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Discontinuity of the straightening map for a family of
renormalizable polynomials |

Hiroyuki Inou*

Abstract
We study straightening maps of families of polynomial-like maps and give a
necessary condition for a straightening map to be continuous. We also apply
this result to a family of real renormalizable polynomials and show that its
straightening map is discontinuous.

1 Polynomial-like maps and straightening maps

Definition (Polynomial-like maps). A map f : U’ — U is called a polynomial-like
map if it is proper and holomorphic, U’ and U are topological disks and U’ € U.

The filled Julia set of a polynomial-like map f : U’ — U is defined by K(f; U’,U) =
Mnso f~™(U’) and J(f;U',U) = 8K(f;U’,U) is called the Julia set.

Definition (Hybrid equivalence). Two polynomial-like maps (or polynomials) f :
U'—Uand g: V' —V are said to be hybrid equivalent if there exists a quasiconfor-
mal map ¥ defined between their filled Julia sets such that goy =vo f and dy =0
a.e. on K(f;U',U).

Although hybrid conjugacy 1 is not unique, it is uniquely determined if restricted
to K(f;U’,U) (up to affine self conjugacy for g).

Douady and Hubbard [DH] proved the following theorem using quasiconformal
surgery.

Theorem 1.1 (Straightening theorem). Any polynomial-like map f : U’ — U of
degree d is hybrid equivalent to some polynomial g of degree d. Furthermore, if
K(f;U',U) is connected, then g is unique up to affine conjugacy.

Consider a holomorphic family (fy : Uy — Ux)aea of polynomial-like maps of
degree d. Let
Ca = {A € A; K(f\;Uy,U»): connected}

be the connectedness locus. By the straightening theorem, we can define the straight-
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ening map Sp : Co — Cq by SA(A) = g € C4 if fy : Uy, — U, is hybrid equivalent
to g where C4 is the connectedness locus of affine conjugacy classes of polynomials of
degree d.

In [DH], Douady and Hubbard showed that if the degree d = 2, the straightening
map is continuous. However, they also constructed an example to show that straight-
ening maps are not continuous in general when d > 3, by using parabolic implosion.

Hence in view of the study of parameter spaces of polynomials, it is natural to ask
whether straightening maps are continuous or not for a polynomial-like family which is
a restriction of a family of polynomials (straightening maps for renormalizable family
of polynomials):

Question. Let {fi}rea be a family of polynomial of degree d’ and assume {fj :
Uy — Ux}xea is a holomorphic family of polynomial-like maps of degree d < d'.
Then is the straightening map Sy : Cp — C4 continuous?

Here we give an example of a discontinuous straightening map for a family of cubic
polynomial-like restrictions of polynomials of degree 5.

2 Parabolic implosion

We refer some basic facts about parabolic implosion here.

Assume 0 is a non-degenerate 1-parabolic periodic point of period p for a polynomial
fo of degree d > 2, ie., f§(0) #0for 0 < n < p, f§(0) = 0, (f2)(0) = 1 and
(f%)"(0) # 0. By taking linear conjugacy, we may assume f§ has the form

f2(z) = z + 22 + O(23).

near 0. Then for sufficiently small ¢ > 0, there exist conformal maps Py attr :

Qfo,*(fg(z)) = Qfo.’*(‘z) +1 (x = attr, rep). (1)

We call &4 a14; (resp. @y, rep) an attracting Fatou coordinate (resp. repelling Fatou co-
ordinate) for fo. Fatou coordinates are unique up to post-composition by translation.
By using the functional equation (1), ®y, attr can be extended on the whole basin of
attraction By of 0 and @Z)l,rep can be extended on the whole plane C. For ¢ € C, let
us denote gy, c(z) = <I>;°1,rep(<1> fo,attr(2) +¢) : Bg — C. We call gy, . a Lavaurs map of
f and c-the phase of gy, . By definition, f o g4 . = g4,,c © f on By.

Let f be a polynomial near fy. By taking an affine conjugacy, we may assume that 0
is still a p-periodic point for f. Let us denote by (f?)(0) = exp(2mia) with |a| small.
Let  be the other p-periodic point near 0. If | arg(a)| < % (or |arg(ar) —7| < §), then
for small € > 0, there exist two disks Dyt and Dy ep of radius € whose boundaries
contain 0 and z (we assume Dy, intersects the negative real axis and Dy, p intersects
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the positive real axis), and

f(an,attr \ Df,rep) C Df,attra
ODj rep \ Dfattr C f(Dj,rep)-

Furthermore, there exists a conformal map ®; defined on Day; U Dyep such that
®:(f?(2)) = ®¢(2) + 1. This is called a Fatou coordinate for f. It is also unique up
to post-composition by translation. Furthermore, Fatou coordinates depend continu-
ously on parameters if we normalize properly. For example, if f, — fo, then there ex-
ist sequences ¢, and Cy, such that ®y, +c, — Pf attr 0D Dy attr and @5, +Cp — Py rep
on Dy rep 88 1 — 00.

Hence

= 071 (®y,(2) +m)
= Q;ﬂl(d)f" (2)+en+(m—cn+Cp)—Cy).

By passing to a subsequence, we may assume that c¢,,—C,, converges in C/Z as n — oo,
namely, there exists some sequence m,, € Z such that lim,, ,oo mn — ¢, + Cp, = ¢.
Therefore,

::|n (Z) - @;o];rep(@.fo,ﬂtt!‘(z) + C)
= g..f01c'

For such a case, we denote f, = (fo, 9fo,c) and we say that f, geometrically
converges to (fo, 9fo,c)-

3 Continuous straightening maps

Theorem 3.1. Let (fx : Uy, — Ux)aeca be a holomorphic family of polynomial-like
maps of degree d > 2. Assume

(i) 0 € Cp and the straightening map Sy is continuous on Cy;
(ii) for any A € A, 0 is a periodic point of period p for fx. It is 1-parabolic and
non-degenerate for fo;
(iii) ax is a repelling periodic point for A;
(iv) wa and w) are distinct critical points for fx. They lie in the basin of 0 for fo
and there ezist N, N' > 0 such that ¥ (wo) = fN (wh);
(v) for any € > 0, there exist some \g and some sequence A, — Ao such that
® Ao, An € Chp.
o |Xo]| <e.
« 0< Al (wse) = AL Who)l <.
e 0 is 1-parabolic and non-degenerate for f»,.
® fan £ (fkoig) with g(f))\\g(wko)) = Qo
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Then
| mult s, (ao)| = | mult s, (a(Fo))| (2)

where Py = Sa(fo) € Ca, a(Po) = (), Yo is a hybrid conjugacy from fo to P,

and mults(a) is the multiplier for f at a (multy(a) = fP(c) if @ is a periodic point
of period p).

4 Discontinuity of straightening maps‘

In this section, we give an application of Theorem 3.1 that answers the question
in Section 1. Here, we only consider real polynomials, so we always assume Fatou
coordinates and Lavaurs maps are also real (i.e., the real axis is mapped to the real

Let
Py(z) =1 — 1.5645...22 — 0.30368...23,
fo(z) = —z — 1.2558...2% + 2.8793...2% + 2°.
Then

e P, has a quadratic-like restriction hybrid equivalent to Q(z) = 22 —1.75, which
has a non-degenerate 1-parabolic orbit of period 3. Let p(Q) = —1.7469...
be the smallest point of the periodic orbit and let p(Pp) be the corresponding
periodic point for P;. _

o Crit(Py) = {w(FPo),w'(Po)} C R with w(Py) < w'(FP) and

Po(w(Po)) = F§ (w'(Py))-

e The fixed point a(Py) for Py which corresponds to the a-fixed point of Q
is repelling and contained in the domain of definition of the repelling Fatou
coordinates ®p, rep for Po at p(Po) and ®p, rep(a(Po)) € R. Therefore, a(Py)
is contained in the image of the real axis by a Lavaurs map gy, . for any ¢ € R.

. fo is topologically conjugate to Py on the real axis.

o The fixed point a(fp) corresponding to a(FPp) has multiplier —1.

o There exists fy arbitrarily close to fo such that f; has a real cubic-like restric-
tion hybrid equivalent to Py.

Furthermore, we can verify that there exists some neighborhood A of f; in Poly,
such that we can restrict A to a holomorphic family of cubic-like maps which satisfies
all the assumption of Theorem 3.1 except the continuity of the straightening map.

-However, since mults, (ao) is arbitrarily close to mult ; (a( fo)) = =1, | multy, (ao)| #
| multp, (e(Po)). Therefore, Sp is not continuous on arbitrarily small neighborhood

of fo.
Hence we have proved the following:
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Theorem 4.1. There exist a polynomial fo of degree d’ > 4 and a neighborhood A
such that

e any f € A has a polynomial-like restriction f : U + — Uy of degree d > 3 and
this forms a holomorphic family of polynomial-like maps;

® fo: U} — Uy, lies in the connectedness locus.

o the straightening map S) is not continuous on any neighborhood of fq.

Remark 1. It is likely that for any repelling periodic points, there exists a good
perturbation to apply Theorem 3.1. If this is true, then for any repelling periodic
point z of fp, the moduli of multipliers of 2 and the corresponding periodic points
for Py must coincide. Then, by the result of Prado [Pr] and Przytycki and Urbanski
[PU], fo: U, — Uy, and P, are conformally conjugate.

5 Proof of Theorem 3.1

First, we introduce a conformal invariant defined by the difference between Fatou
coordinates of critical orbits.

Definition. Let f be a polynomial or a polynomial-like map having a Fatou co-
ordinate ®. Assume there exist two (marked) critical points w, ' and N,N’' > 0
such that f¥(w) and f¥'(w) lie in the domain of definition of & Then define
6(f) =0(f,®) e C/Z by

6(f) = 8(f¥ (w)) - B(FN' (W), 3)

Note that §(f) does not depend on the choice of a Fatou coordinate because it is unique
up to post-composition by translation and it is canceled by taking the difference. It
also does not depend on N and N’ because of the functional equation ®(f(2)) =
®(2)+1 (as long as the orbit of w or w’ does not escape from the domain of definition
of ®).

Under the assumption of Theorem 3.1, we consider (attracting) Fatou coordinates
near 0 and N and N’ as in iv of Theorem 3.1. In the following, let us denote simply
<I>,\,m,_, ® rep and P, instead of By, atir, Py, rep and Py, . For example,

0(Fro) = Bro,avtr(F (Wao)) = Broaser (S (wh,))
0(frn) = Ban (FY (wa,)) — Bx, (Y (wh,))-

Now suppose the assumption of Theorem 3.1 holds. Take A, A, — A which satisfy
the assumption v in Theorem 3.1 for small € > 0. For A € Cy, let Py, = Sx()A) be the
polynomial of degree d hybrid equivalent to fy : Uy, — Uy with a hybnd congugacy
¢,\ By assumption, Py depends continuously on A. Let us denote by &% (% X attr? OF

oy ,ep) be a Fatou coordinate(s) for Py, and by w(Py) = ¥a(wa), w'(Py) = ¥a(w))
the corresponding critical points for P,.
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Since 1, is holomorphic in the basin of 0, an attracting Fatou coordinate ®% ...
for Py, can be written as & ... = ®x, a1tr © Y5, Therefore,

B(PAO) = q’fo,attr(Pﬁ(w(P)\o))) - Qf\::;,a,t.t;r(PAO’(“"’(-P>\q))))
= Qf\o,att!' ° d’;: (P/{Z (wko (wko))) - Q)\o,&'ﬁ:l' ° ¢'§01 (P)I\z’ (wa\o (wf\o)))
= (I’,\o,a.ttr(fﬁ (wko)) - ¢Ao,attl'(fko’ (wlko))

= o(f)\o)'

By the continuity of Fatou coordinates, we may assume & — @1 ... Thus, since
P,, — P),, we have '

8(Pa) = 8%, (PR (w(P2,))) — 8%, (P (&'(P2,)))
=25 0(Pay) = 0(fo)-

On the other hand, since fy, £ (f»,,g), there exists a sequence (my,) such that
f;’;* —g= Q;ol,rep o @), attr (We may assume the phase is equal to zero by replacing
the Fatou coordinates). Hence

8(fr0) = Pag,attr(fhe (Wao)) = Pagiater (£ (W)
= Bxg,rep © I (W) — Bro,rep © (SR (why))
= ®p,rep(ar;) — P rep © 9(f ﬁ’ (‘*’3\0))-

By passing to a further subsequence, we may assume 1, — ¢, which is a quasicon-
formal conjugacy between f), and Py, (note that we may assume 1, is uniformly
K-quasiconformal for some K, by using the tubing construction in [DH]). Further-
more, since there exists a sequence C, such that ®,, + C, — @5, rep On the repelling
side, we have

8(Pa) = (8, (P (W(Pr,))) + mn) — (25, (PY (W (P2,))) + mn)
= ®F o P (PN (¥, (wa,))) — 8%, o PI (PN (1, (wh,)))
= (8%, 0¥, © S (FR. (wa,)) + Cn) — (85, 0 ¥, o P (F (wh,)) — Cn)
220 8%, rep 000 9(FR (Wao)) — B, rep 0 PO (FRY (why))
= %, 1ep © P(aro) = BF, rep 0 0 0 g (wh,))-
Therefore, we have proved

Lemma 5.1.
CI)-\on‘ep(az\o) - ¢Ao,rep(w) = q’f\ao,rep © ‘P(az\o) - <P{,o,rep ¢ ‘P(w)' (4)

where w = g(f¥ (w),)) tends to ax, ase — 0.
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For a map h defined near a point zg, let us denote

h(z) — h(zo)

distz, (h) = lim p—

Z— 20

if the limit exists.
It is easy to see the following lemma:

Lemma 5.2. If |multy, (o)l # |multp, (a(P,))l, then the distortion of o or ¢!
diverges. Namely,

©(z) — p(ax,)
zZ—ay,

lim

z—an

=0 or oo. (5)

Since @) rep, g and @fo,rep is conformal near a,, f ;\"g (wx,) and a(Py,) respectively,

their distortion dista,, (®ag,rep); distsn (,, )(9) and dista(p,, )(®F, rep) are bounded
0

away from zero and infinity (note that this estimate does not depend on Ag because of

the continuity of Fatou coordinates). By the equality (4), this implies that dista, ()

is uniformly bounded away from zero and infinity. Therefore, by Lemma 5.2, we have

for € > 0 sufficiently small,

| mult s, (ax,)| = | multp,, (a(Py,))]- (6)

Therefore, we have proved that there exists \g arbitrarily close to 0 with 6. There-
fore, we have proved Theorem 3.1.
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