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1. Introduction
The aim of this paper is to give a brief summary of results in [GNO]. We
here discuss about the existence and uniqueness of generalized solutions of
spiral curves which move by

$V=C-\kappa$ , (1.1)

with the Neumann boundary condition, where $V$ and $\kappa$ is the normal velocity
and the curvature of the curve, and $C$ is a constant.

$V=C-K$

In 1949, F. C. Ftank pointed out important roles of screw dislocations to
growth of crystals in [F]. The theory of a crystal growth by screw dislocations
is proposed by [BCF]. This is what is called ‘spiral crystal growth’. On a
surface of crystals which grow by spiral crystal growth, various spiral curves
are observed on its surface. According to the theory in [BCF], the spiral
curves are described by ‘steps’ on a surface of a crystal, and they move by
(1.1). This is an interface model of spiral crystal growth.

Two types of mathematical models for spiral crystal growth are proposed.
A. Karma and M. Plapp ([KP]), and R. Kobayashi ([K]) proposed phase-
field models for spiral crystal growth. P. Smereka ([S]), and the author ([O])
proposed level set formulations of the interface model.
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In this paper we consider a model by [O] with the case that there is only
one spiral on a surface of a crystal. We define generalized solution of (1.1)
with the Neumann boundary condition by the level set formulation. The aim
of this paper is to discuss

(i) the uniqueness of level sets with respect to the initial spiral,

(ii) how to construct an initial datum of the level set equation for a given
Initial spiral. $\backslash$

We shall recall a level set formulation by [O] in section 2. We note that a
spiral is no.t described by the usual level set formulation since a spiral does not
divide a domain into two domains. To overcome this difficulty, the level set
formulation in $[0]$ describes a spiral by a Ievel set on a helical covering space
of a surface, whose idea is based on an idea of a ‘sheet structure function’
by [K] and a similar idea appears in [KP]. However, we need to show the
uniqueness of level sets and existence of initial data for spirals because of
this revised level set method.

We shall discuss about the uniqueness in section 3. We use the strategy
of [CGG, \S 5] or [ES, \S 5]. As in them, we prove the comparison of ‘super-,
or ‘sub-level’ sets so that we obtain the uniqueness. However, there is no
classification of ‘super-, or ‘sub-level’ sets on the domain for a spiral because
of its shape. The crucial idea to overcome this difficulty is to introduce a
helical covering space as in [O]. This idea is natural and useful to consider a
motion of spirals. In fact, a level set method in [O] looks like a cross section
of an auxiliary surface by a covering space. Therefore we can make sense of
‘super-, or $s$uklevel’ sets if we see spirals on the covering space.

We shall discuss about the construction of an initial datum in section
4. The ‘crucial difficulty for the construction lies in. how to determine an
initial datum on a domain except a spiral curve, because there is only one
constraint for an initial datum; it is continuous. To overcome this difficulty
we revise the definition of a sheet structure function for the construction of
an initial datum. According to the idea of [K], he illustrates a structure
of the lattice of a crystal by using an argument of a vector whose origin.
$is$ a screw dislocation. The similar idea appears in [KP], who says that the
‘sheet structure function’ denotes a shape of an initial surface. Hence we here
combine their ideas to construct an initial datum; define a sheet structure
function as a single-valued function with a discontinuity on a given spiral
curve. Consequently we obtain the desired function by adding some small
constant and mollifying the function.

There are interesting results which mention a motion of spirak. .N.
Ishimulra ([I]) considered a motion of spiraJs by the curve shortening flow,
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and discussed about the existence and nonexistence of self-similar spiral-like
solution. T. Imai, N. Ishimura and T. Ushijima ([IIU]) showed the exis-
tence of solutions for an ordinary differential equation which describes the
motion of spirals by crystalline curvature, and showed numerical examples.
T. Ogiwara and K.-I. Nakamura ([ON1, ON2]) showed the existence and the
stability in the sense of Liapunov of ‘spiral traveling wave solutions’ for a
phase-field model by [K]. Y. Giga, N. Ishimura and Y. Kohsaka ([GIK])
showed the existence and the stability in the sense of Liapunov of ‘spiral
solutions‘ for the interface model of spirals.

2. Main result

2.1. Preliminaries
Let $\Omega$ be a bounded domain in $\mathbb{R}^{2}$ . Assume that $0\in\Omega$ . Take $\rho>0$ sm\‘all
enough so that $B_{\rho}=\{x\in \mathbb{R}^{2};|x|<\rho\}\subset\Omega$ . Set $W=\Omega\backslash \overline{B_{\rho}}$ . We first
define a ‘spiral curve’ on $\overline{W}$.

Definition 2.1. We say $\Gamma$ is a $p_{7}\dot{\tau}ncipal$ spira$l$ on $\overline{W}$ if $\Gamma=\{P(s)\in\overline{W};s\in$

$[0, l]\}$ satisfies the following properties;

(A1) $\Gamma$ is a $C^{1}$ curv $e$,

$(A2)P(0)\in\partial B_{\rho},$ $P(l)\in\partial\Omega$ , and $P(s)\not\in\partial W$ for $s\in(O, l)$ ,

(AS) $P(s_{1})\neq P(s_{2})$ if $s_{1}\neq s_{2\prime}$

$t$

$(A4)$ theoe msts $\delta>0$ such that, for any $x\in\{y\in\overline{W};dist(x, \Gamma)<\delta\}=:\Gamma^{\delta}$,
there earasts $z\in\Gamma$ uniquely such that dist $(x, \Gamma)=|x-z|$ .

We here consider a principal spiral for an initial curve. The aim of this paper
is to show the existence and uniqueness of ‘generalized’ solution $\Gamma_{t}$ moving
by

$V=C-\kappa$ on $\Gamma_{t}$ , (2.1)
$\Gamma_{t}\perp\partial W$, (2.2)

where $V$ and $\kappa$ is the normaI velocity and the curvature $of.\Gamma_{t}$ , respectively,
and $C$ is a constant.

For this purpose, we recall a leveI set formulation by [O]. Let us introduce
a formulation of $\Gamma_{t}$ of the form

$\Gamma_{t}$ $:=$ { $x\in\overline{W};u(t,$ $x)-\theta(x)\equiv 0$ mod $2\pi \mathbb{Z}$}, (2.3)
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Figure 1: A example of a principal spiral.

where $u$ is an auxiliary function, and $\theta(x)=\arg x$ . We here treat arg $x$ as
a multi-valued function. This formulation means that we consider a spiral
curve to be a cross section of an auxihiary surface by the Riemannian sur-
face, and see its projection on $\mathbb{R}^{2}$ . Indeed, we observe that $\Gamma_{t}$ is a rotating
Archmedean spiral if $u(t, x)=t+|x|$ . By this formulation we derive a level
set equation of the form

$u_{t}-| \nabla(u-\theta)|\{div\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}+c\}=0$ in $(0,T)\cross W$, (2.4)

$\langle\vec{\nu}, \nabla(u-\theta)\rangle=0$ on $(0,T)\cdot\cross\partial W$, (2.5)

where $\langle\cdot, \cdot\rangle$ is the usual inner product in $\mathbb{R}^{2}$ , and $\nuarrow$ is the outer unit$(normal$

vector field of $\partial W$ . We note that (2.4) and (2.5) are well-defined since $\nabla\theta$

is determined as a singlevalued function. The mathematical results, espe-
cially the solvability for continuous initial data and the comparison principle
of $(2.4)-(2.5)$ in the viscosity solution sense, have been established by [O].
We thereby define a generalized solution of the initial and boundary value
problem of $(2.1)-(2.2)$ with an initial principal spiral.

.

Definition 2.2. Let $\Gamma_{0}$ be a Pmncipal spiral on W. We say a family of
$\{\Gamma_{t}\}_{t\geq 0}$ is a generalized solution of a spiral of $(2.1)-(2.2)$ if $\Gamma_{t}$ is given by (2.3)
with a viscosity solution $uof\cdot(2.4)-(2.5)$ such that $u(O, x)=u_{0}(x)\in C(\overline{W})$ ,
where $u_{0}$ satisfies

$\Gamma_{0}=$ {$x\in\overline{W};u_{0}(x)-\theta(x)\equiv 0$ mod $2\pi \mathbb{Z}$}. (2.6)
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2.2. Main results
We here mention about the main results of this paper. The aim is to sbow
the uniqueness and existence of a generalized solution of a spiral for $(2.1)-$

(2.2). The uniqueness of generalized solutions is established by showing the
uniqueness of level sets as follows;

Theorem 2.3. Let $u_{0}$ and $v_{0}$ be continuous functions satishing

{$x\in\overline{W};u_{0}(x)-\theta(x)\equiv 0$ mod $2\pi \mathbb{Z}$} $=$ { $x\in\overline{W};v_{0}(x)-\theta(x)\equiv 0$ mod $2\pi \mathbb{Z}$ }.

Let $u$ and $v$ be a viscosity solution of $(2.4)-(2.5)$ satishing $u(O, x)=u_{0}(x)$

and $v(O, x)=v_{0}(x)$ , respectively. For $T>0$ , the property $\Gamma_{t}^{u}=\Gamma_{t}^{v}$ hold\’{s} for
$t\in(O,T)$ , where

$\Gamma_{t}^{u}$ $:=$ { $x\in\overline{W};u(t,$ $x)-\theta(x)\equiv 0$ mod $2\pi \mathbb{Z}$}.

We remark that the usual method as in [CGG, \S 5] or [ES, \S 5] does not work
wef since there is no classification of ‘sub-, or ‘super-leveI’ sets for the level
set formulation of spirals. To overcome this difficulty, we introduce a helical
covering space as in [O].

The existence of a generalized solution Is established by the construction
of an initial datum for a given initial principal spiral, since the existence and
uniqueness of $(2.4)-(2.5)$ are shown by [O].

Theorem 2.4. Let $\Gamma_{0}$ be a prencipal spiral. Then the$re$ nists $u_{0}\in C(\overline{W})$

such that $u_{0}$ satisfies (2.6).

We remark that Theorem 2.4 is not obvious. In the case of the usual level set
method, we observe that the signed distance imctions of the initial closed
curves give initial data of a level set equation. However, this way does not
work well, since a signed distance function of a principal spiral is nonnegative
or nonpositive generaly. The basic strategy of the construction is to make
a step-like function along to a initial curve.$\cdot$ For this purpose we introduce
the other branch of arg $x$ whose discontinuity lies only on $\Gamma_{0}$ . Once we have
such a function, we then $obta\dot{i}$ a desired initial datum by adding some small
constant and molifying it.
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3. Uniqueness
In this section we shall prove Theorem 2.3. We use a strategy as in [ES] or
[CGG], which is for the usual level set method. The simple interpretation of
them to our problem is organized as follows.

Stepl. We make a rescaling function $G$ satisfying $u_{0}-\theta\leq G(v_{0}-\theta)$ , and
$G(v-\theta)\leq 0$

’ if $v-\theta\leq 0’$ , where $v$ is a viscosity supersolution of the
mean curvature flow with a driving force,

Step2. (Rescaling invariance.) Show that $G(v-\theta)$ is still a viscosity super-
solution,

Step3. Apply the comparison principle and $obta\dot{i}u-\theta\leq G(v-\theta)$ for a
viscosity sub- and super-solution $u$ and $v$ , respectively. This yields
that a set where $u-\theta$ is positive’ is contained by a set where $v-\theta$ is
positive’.

We now clarify the sense of $u-\theta$ is positive’, which $is$ actually not clear
.because $\theta$ is multi-valued. We recall a covering space as in [O] of the form

$\mathfrak{X}:=$ { $(x,\xi)\in\overline{W}\cross \mathbb{R};(\cos\xi$ , sin $\xi)=x/|x|$ }. (3.1)

By using this set we make sense of sets where $u-\theta$ is positive’ or $u-\theta$ is
negative’ by

$_{u}(t;k)$ $=$ $\{(x,\xi)\in \mathfrak{X};u(t, x)-\xi>2\pi k\}$ , (3.2)
$D_{u}(t;k)$ $=$ $\{(x, \xi)\in X;u(t, x)-\xi<2\pi k\}$ . (3.3)

The conclusion in Step 3 says that $O_{u}(t;0)\subset O_{v}(t;0)$ . By similar arguments
we also obtain $O_{u}(t;k)\subset O_{v}(t;k)$ , or $D_{u}(t;k)\supset D_{v}(t, k)$ for $k\in \mathbb{Z}$ .

3.1. Rescaling invariance
We now recall a rescaling invariance of dependent variables. See [CGG, \S 5],
[ES, \S 5], or [GS, Lemma 4.1] for a rescaling invariance. We also find the
rescaJing invariance for spirals in [$O$ , Lemma 4.8]. However, it is not clear
since the statement includes the notation of $G(v-\theta)$ without its explanation.
Therefore we here clarify the sense of it. We now consider a line

$\mathcal{L}=\{x\in\overline{W};x/|x|=(-1,0)\}$ ,

and let $\Theta:\overline{W}\backslash \mathcal{L}arrow \mathbb{R}$ be a function defined by

$\Theta(x)=\Xi(\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}I$ for $x=(x_{1},x_{2})\in\overline{W}\backslash \mathcal{L}$ ,
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where $\Xi:(-1,1$ ] $arrow(-\pi, \pi)$ be a function satisfying cos $\Xi(r)=r$ .

Definition 3.1. For a lower semicontinuous function $f:\overline{W}arrow \mathbb{R}$ and a
continuous, nondecreasing function $G:\mathbb{R}arrow \mathbb{R}$ satisfying

$G(s+2\pi)=G(s)+2\pi$ for $s\geq s_{0}$ (3.4)

for some $s_{0}\in \mathbb{R}_{f}$ we define a function $g:\overline{W}arrow \mathbb{R}$ defined by

$g(x):=$
I $G(f(x)-\overline{\Theta}(x))+\overline{\Theta}(x)$ if $x\in\overline{W}\backslash \mathcal{L}$,

$\lim_{yarrow x}[G(f(x)-\ominus-*(y))+\overline{\Theta}_{*}(y)]$ if $x\in \mathcal{L}$ ,

where $\overline{\Theta}(x)=\Theta(x)+2\pi\lambda_{0},$ $\lambda_{0}\in \mathbb{Z}$ such that $\inf_{\overline{W}}(f-\overline{\Theta}_{*})\geq s_{0}$ , and
$\overline{\Theta}_{*}:$ $\overline{W}arrow \mathbb{R}$ be a lower semicontinuous envelope of $\overline{\Theta}$ . We denote $g$ by
$G(f-\theta)+\theta$ .

$We\cdot remark$ that $G(f-\theta)+\theta$ is well-defined. Indeed, it suffices to see the
existence of the himit $\lim_{yarrow x}[G(f(x)-\overline{\Theta}(y))+\overline{\Theta}(y)]$ for $x\in \mathcal{L}$ . Let $\{y_{n}\}$ and
$\{z_{n}\}$ be sequences which converge to $x\in \mathcal{L}$ . We may assume that $\Theta(y_{n})<0$

and $\Theta(z_{n})>0$ . We observe that

$\lim_{narrow\infty}(\Theta_{*}(y_{n}))+2\pi=\lim_{narrow\infty}(\Theta_{*}(z_{n}))$ .

Therefore we obtain

$\lim_{narrow \text{科}}[G(f(x)-\overline{\Theta}_{*}(*))+\overline{-}O_{*}(z_{n})]=\lim_{narrow\infty}[G(f(x)-\overline{\Theta}_{*}(z_{n})+2\pi)\cdot+\overline{\Theta}_{*}(z_{n})-2\pi]$

$= \lim_{narrow\infty}[G(f(x)-\overline{\Theta}_{*}(y_{\dot{n}}))+\overline{\Theta}(y_{n})]$ .

Therefore. $G(f-\theta)+\theta$ is well-defined.
We verify the regularity of $G(f-\theta)+\theta$ for smooth $f$ .

Lemma 3.2. Let $G:\mathbb{R}arrow \mathbb{R}$ be a smooth ffinction satisfying (3.4). Let
$f\in C^{1,2}((0,T)\cross\overline{W})$ . We have that $g=G(f-\theta)+\theta\in C^{1,2}((0,T)\cross\overline{W})$ .
Moreover we obtain

$g_{t}(t, x)$ $=$ $G’(f(t, x)-\overline{\Theta}_{*}(x))f_{t}(t, x)$ ,
$\nabla g(t, x)$ $=$ $G’(f(t, x)-\overline{\Theta}_{*}(x))\nabla(f-\theta)+\nabla\theta$ ,

$\nabla^{2}g(t,x)$ $=$ $G”(f(t, x)-\overline{\Theta}_{*}(x))\nabla(f-\theta)\otimes\nabla(f-\theta)$

$+G’(f(t, x)-\overline{O_{*}-}(x))\nabla^{2}(f-\theta)+\nabla^{2}\theta$.
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It suffices to see the regularity of $G(f-\theta)+\theta$ on $\mathcal{L}$ , and this is obtained
by considering the another branch of the argument which is smooth on $\mathbb{R}^{2}\backslash$

$\{(r, 0);r>0\}$ .
We are now in position to state an adapted rescaling invariance for spiral

crystal growth.

Lemma 3.3. Let$\cdot$ $G$ be a uniform continuous, nondecreasing function satis-
hing (3.4). Let $v$ be a viscosity supersolution of $(2.4)-(2.5)$ . For $T>0$ let
$w:[0, T)\cross\overline{W}arrow \mathbb{R}$ be a function defined by $w(t, x)=G(v(t, x)-\theta(x))+\theta(x)$

in the sense of Definition 3.1. Then $w$ is a viscosity supersolution of $(2.4)-$

(2.5) with $a$ initial datum $w(0, \cdot)=G(v_{0}-\theta)+\theta$ .

Sketch of the pmof. Since we consider the approximation of a uniform con-
tinuous $G$ by smooth $G_{k}$ such that $G_{k}’>0$ and (3.4) holds, it suffices to
consider the case that $G$ is smooth and satisfies $G’>0$ . For the simplicity
we only demonstrate that Lemma 3.3 is true in $(0, T)\cross W$ if$\cdot$ $v$ is smooth.

Let $(\hat{t},\hat{x})\in(O, T)\cross W$ , and $\varphi\in C^{1,2}((0, T)\cross W)$ satisfy

$w(t, x)-\varphi(t, x)\geq w(\hat{t},\hat{x})-\varphi(\hat{t},\hat{x})=0$ for $(t, x)\in[0, T).\cross\overline{W}$.

We may assume that $\varphi(t, x)-\overline{\Theta}_{*}(x)\geq s_{0}$ without loss of generality. Since
$G’>0$ , there exists $H=G^{-1}$ and satisfies

$H’>0$ , $H(s+2\pi)=H(s)+2\pi$ for$s\geq G(s_{0})$ .
Set

$\psi(t, x)=H(\varphi(t, x).-\theta(x))+\theta(x)$ ,
then we have $\psi\in.C^{1,2}((0, T)\cross W)$ and

$v(t, x)-\cdot\psi(t, x)\geq v(\hat{t},\hat{x})-\psi(\hat{t},’\hat{x})$ for $[0, T$) $\cross\overline{W}$.
Since $v$ is a viscosity supersolution of $(2.4)-(2.5)$ we have

$\psi_{t}+F^{*}(\nabla(\psi-\theta), \nabla^{2}(\psi-\theta))\geq 0$ at $(\hat{t},\hat{x})$ , (3.5)

where $F:\mathbb{R}^{2}\backslash \{0\}\cross S^{2}arrow \mathbb{R}$ is a function satisfying

$F( \nabla(\varphi-\theta), \nabla^{2}(\varphi-\theta))=-|\nabla(\varphi-\theta)|\{div\frac{\nabla(\varphi-\theta)}{|\nabla(\varphi-\theta)|}+c\}$ .

By Lemma 3.2 we have

$\psi_{t}$ $=$ $G’(\varphi-\theta)\varphi_{t}$ ,
$\nabla\psi$ $=$ $G’(\varphi-\theta)\nabla(\varphi-\theta)+\nabla\theta$ ,

$\nabla^{2}\psi$ $=$ $G”(\varphi-\theta)\nabla(\varphi-\theta)\otimes\nabla(\varphi-\theta)+G’(\varphi-\theta)\nabla^{2}(\varphi-\theta)+\nabla^{2}\theta$.
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Here we have denoted $G’(\varphi-\overline{\Theta}_{*})$ by $G’(\varphi-\theta)$ for the simplicity. Since we
have

$F^{*}(\lambda p, \lambda X+\mu p\otimes p)=\lambda F^{*}(p, X)$ for $(p, X)\in \mathbb{R}^{2}\cross S^{2},$ $\lambda>0$ , and $\mu\in \mathbb{R}$

and (3.5), we thereby obtain

$\varphi_{t}+F^{*}(\nabla(\varphi-\theta), \nabla^{2}(\varphi-\theta))\geq 0$ at $(\hat{t},\hat{x})$ .

For an approximation of a uniform continuous $G$, we consider

$G_{k}(s)=(1-k^{-1})(G*\mu_{k})(s)+k^{-1}s$ ,

where $\mu_{k}\in C_{0}^{\infty}(\mathbb{R})$ is a mollifier. We observe that $\lim_{karrow\infty}G_{k}=G$ , this
convergence is locally uniform, $G_{k}’>0$ , and $G_{k}$ satisfies (3.4). $\square$

3.2. Rescaling function
In this section we construct a rescaling function for spirals. As in Lemma
3.3 we need to construct a uniformly continuous function. However, we
here mention only about a construction of upper semicontinuous rescaling
function, since the approximation is given by a standard way as in [G]. For
classification of a branch of $\theta$ we use an idea of a covering space in (3.1).

Lemma 3.4. Let $u_{0}$ and $v_{0}$ be continuous functions on $\overline{W}$, and assume that

$\{(x, \xi)\in \mathfrak{X};u_{0}(x)-\xi>0\}\subset\{(x, \xi)\in \mathfrak{X};v_{0}(x)-\xi>0\}$ . (3.6)

There exists $G_{1}$ : $\mathbb{R}arrow \mathbb{R}$ satisfying

(i) $G_{1}$ is nondecreasing,

(ii) $G_{1}(s)=0$ if $s\leq 0$,

(iii) $u_{0}(x)-\xi\leq G(v_{0}(x)-\xi)$ for $(x, \xi)\in \mathfrak{X}$ ,

$(iv)\cdot G_{1}(s+2\pi)=G_{1}(s)+2\pi$ for $s\in G_{1}^{-1}$ ( ($0$ , 十\infty )),

(v) $G_{1}$ is upper semicontinuous and continuous on $G^{-1}(0)$ .

We propose the candidate of $G_{1}$ as in Lemma 3.4. We define

$G_{1}(s)$ $:= \sup\{(u_{0}(x)-\xi)_{+};(x, \xi)\in X, v_{0}(x)-\xi\leq s\}$ ,
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where $(r)_{+}= \max(r, 0)$ . We here mention only the proof of (iv), since the
other properties are obtained by standard arguments. Let $s\in G_{1}^{-1}(\{s;s>$

$0\})$ . For $k\in N$ we have $(x_{k}, \xi_{k})\in \mathfrak{X}$ satisfying

$G_{1}(s)-k^{-1}\leq u_{0}(x_{k})-\xi_{k}$ , and $v_{0}(x_{k})-\xi_{k}\leq s$ .

We now consider $(x,\xi_{k}-2\pi)$ . By the definition of $\mathfrak{X}$ we have $(x, \xi_{k}-2\pi)\in \mathfrak{X}$ .
Moreover we obtain $v_{0}(x_{k})-(\xi_{k}-2\pi)\leq s+2\pi$ . Therefore we obtain

$u_{0}(x_{k})-(\xi_{k}-2\pi)\leq G_{1}(s+2\pi)$ .

By letting $karrow\infty$ we obtain

$G_{1}(s)+2\pi\leq G_{1}(s+2\pi)$ .

We next consider $(x,\xi)\in X$ satisfying $v_{0}(x)-\xi\leq s+2\pi$ . We now have
$(x, \xi+2\pi)\in \mathfrak{X},$ $v_{0}(x)-(\xi+2\pi)\leq s$ , and

$(u_{0}(x)-\xi)_{+}\leq(u_{0}(x)-(\xi+2\pi))_{+}+2\pi\leq G_{1}(s)+2\pi$ .

By taking supremum on above with respect to $(x,\xi)\in \mathfrak{X}$ such that $v_{0}(x)-\xi\leq$

$s+2\pi$ we obtain
$G_{1}(s+2\pi)\leq G_{1}(s)+2\pi$ . $\square$

4. Existence
In this section we shall prove Theorem 2.4. For this purpose we construct a
step-like function along to an initial curve.

Lemma 4.1. Let $\Omega$ be a bounded domain with $C^{2}$ boundary. Assume that
$0\in W$ . Take $\rho>0$ such that. $B_{\rho}\subset\Omega$ . Set $W=\Omega\backslash \overline{B_{\rho}}$. Let $\Gamma$ be a przncipal
spiml on $\overline{W}$ . There exists $\varphi\in C^{\infty}(W\backslash \Gamma)\cap C(\overline{W}\backslash \Gamma)$ satishing

$\varphi(x)$ –arg $x\equiv 0$ mod $2\pi \mathbb{Z}$ .

for $x\in\overline{W}\backslash \Gamma$ .

The function $\varphi$ in Lemma 4.1 gives other branch of arg $x$ on $\overline{W}\backslash \Gamma$ .
Usually, we consider the domain $\mathbb{R}^{2}\backslash (\{0\}\cross\overline{\mathbb{R}}_{-})$ to define arg $x$ , where
$\overline{\mathbb{R}}_{-}=\{x\in \mathbb{R};x\leq 0\}$ . Lemma 4.1 says that one can define a branch of arg $x$

if we remove a principal spiral from a domain.
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Idea of the proof. We now introduce a polar coordinate. Let $\Psi:(0, \infty)\cross \mathbb{R}arrow$

$\mathbb{R}^{2}$ be a map defined by $\Psi(r, \tau)=$ ( $r$ cos $\tau,$ $r$ sin $\tau$). Set
$\mathcal{D}:=\{(r, \tau)\in(0, \infty)\cross \mathbb{R};\Psi(r, \tau)\in W\}$ ,
$\tilde{\Gamma}$ $:=\{(r, \tau)\in\overline{D};\Psi(r, \tau)\in\Gamma\}$ .

We find curves $C_{1}$ of $\partial\Omega,$ $C_{2}$ of $\partial B_{\rho}$ , and infinite curves $\tilde{\Gamma}_{n}$ of $\Gamma$ , i.e.,

Figure 2: Domain and spiral in polar coordinate.

$C_{1}$ $:=\{(\rho, \tau);\tau\in \mathbb{R}\}$ ,
$C_{2}$ $:=\{(p(s), q(s));\Psi(p(s), q(s))\in\partial\Omega\}$ ,

$\tilde{\Gamma}_{n}$ $:=\{\tilde{P}_{\mathfrak{n}}(s)=(r(s), \tau_{n}(s));s\in[0, l], \Psi(\tilde{P}_{n}(s))=P(s), \tau_{n}(0)=2\pi n\}$ .
We observe that curves $C_{1},\tilde{\Gamma}_{n+1},$ $C_{2}$ and $\tilde{\Gamma}_{n}$ yield a closed curve so that
there exists a bounded domain $\mathcal{E}_{n}$ which is enclosed by them. By using these
notation we define $\tilde{\varphi}:\overline{D}\backslash \tilde{\Gamma}.arrow \mathbb{R}$ by

$\tilde{\varphi}(r, \tau)=\tau-2\pi n$ if $(r, \tau)\in \mathcal{E}_{n},$ $n\in \mathbb{Z}$ ,

and define
$\varphi(x)=\tilde{\varphi}(|x|, Argx)$ ,

where $Argx\in[0,2\pi$) is the principal value of arg $x$ for $x\in R^{2}\backslash \{0\}$ . This $\varphi$

is a desired function. $\square$

Proof of Theorem 2.4. We may assume that $P(O)=(\rho, 0)$ without loss of
generality. Let $\varphi$ be a function obtained by Lemma 4.1. We consider a
tubular neighborhood of $\Gamma_{0}$ . Set

$\Gamma_{0}^{\delta}=\{x\in\overline{W};dlst(x, \Gamma_{0})<\delta\}$ .
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We here take $\delta$ small enough so that $\delta<\rho$ in addition to the condition (A4).
Then we observe that $\Gamma_{0}$ divide $\Gamma_{0}^{\delta}$ into two domains $\Gamma_{0,\pm}^{\delta}$ , which satisfy

$x+hn(x)\in\Gamma_{0,-}^{\delta}\Gamma_{0,-}^{\delta}=\Gamma_{0}^{\delta}\backslash \overline{\Gamma_{0,+}^{\delta}},$

$x-hn(x)\in\Gamma_{0,+}^{\delta}$ for $x\in\Gamma_{0}$ ,

where $n(x)$ is the unit normal vector field of $\Gamma_{0}$ in the direction of the normal
$\dot{v}eloc\ddagger ty$. We define $\varphi_{\pm}:$ $\Gamma_{0,\pm}^{\delta}arrow \mathbb{R}$ by the restriction of $\varphi$ on $\overline{\Gamma_{0,\pm}^{\delta}}\backslash \Gamma_{0}$ ,
respectively. We next extend $\varphi\pm onto\overline{\Gamma_{0}^{\delta}}$ satisfying $\varphi\pm is$ continuous, $\varphi\pm\equiv$

arg $x$ mod $2\pi \mathbb{Z}$ on $\overline{\Gamma_{0}^{\delta}}$. We still the extension of $\varphi\pm by\varphi\pm\cdot$ We remark that
$|\varphi+(x)-\varphi_{-}(x)|=2\pi$ for $x\in\Gamma_{0}^{\delta}$ .

Let $d_{0}$ be a signed distance function of $\Gamma_{0}$ on $\Gamma_{0}^{\delta}$ , whose sign is same as
the sign of $\Gamma_{0,\pm}^{\delta}$ , in other words, $d_{0}>0$ in $\Gamma_{0,+}^{\delta}$ and $d_{0}<0$ in $\Gamma_{0,-}^{\delta}$ . By using
this function we define

$\psi(x)$ $:= \frac{\delta+d_{0}(x)}{2\delta}\varphi_{+}(x)+\frac{\delta-d_{0}(x)}{2\delta}\varphi_{-}(x)$ .

We observe that $\psi=\varphi$ on $\partial\Gamma_{0}^{\delta}\cap W,$ $\psi\in C(\overline{\Gamma_{0}^{\delta}})$ and $\psi$ –arg $x\equiv\pi$ only on
$\Gamma_{0}$ .

By using $\psi$ and $\varphi$ we define

$u_{0}(x)=\{\begin{array}{ll}\varphi(x)+\pi if x\in\overline{W}\backslash \overline{\Gamma_{0}^{\delta}},\psi(x)+\pi if x\in\overline{\Gamma_{0}^{\delta}}.\end{array}$

This is the desired function. $\square$
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