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PARABOLIC RENORMALIZATION AND ITS CONSEQUENCES
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This is a report on a joint work with Hiroyuki Inou (Kyoto University). Detailed state-
ments and proofs will be published elsewhere. (See [IS].)

Let f(2) be a holomorphic function defined near 2, € C and suppose z is a fixed point.
Its multiplier is A = f'(2,) and the fixed point z; is called parabolic if X is a root of unity.
We will mainly consider the case A = 1. In this case, for simplicity we say z; is I-parabolic
and we call it non-degenerate if f"(z) # 0. Introduce a coordinate change w = —;—i;,
which sends the fixed point to oo. The dynamics in this coordinate is

1
azf(~z2)
near oo. For a sufficiently large L, there exist injective holomorphic functions ®uy =
Qoutrr: {w: Rew > L} — C and ®rep = Brepr : {w: Re w < —L} — C such that they
satisfy the functional equation :

(1) ®,(F(w)) = P,(w)+1 (s=attr,rep)

b 1
Fw)=- -w+1+;+0%ﬂ

in the region where both sides are defined. ®,y, and ®,., are unique up to addition of
constant. The functions @y, and P, are called attracting and repelling Fatou coordinates
respectively. They are considered to be coordinates for half-neignborhoods ( “petals”) of
the fixed point such that the dynamics is conjugated to the translation T : z — 2z + 1.
In the regions Vi = {w : £Imw > |w| + L'}, both Fatou coordinates are defined. Now
define the horn map Er on @, p(V) to be

(2) Ep =y, 0 o,

rep

Denote Exp!(z) = €?"* and Exp’(z) = e~2"#. Both functions induce isomorphisms
from C/Z onto C* = C \ {0}; Exp* sends upper end +ioco to 0 and lower end —ioco to oo,
and for Exp’, the role of the ends is interchanged.

Suppose f has a non-degenerate parabolic fixed point at 0. Its parabolic renormalization
is defined to be

Rof = Rbf = Exp? By o (Exp!)
where E; is the horn map of f, defined above and normalized as E¢(2) = z + o(1) as
Imz — +00. Then Ryf extends holomorphically to 0 and Rof(0) = 0, (Rof)'(0) = 1.



So 0 has again a 1-parabolic fixed point at 0. Similarly the parabolic renormalization for
lower end is defined as

Ry f = cExp’oEj o (Exp")_1 ,
where ¢ € C* is chosen so that (R £)'(0) = 1. It has been known [Sh1] that the following
class Fy is invariant under R.

0 € Dom(f) open C C, f is holomorphic in Dom(f),
_ . ' f(0)=0, f(0)=1, f: Dom(f)~ {0} — C*is
Fo=qf:Dom(f) = C a branched covering map with a unique critical value cv I
all critical points are of local degree 2

Suppose that f(z) = e?™®z + O(2?%) with o # 0 and has suitable fundamental domains
and return map h = xs o E;. Its near-parabolic renormalization (or also called cylinder
renormalization) is defined by '

Rf = R'f = Exp'oxso Ejo (Exp”)_l.

Then Rf extends to 0 and Rf(0) = 0, (Rf)(0) = e~2™z. For lower end, set R'f =
Exp’ oxs o Ef o (Exp’) .

Continued fraction: Any irrational number o € R \ Q can be written as an acceler-
ated continued fraction of the form:

13
(3) a=ag+ 0 \ where @n €Z, €, = =1 (n=0,1,2,...),
o b — o 22(m>1).
€2

a2+

Denote ||z|| = min{|z — n| : n € Z} and define og = |||, Ons1 =

and a, and ¢, are determined by z2— = a, + £n0p.

. Then o, € (0, 3)

A
Qn

Successive renormalizations: Let f(z) = 2™z + O(2?) with o € R\ Q as above. We
are interested in the construction of successive renormalizations:
@ = {f@ =t (Rl =Dy

f(z) (e0=-1) Rfn-1(Z) (en=+1) .
Here the complex conjugation is taken so that f,(0) = e?™*» with a, € (0,3). If such
a construction is possible, we hope that the dynamics of f, whose irrationally indiffer-
ent fixed point causes recurrent behavior for nearby orbits, can be studied through the
sequence {f,}. In fact, problems involving high iterates of f,_; often reduce to simpler
problems on fewer iterates of f,. The geometric structure near recurrent orbits may be
“magnified” by the renormalization process. Hence it is natural to ask:
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Question: When is it possible to define the sequence {f,}32,7

Definition (P and Class F;). Let P(z) = 2(1 + z)2. The polynomial P has a parabolic
fixed point at 0 and critical points —} and —1 with P(—1) = —5 and P(—1) = 0. Let
V be a domain of C containing 0 and define

_ : V — C is univalent, ¢(0) =0, ¢'(0) =1
J‘_ = = P 1 : V C ¥ ) )
' {f v elV) = and ¢ has a quasiconformal extension to C
where univalent means holomorphic and injective. Note that if f € F;, 0 is a 1-parabolic
fixed point of f. If —1 € V, then cp; = ¢(—3) is a critical point an — 5 is a critical
value of f.

We have the following result:

Main Thorem 1 (Invariance of F;). There ezist a Jordan domain V containing 0 and
—% with a smooth boundary and an open set V' containing V such that the above F,
satisfies the following:
(1) f£(0) # 0 (in fact, |f"(0) — 4.91| < 1.14). cp; € Basin(0).
(2) (Fo \ {quadratic polynomial}) /~ineer can be naturally included into Fi.
(3) Ro(F1) C Fi. That is, for f € Fy, the parabolic renormalization Rof 1is well-
defined so that Rof = Po~! € Fy. Moreover ¢ extends to a univalent function
from V' to C.
(4) Ryo is holomorphic in the following sense: Suppose a family fy = P o ¢! is given
by a holomorphic function p,(z) in two variables (\,z) € A x V, where A is a
complex manifold. Then the renormalization can be written as Rofy = P o 1/);1
with Yx(z) holomorphic in (A, z) € A x V',

Main Thorem 2 (Contraction). There ezists a one to one correspondence between JF,
and the Teichmiiller space of C\ V. Let d(-,-) be the distance on Fy induced from the
Teichmiiller distance, which is complete. Then Ry is a uniform contraction;,

d(Ro(f),Ro(g)) < Ad(f,9) for f,g€ Fy

where A = e~ 2"med(V'\V) « 1. The convergence with respect to d implies the uniform
convergence on compact sets (but not vice versa).

The proof will be given in § and basic facts about the Teichmiiller space is also sum-
marized there. An immediate consequence, together with Theorem , is the following:

Corollary 1. The parabolic renormalization Ry on F, has a unique fized point, which
belongs to Fo. For any f € Fr, {R3f}32, converges to the fized point exponentially fast
with respect to the metric defined in Main Theorem 2. Moreoevr, if f € Fo, then the
renormalizations R} f considered as elements of Fo converge to the fized point uniformly
on compact sets.
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We can derive similar results for the near-parabolic renormalization R and the fiber
renormalization R, defined in the previous section, provided that « is small.

Definition. For o, > 0, denote
(0,0, * F1 = {e*™*h(2) | 0 < a < a,,h € Fy }.

The distance on (0, a,] * F; is defined by d(f, g) = d(- 7 1, —@g) +|f'(0) — ¢’(0)|, where
d on the right hand side is the one for F; defined in Main Theorem 2.

For an integer N, let Irrat,, be the set of irrational numbers o such that the contmued
fraction expansion has coefficients a,, > N.

Main Thorem 3 (Invariance of F; under R, and hyperbolicity). There exists o, > 0
such that ifa € C, |arga| < /4 and 0 < |a| < a., then R, can be defined in F, so that
(c) and (d) of Main Theorem 1 hold for R,. Moreover R, is a contraction as in Main
Theorem 2 with the same A. Hence R is hyperbolic in (0, a.] * F,.
In particular, there ezists an integer N > 2 for which the following holds:

If f(2) = e¥™°h(z) with h € F, and a € Irrat,y, then the sequence of renormalizations
can be defined and f,’s belong to (0, o] * Fy. If g(2) is another map of the same type with
the same a, then d(R"f, R"g) — 0 as n — oo exponentially fast.

We obtain these a, and N by a continuity argument, so we do not have explicit bounds.
It will be important to know how big a, can be." '

Corollary 2. There exists an N (may be larger than the one in Main Theorem 3) such
that if f(z) = e>™*h(z) with h € F; and o € Irratsy, then the critical orbit of f stays in
the domain of definition of f and can be iterated infinitely many times. Moreover there
exists an infinite sequence of periodic orbits to which the critical orbit does not accumulate.

The same conclusion holds for f(2) = e*™@2+ 22 provided that a € Irratsy and o itself
is sufficiently small. Hence the critical orbit is not dense in J;.

This provides another approach for the renormalization around the boundary of qua-
dratic Siegel disks (bounded type rotation numbers) obtained by McMullen. Our result
covers the case of irrational numbers with large coefficients as above , in partlcular includes
unbounded types. :

There is a remarkable application of our result:

Theorem (Buff-Chéritat). There erists an irrational number o such that f(z) = e?maz
2% has Julia set of positive Lebesgue measure.

(See [BC] and their forthcoming paper for details.)
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