

I is the n x n identity matrix, and f* = f*(z,t) is given external force vector defined on Q%.
In the model the effect of surface tension on I'y is excluded. We assume that the kinematic
boundary condition:

Fe={z=a({t) | £ € T'o},
where z(£,t) is the solution of the Cauchy problem

Z—: =v(z,t), zl=0=¢& for £ €Ty

This expresses the fact that the free interface I'; consists for all ¢ > 0 of the same particles,
which do not leave it and are not incident on it from inside of Q;:t. Here and hereafter, given
functions w* defined on QFf or 0%, we put

v wt zeQf (or Qt), t>0
T lwm zeQ (orQ), t>0.

Moreover given function w defined on 2, w* denote the restriction of w to QF or Q*.
If a velocity vector field u*(£,t) is known as a function of the Lagrange coordinates £, then
this connection can be written in the form:

z=£+ /(;ooui(g,r)d‘r = X2 (60).

Passing to the Lagrange coordinates in (1.1) and setting 8% (X, (€, t),t) = 7%(£,t), we obtain
the initial boundary value problem on the fixed interface I':

uf — Div[S¥(u¥, 7%) + U (u®, n%)] = (X, (6,0),1) inQ* t>0

divu® + E¥(u*) = div[u* + E*(u*)] =0 inQ* t>0
ST, o)+ Ut Wt 7 Dr =[S~ (™, 7)) + U~ (v, 7 7)v|p t>0
uwF|r =u|p, ulag =0 t>0
u*|i—o = uF(¢) : in QF, (1.2)

where uE (€) = v¥(z), v is outward normal to I' of QF, and U%(u¥, 7%), E*(u*) and E*(u¥)
are nonlinear terms of the following forms:

t t
U*(ut, n%) = Vf"(/ Vu* dr)Vu* + Vzi(/ Vu* dr)r¥,
0 0
t t
B*(ut) = Vi( / Vot dr)Vut, BE(ut) = VE( / Vu dr)u
0 0
with some polynomials VJ:E() such as Vji(O) =0(j=1,23,4).
The linearized problem of (1.2) is the following:
dut — Div SE(ut n¥) = f nQ* t>0
divut = g* = divj inQ% t>0
[S+(u+,7r+) -8 (v, m7)vpr= ht — h~Ip, u+|p =y"|p t>0
uap=0,  uF|=0 = up. (1.3)
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First of all, we introduce function spaces and some symbols. For any domain D in R",
integer m and 1 £ g £ 00, Ly(D) and W7"(D) denote the usual Lebesgue space and Sobolev
space of functions defined on D with norms: || - || Ly(py 20d Il - “wgn(p)
for any Banach space X, interval I, integer £ and 1 < p £ o0, Lp(I, X) and W;(I ,X) denote
the usual Lebesgue space and Sobolev space of the X-valued functions defined on I with norms:
Il - “L,,(I,X) and || - ”w;,f(z,X)’ respectively. Set

, respectively. And also,

WE™(D x I) = Ly(I, WD) N W™(I, Le(D)),

I ”Wé;}"(Du) = |lu ”Lp(Iqut(D)) + ”u”w;"(l,z,q(p)),
WD) = Ly(D), W(I,X)= Ly(I,X),
WEo((0,T),X) = {u € Wi((~00,T), X) | u= 0 for t < 0},
W;?,O((O’T)yx) = LP,O((()? T))X)

Given o € R, we set

< Dy >* u(t) = F7H(1 + 8%)*/*Fu(s))(t),
Hy(R, X) = {u € Ly(R, X) | < Dy >* u € Ly(R, X)},
“u”HOt(R X) = || < D¢ >* ull, o (R.X) + ““”L,,(P Xx)*
Here and hereafter, F and F~! denote the Fourier transform and its inverse, respectively. Set
Hyy(D x R) = Hy/"(R, Lo(D)) N Ly(R, W, (D)),
1902 = 102 o * P2y
Hy2 (D x (0,00)) = {u € HYY3(D x R) | u=0 for ¢ < 0}.

Finally, given 0 < T < 0o we set

Hy23 (D x (0,T))

Hypo
={u|?ve 11/2(D><(Ooo)),u-voan(OT)},
1413 = 7
v € Hys¥(D x (0,00)) with v =u on D x (0,T)}.
Given Banach space X with norm || - ||, we set

n
Xt={v=(v1,...,vm)" |v; € X}, |wllx =D osllx-
i=1

The dot - denotes the inner-product of R". F = (F;;) means the n x n matrix whose i-th row
and j-th column component is Fj;. For the differentiation of the n x n matrix of functions
F = (F};), the n-vector of functions u = (uj,...,us)* and the scalar function 6, we use the
following symbols: 0; = 8,8 = 80/0t, 8;6 = 80 /0x;,

= (019, ...,0n0)", ut = Ou= (Bsu1,...,0mn), Vu= (8iu;),



n n n
dive =Y duj, DivF = (D 0Fyj,..., Y 8iFn)".
j=1

The inner products (,-),, and (-,-),, are defined by

8D

(w,v), = / u(z) -v(z)dz, (u,v),, = / u(z) - v(z) do,
D oD
where do denotes the surface element of D. We denote by C a generic constant and Cap,...
denotes a constant depending on the quantities a, b, .... The constants C and Cap,... may
change from line to line. ' \

We refer previous results concerning free interface problems. Tanaka [18] proved the global
in time solvability of (1.2) in W™ with o € (3,1) for n = 3 and sufficiently small data with
surface tension case. Takahashi [17] proved the global in time existence of weak solutions of
(1.1) in the spaces such that the first derivative of the velocity in L, with p > 2(n + 1) with
respect to time and space provided that v* is close to v~ without surface tension case, based on
the result of the linearized problem by Giga and Takahashi [9]. Nouri and Poupand [10] proved
the local in time existence of a weak solution of the Navier-Stokes equation describing a multi
fluid flow for arbitrary initial data without surface tension case.

When (2 is the whole space, Denisova [4] proved the local in time unique solvability for

arbitrary initial data in W22 ToltE with o € (3,1) with or without surface tension case for
n = 3 by using the local in time unique solvability result of the linearized problem in (2] and [5].
Denisova and Solonnikov (7] proved the local in time unique solvability for arbitrary initial data
in the Holder spaces with a power-like weight for n = 3 with surface tension case by using the
local in time unique solvability result of the linearized problem in [3] and [6]. Abels [1] proved
the global in time existence of varifold and measure-valued varifold solutions for singular free
interfaces with or without surface tension case.

Our goal is to show global and local in time unique solvability of (1.2) in the class of the
anisotropic Sobolev space W,f,’;. In this paper, as the important step of our approach, we
would like to show L,-L,; maximal regularity of (1.3) global and local in time. We consider
this problem by analytic semigroup approach using the same method as Shibata and Shimizu
[13, 14, 15]. One of our main issues is to use R-boundedness and operator valued Fourier
multiplier theorem which are recently developed by Weis [20] and Denk, Hieber and Priiss [8]
to show Ly-L, maximal regularity of (1.3).

We start with an analytic semigroup approach to the initial-boundary value problem:

Bu® — Div §*(u*, 7%) = 0, divu* =0 inQ*
St 7)) =S (", 7 )wr=0, utlp=u"|p
ulogn =0  ufi=0 = uo. (1.4)

Set
Jo(2) = {u € Ly(Q)" | divu=0in Q, v - ulaqg = 0},
Gy ={Vm|7Te qu(Q), / mdz = 0}.
Q
We use the Helmholtz decomposition:

Ly(@)" = J4() @ G4(Q)
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for 1 < g < oo, where & is the direct sum. Let P, denote a continuous projection from L4(2)"
into Jg(€2) along G4(?) and we consider the resolvent problem corresponding to (1.4):

M — Div §%(u®, %) = P, divet =0 in QF
[S+(u+,7r+)—S_(u_,7r‘)]ulp =0, 'u.+|p=’u,_lp
ulaq = 0. (1.5)

Since we want to get the evolution equation only for velocity u, we have to eliminate pressure
7. If we apply the divergence to the first equation, multiply the third equation by v, apply the
divergence to the third equation, and multiply the first equation by vgq in (1.5), then we obtain

Art=0 i O*
mt —a7r=v [t Du?) - p~D(u")y - divu® +divu”|p
Byt — 8,7 |p = —v - [ Div D(ut) — p~Div D(u™)]
—2utd,divut +2u~8,divu”|r
O™ loq = va - p~[AuT — V(divuT)|sq- (1.6)
For u* € W;‘ (Q%) with u € W}(£), under the condition Jo™dz = 0, there exists a unique
solution 7% € W}(Q¥*) of (1.6). Let us define the map K* : W2(Q*) - W1(Q*) by r* =
K*(u).
(1.5) is reduced to the reduced Stokes equation:
wE — Div St (u®, K*(u)) = Pjup  in QF
[$* (ut, K* () ~ 8~(u™, K~ ()ulr = 0, w?lp = up
ulaq = 0. , (1.7
Inversely, assume that u solves (1.7). Then, since div u® satisfies
(A-2p*A)dive* =0 in O*
divut|p = divuT|p
2p4 0 divut|p =2p_8,divuT|p
OuadivuT|aq = 0,

we obtain divu® = 0 in Q*. Therefore (1.6) is equivalent to (1.7).
Let us define the reduced Stokes operator A4:

Agu= -DivS*(u® K*(u)) ueD(4,),
D(Ag) = {u € Wg()" N Jg(Q) | u* € WHQ®)", ulon =0,
uflr=v7lr, [S*(u* K*(w)) - 5™ (u", K~ (w))vir = 0}.

From Shibata and Shimizu [12], we know the following theorem.
Proposition 1.1. Let1<p< oo, 0<e<m/2 and

Le={Ae€C\ {0} ] |argh| S 7 —¢€}.
Then, there exists o > 0 such that for every ug € Ly(Q)", A € C\ (~o0, —0), (1.5) admits a
unique solution u* ¢ qu(Q*)" with u € qu (@)™ which enjoys the estimate:

Nl ooy + NIV ullLyoy + 3 1wt lwaasy S Coeolivoll oo
o

for every A e X U{A e C||A S}

62



Combining the fact that Aq is a densely defined closed operator and Proposition 1.1, we
obtain the following proposition.

Proposition 1.2. Let1l < q < co. Then A, generates an analytic sernigroup {e‘Aqt‘(t)}@O
on Jq(2) which decays exponentially:
lle™* 4 9uols ) £ Crge " lluolls,@) for v>0.
Set
Dyp(2) = [J4(Q), D(AQl1-1/p

where [+, |3 , denotes the real interpolation functor. Let us define the Besov spaces BZ,(,} —i/p )(Qi)
and B,},;,I/ P(Q) by the real interpolation
BISTYP(Q%) = [Lo(@*), WS (O )1-1/p,
By5'/7(Q) = [Lg(Q), Wq (DN1-1/pp-
Then by Triebel [19] or Steiger [16] we obtain
Dgp() =
[ {ue BLY?(Q), u* e B2I-1/P)(Q%) | divu=01in Q,
ulon = 0, utlp = uIr, [ST(u", K¥(u)) = 8™ (u™, K~ (w))lv|r = 0}

when 2(1-1/p)>1+1/q
{u e B};/P(Q), u* € BIO-VP)(Q*) |dive=0in Q,

ulae = 0, u4|r = u_|r}

when 1/¢g<2(1-1/p)<1+1/q
{u € BISVP(Q), vt € BXI-V/P(QF) | divu =0 in Q}
L when 2(1-1/p) < 1/q.

Now, we shall state the main result which shows a unique existence theorem of solutions to
(1.3) on the whole time interval Ry which decays exponentially when t goes to oco.

Theorem 1.3. Let 1 < p,q < 0o. Then there exists a y9 > 0 such that if ug, f, g, g%, h* for
(1.3) satisfy the conditions

uo € Dgp(), €™ € Lp(Ry, Lg(R))", €™§ € Wpo(Ry, Lo()"
e"g* € Ly(Ry, WHOH)), e™h* € Hp 7 (OF x Ry)"

for some v € [0,7), and

v-(@t-§7)lr=0, /gdsz, / va-jdo=0
Q a9
for t > 0, then (1.3) admits a unique solution
(u*, 1) € WEHOE x Ry)" x Lyp(Ry, W, (2F))
11 1,1/2

with u € W, p (2 x Ry) and [, mdx = 0. Moreover there exist 7% € Hyp'“(Qx x Ry) such that
#%|. = 7%|. for t > 0. For the solution the estimate
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;(lle”ui|lwg:’gmixm) + ||€Iw7"ii|,‘p(k+qu1mi)) + “eﬁt%i“,,;’,g/zmi,m) + “e‘w““wg;g(mp
< C{Huolqu’p(n) + HC’«'thHL,,(mJr Loy T “e“ﬂ-‘}“vvluk+ Lg(a))
+ ; (Ue™'0* N, gy + 1€ W 1)
holds.

The theorem which follows is concerned with a unique existence theorem of solutions to
(1.3) on the finite time interval (0, 7).

Theorem 1.4. Let1 < p,q < co. Ifuy, £, §, g%, h* for (1.3) satisfy the conditions
ug € Dgp(), f € Lp((0,T), Lo(R))", § € Wpo((0,T), Ly())",
g% € L((0,T), W3 (9%)), h* € Hyplf' (9% x (0,T))"

and
V‘(§+"‘§_)|I‘=O, /gd:c=0, / vo-Ggdo=0
Q2 an

fort > 0, then (1.3) admits a unique solution
(u*, 1) € Wa (0F x (0,T))" x Ly((0,T), W (2%))

with u € Wi (Q x (0,T)) and Jom™da = 0. Moreover there ezist #* € H, Hy 1/2(9:;; x (0,T)) such
that #%|. = w%|. for t > 0. For the solution the estimate

+ + ~+
;(”“ ”Wg:;(nix(gyr)) + “ﬂ. “Lp((o,r),w,}(ni)) + ”ﬂ- ”H;:},/"’(nix(o,r))) + ” ”w;;(n x(0,T))

g C{“uoan‘p(ﬂ) + ”-f”LP((O T), Lq(n)) + ”gllwp ((0 ), Lq(2))

+ +
+_

)}

(atx(0,1)

holds, where C is independent of T.

2 An idea of our proof of Theorems 1.3 and 1.4

Roughly speaking, our proof is divided into the following three steps. First of all, we show
the L,-L; maximal regularity of solutions to the model problems in the whole space, in the
half-space and in the whole space with interface z,, = 0 by using the operator valued Fourier
multiplier theorem due to Weis [20]. The key observation for this is to show the R boundedness
of the family of solution operators to such model problems.

Second of all, we consider the problem (1.3) with up = § = g* = h* = 0 in a bounded
domain 2 and we use the usual localization procedure to reduce the problem to the model
problems in the whole space and half-space. To estimate the perturbation terms appearing in
this procedure we use an exponential decay estimate of the analytic semigroup generated by the
generalized Stokes operator associated with interface condition and no slip boundary condition.

Third of all, using a solution to the Laplace equation with zero Neumann boundary condition:

Oz
ova lpq

Az=gin Q, =0, /gda::O,
Q
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we reduce the problem (1.3) to the case where j = g* = 0. After this procedure, to treat the
equation (1.3) with non-zero h* we use a solution to the dual problem with ug = § = ¢
h* = 0 which was discussed in the second step.

In this section, we show an idea of our proof of the L,-L, maximal regularity of a model
problem in the whole space with interface z,, = 0. The detail of the proof of Theorems 1.3 and
1.4 will be given in the forthcoming paper.

Let us consider the following model problem in R™ with =, = 0:

Ot — Div §E(v*,6%) =0 in R% x Ry

dive® =0 in R} x Ry
[S*(v*,0%) = §~(v™,07)](0,...,0,~1)|rg = At + A |gg
vtlgg =v7|rg,  vF|=0 =0, (2.1)
where
r;f:= {-T= (xla"'amn) €R" l tun > O}a
R} = R = {z = («,0) e R" | 2’ = (21,...,Zn-1) € R*7}
and h* € HEY3(RL x Ry).

We would like to show the Ly,-Lg maximal regularity estimate of (2.1):

le™ Bev* ll L, ks Loy S C D le™™ hE | a2 gn m (2.2)
2 (REXR)"

In the course of our proof, we may assume that h* € C§°(R} x R4)" by the denseness of

Ci°(R: x Ry) in H;,’;’{)z( % x R;). We shall use the partial Laplace-Fourier transform with
respect to (z,t) variables and its inversion formula which are defined by the relations:

L{g] (5" Tn, A) = g(gla Tn, N) = // e M-izte g(mly T, t) dz'dt = fz",t[e-’yt g(mlv Tn, t)](glf"')’
Rﬂ
L7YUR)(a zp, t) = L / / T (el g N)de'dT = FLL[AE, Tn, v + i7))(2, 1),
(2m)™ J Jgn o
where A = v + 47, and Fy; and Fil - denote the Fourier transform and its inversion formula

with respect to (a: t) and (&, 7), respectively, and & = (&, ...,6n-1). Applying the partial
Laplace-Fourier transform with respect to (z’,t) variable to (2.1), we have

[\ + 1€/ 2) = ukOZE(E', 2,y A) + i&50%(E, Tn, N) = 0, 2, >0
(A + 1*1€'1?) = p*O216F (', Tn, N) + On0(E', Tn, ) = 0, + x>0
n-1

D igioE(E T, N) + BnDE(E, 20, X) = 0, +az, >0

j=1
u (i€07 (€,0,)) + 8,8 (¢/,0, 1))
— 1™ (897 (€,0,2) + 0,95 (€', 0, 1)) = h (€/,0,)) - A7 (£,0,%)
(2 8nt,f (€,0,0) — 67 (¢,0,)))
= Quon(¢,0,0) - 6=(¢,0,X)) = hf(€',0,)) — hy (€',0,%)
oH(€,0,X) — 97 (¢,0,)) =0, (2.3)
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where j = 1,...,n — 1. Writing A = |¢/| and B* = B,\*(g') = /A/pE + |¢'|2, we shall look for
solutions to (2.3) of the form:

ot (éla Tn )‘) = a+(e—Azﬂ - e—B+m") + ﬂ+e_B+z", é+(§l,mm/\) = ,7+€—A:c,., Tn >0

C (éfa Tn, A) = a—(eAm,. - eB‘m,,) + ﬁ—eB_m"a é_(fl,ﬂf"n.a A) =7~ EAI") zn < 0. (2.4)

Inserting (2.4) into (2.3), we obtain the explicit expression of the solutions 'D;h G=1,...,n-1),
9% and 6%:

A;(élymm A)
e—~B+a:,. _ e-—Am,, 1 + _
B -4 FABNB) W ~H) |
+u~B™(B* +B)|€ - (R*'(¢,0,)) - h~'(£,0,)))
e~ BYan _ g=Acn 1 042 +\2 —( A2 -2
+ 47 (A+ B7)B* + B7)] (RF(€,0,)) ~ hy (€',0,2))
—_B*tz, §; 1
u*BY + u-B- f(A, B+, B-)

x [2(u* — p7)A(W B —p"B7) + (bt +p7) At Bt + 7 B)
_ —- 2 ~ Al a !
+utp=(BY 4+ B7)? = (ut — ) A% & - (RY'(€,0,)) — A7 (€,0,))
+ e—B‘*‘rI:,. 551' 1
utB*t + u~B- f(A,B+,B")

x (6 + " {ut (A% + (BF)?) - w= (4% + (BT)D)} - wh ™ ((BF)? - (B7)?)
— (wt =) AT (A +BY) +pm(A+ B} (RS (€,0,)) = by (£,0,))

— a 1 7 n—
- g W €0 - A 0N),

= —gj

ABY + A(utBt + = B")

— 1§

+e

'aj_(fl)wm )‘)
eB‘m,. _ eAa:,, 1 N
=% —F -4 jABE)*
+utBY (B + BT € - (Y (¢,0,)) - h7'(£,0,X)
Axy 1
B--A  f(A BY, B
- ”+(A + B+)(B+ + B—)] (il:(f', 09 ’\) - ﬁ;(§'> 07 A))
€; 1
BT+ B A BB
x 2(pt — pT)AWYBT —pu”B7) + (ut + p7)A(Wt Bt + 4 B")
+utum(BY + B7YE - (0t - um)PAYE - (R(€,0,3) — A7 (€,0, %))
+ eB"m,. 7:6.7' 1
W BT +u B~ f(4 BY,B)
X [t + p ) Bt (A2 + (BY)?) - (A% + (BT)D)} — = ((BY) - (B7)?)

- uHAB™ + A(utBt 4+ uB7)

) eB_:z:,.
3

[t (A% + (BH)?) — p= (A% +(B7)?)

+ eB‘:r:,,




— (u* = p7) At (A + BT) + 1™ (A+ BN (AT (E,0,X) — h7 (€,0,))

_ 1 . -
— e g (€00 - R (€,0,%),

¥y (€', 2n, A)

e~BTzn —Azn —i

e _
=T BT-4 Af(A,B+,B—)[("+_”)

+u"B~(B* + B7)] € - (h*'(¢,0,2) - h7'(€,0,))
B e L A+ (BY) (42 + (B
LTy Ll Sy —H
+u~(A+ B)(B* + B)] (h#(£,0,)) — ha(€',0,))

—B+a:,,iA[I"+(A—B+)_Il'-.(A—B_)] 1 i+ (gt =gt
te o) A Bl g (00 - H€0,0)

ABY + A(utB* + 1~ B")

 Bre AT A B+ uT(A+ B 0wy e
‘ A B¥ B ) (hE(€,0,X) = hz (€,0,3)), (2.5)
07 (€', Tn, \)
eB_z,.__eAg;"

—pHAB™ + A(utBY + u~B")

— 4 Z r( —
=TB -4 " fABTB )W

+ptBY (B + BT € - (A (€,0,A) —h™'(€,0,N))
B~ zy __ pAzn .
+ G A TR e A (B (A 4 (B
+ut(A+ BB + B7)] (AF(¢,0,)) — A7 (¢,0,)))
iAWt (A-BY) =~ (A=B ) 5 140 .
f(A, B+, B_) 5 (h’ (é )07 A) - h (E ’O,A))
_ -—A + + - - R R
+ oo AL B LA B G €,0,0) = ha€0,),

+ eB Ty

—Azn, l"+(A + B+)
f(A,B*,B-)
x [i{(u* = p")ABY + A(u*B* +py~B")+p B~ (B* +B7)}
x & (R*'(¢',0,X) - h7'(£,0,)))
— {W*(A + (BY)?) = p= (A2 +(B")?) + p~(A+ B7)(B* + B7)}
x (RF(€',0,X) = Ry (€,0,2))),

0H(E zn, M) = e

el _ Arn “‘_(A'*' B_)
9 (6 ,.’Bn,A) =€ f(.4,B+,B_)
x [i{(p~ - p*)AB~ + A(p*B* + p~B~) + p* BT (Bt + B7)}
x & - (h*'(€',0,)) = B~'(£,0, 1))



~{ut (A2 + (BN - p (A* + (B™)?) — p*(A+ BY)(BT + B7)}
, x (A (€,0,%) = hy (€,0, )],
where & = (€1, ,€n-1), € =¢&/|¢'| and
f(A,B*,B7)=— (ut — u7)?4°
+{(@But = p7)ut Bt + (3 - )y B}A?
+{(u*B* +p B )2 +utu (Bt +B7)%}A
+ (wtBY 4y B7)(u*(BY)? + u(B7)Y).
Set
Cy={A=v+ir|y20, TeR\{0}},

o = {(€,0) | & eR"I\ {0}, e Cy},
W= {(6,7 wm)‘) l (Ela ’\) € w’ymn ; 0}

By Shibata-Shimizu [12], we obtained the following lemma.
Lemma 2.1. We have the following two inequalities:
ReBs 2 c(u*) (1A + [¢'),
+ - - 1
|F(A,B*,B7)| 2 c(u*, u7)(IN2 +1€])°

for every (¢, )) € W with suitable positive constants c(u*, u~) and c(u+) independent of A and
3
We estimate the term:

e + + - -\ . R
Buv} (2, ) = — L1 [Ae= B €hen AT (4 ;(i 331',’}3_(;4 B0 Gt e, 0,% - B (6,0, M) (9

which is the partial Laplace-Fourier inverse transform of the time derivative of the fourth term
of the right member of 9, (¢, z,, A) in (2.5). Other terms are estimated similarly. If we put

Apt(A+BT)+u (A+ B7)]

V=" ey

then noting A = |¢'| we write 8y} (z,t) as follows:
Bvi (2,8) = —L7[|¢'le™ PR (e, N)(R*(€',0,3) — A=(€,0, )](#, 1)
= [ oun gl PR et 3
X LI, yn, A) = R (€, yn, W', 8) dyn
= ¢ /Ooo fET,IT[IE’le"Bj\'(5')(‘”"‘*"’")8(5’, A)
x {BY (€)L[hT — h7)(yn) ~ L[Onh™ — 8,07 (yn) (2', ) dyn.
If we set

W (z,t) = Fi o [BY (€)LIh*] - L[Bah*])(2', 1),
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ke(2) = Fo[€]e™ X ©mie, (),

Kef)) = [ ke’ =3+ ) ) ds

then we obtain
o0
Mo (5,0 = [ FAF eI BRI )] F = NI dun
0
= F KRR = R)(2).

. Let us denote the space of X-valued C*- functions with compact support by D(R, X) and

let D'(R, X) = B(D(R), X) denote the space of X-valued distributions. The X-valued Schwartz
spaces S(R, X) and S'(R, X) are defined similarly. Given M € Ljjoc(R,B(X,Y)), we may
define an operator Ty : F~1D(R, X) - S'(R,Y) by means of

Tuéd=F IMF¢ for all Fo € D(R, X) (2.6)

Since F~1D(R, X) is dense in L,y(R, X), we see that T)s is well-defined and linear on a dense
subset of L,(R,X). Concerning the boundedness of the operator T}y, the following theorem
was proved by Weis [20].

Theorem 2.2. Suppose that X andY are UMD Banach spaces and let 1 < p < oo. Let M be
a function in CY(R \ {0}, B(X,Y)) such that the following conditions are satisfied:

R({M(7) | T € R\ {0}}) = ag < oo,
R{M'(t) | T € R\ {0}}) = a3 < oo.
Then, the operator Ty defined by (2.6) is extended to a bounded linear operator from Ly(R, X)
into Lp(R,Y) with norm
”TM“u(L,,(R,X),L,,(n,V)) < C(ao + a1),
where C > 0 depends only on p, X and Y.

For
e~ "8y (z,1) = Fy U K- Fe[htT — R7)(2),

if {Kr | 7 € R\{0}} and {r8;K, | 7 € R\ {0}} are R-bounded on B(L,(R%)), then by Theorem
2.2 we obtain

le™ Bevf L, @y L@y S Crg D IR*7l|Ly(r, Lo (=)

g c Z(”e-’yt hﬂ:“H,l,/z(R,Lq(R;)) + “e_'Yt h’:h ”L,,(R,‘Vq] (Rl)))
+ -

-7ty
é C; "e 7 h “H;‘;/2(R;XR)’ (2‘7)
because
h*"’(w,t) = E-;,lv'[()‘ + |€'|2)1/2f5',-r[€_'“hi] - fs',rle_'7t5nhi]](x', t).
Therefore what we have to do to obtain (2.7) is that we show the R-boundedness of the families

{Kr | 7 € R\ {0}} and {70;K, | 7 € R\ {0}} on B(L4(R%)) for 1 < ¢ < 0o. To do this, we
shall use the following proposition due to Denk, Hieber and Priiss (8].
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Proposition 2.3. Let1 < g < 0o. Let G be a domain inR" and T = {Tr | 7 € M} C B(L4(G))
be a family of the kernel operators:

T-f(z) = /Gkr(w,y)f(y) dy
for ¢ € G and f € Ly(G). Suppose that there exists a ko(x,y) such that
|kr(z,y)| £ ko(z,y)
for almost all z, y € G and any 7 € M. Set
Tof(s) = [ kole9)f W)y

If To € B(Ly(G)), then T is R-bounded on B(L4(G)), whose R-bound is less than or equal to
Cn,q,G ”T()”s(z.q(a)) .

If we set

woll@) = [, =g e S0

then Ko € B(L4(R?%)). Therefore if we can show
|kr(2)] & colz|™, |70rk-(x)| £ colz|™", (2.8)

then by Proposition 2.3, we obtain that {K; | 7 € R\ {0}} and {r0:K, | 7 € R\ {0}} are
R-bounded on B(L4(R7%)).

In order to show (2.8), we use the following lemma ({11, Theorem 2.3]).

Lemma 2.4. Let X be a Banach space and || - ||x its norm. Let a be a number > ~n and
set a = N + o0 —n, where N 2 0 is an integer and 0 < 0 < 1. Let f(£€) be a function in
C(R"™\ {0}, X) such that

ef(€) € Li(R", X), Vel SN,
168 F(©)llx < Calél®™™, VE#0, Va e NG.

Then we have

IF A (@)lIx £ Cn,a(hfgzm 2Ca)l-'vl“"*“), Vz # 0.

Since ’ )
08 6, ]| S Cwle')™!™! for of € NZ7Y,
it follows that

108 1€/|e™PX € zng e, N]| £ CorlgM1Te=2€en vl € NG~
with some d > 0, by Lemma 2.4 we have
[kr(2)] £ efa’| =" 14D,
By changing valuable {'z,, = 7’ and putting |¢/| =0

k@IS e [ 1€l ag’ S clanl™ [ e an’ < clanl

Similarly we prove |79-k-(z)| £ co|z|™", thus we have showed (2.8).
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