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Abstract

Some iteration algorithms to prove strong convergence of approximating fixed
point sequences for nonlinear mappings are introduced in Hilbert spaces or Ba-
nach spaces. Also, we propose a modified iteration algorithm for Xu'’s iteration
process [Bull. Austral. Math. Soc., 74 (2006), 143-151] for nonexpansive map-
pings and establish strong convergence of such an iteration for asymptotically
nonexpansive mappings in smooth and uniformly convex Banach spaces.
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1 Introduction

Let C be a nonempty closed convex subset of a real Banach space X andlet T : C — C
be a mapping. Then T is said to be a Lipschitzian mapping if, for each n > 1, there
exists a constant k, > 0 such that |T"z — T™y|| < ku|lz — | for all z,y € C
(we may assume that all k, > 1). A Lipschitzian mapping T is called uniformly
k-Lipschitzian if k, = k for all n > 1, nonexpansive if k, = 1 for all n > 1, and
asymptotically nonezpansive [9] if limn,_,o0 kn, = 1, respectively. A point z € C is a
fized point of T provided Tz = z. Denote by F(T') the set of fixed points of T'; that is,
F(T) = {z € C:Tz = z}. A point p in C is said to be an asymptotic fired point of T
[25] if C contains a sequence {z,} which converges weakly to p such that the strong
limn_,00(%n — T'zn) = 0. The set of asymptotic fixed points of T' will be denoted by
F(T). We say that a sequence {zn} in C is said to be an approzimating fized point
sequence for T if ||z, — T'z,| — 0.
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Let X be a smooth Banach space and let X* be the dual of X. The function
¢: X x X — R is defined by

$(y,z) = llyll* - 2(y, Jz) + l|z]*

for all z,y € X, where J is the normalized duality mapping from X to X*. We say
that a mapping T : C — C is relatively asymptotically nonezpansive [15] if F(T) is
nonempty, F(T) = F(T) and, for each n > 1 there exists a constant k, > 0 such that
¢(p, T"z) < k2¢(p,z) for z € C and p € F(T), where limy, o0 kn, = 1. In particular,
T is called relatively nonezpansive [19] if k, = 1 for all n; see also [3,4,5).

The purpose of this paper is to introduce some recent results and open questions
relating to strong convergence for modified Mann (or Ishikawa) iteration processes.
Firstly, in section 2, we introduce three famous iteration processes introduced by
Halpern [10], Mann [17], and Ishikawa [11], respectively. Next, in section 3, we give
some properties of generalized projection relating to the above function ¢ : X x X —
R, and furthermore, in section 4, we give some recent results and open questions for
strong convergence of approximating fixed point sequences in Hilbert spaces or general
Banach spaces. Finally, in section 5, we give a positive answer for Question3, that
is, we modify Xu’s iteration (4.12) and prove strong convergence for such a modified
iteration for asymptotically nonexpansive mappings in smooth and uniformly convex
Banach spaces.

2 Three iteration algorithms

Construction of approximating fixed points of nonexpansive mappings is an important
subject in the theory of nonexpansive mappings and its applications in a number of
applied areas, in particular, in image recovery and signal processing. However, the
sequence {IT™z} of iterates of the mapping T' at a point z € C may not converge
even in the weak topology. Thus three averaged iteration methods often prevail to
approximate a fixed point of a nonexpansive mapping T'. The first one is introduced
by Halpern [10] and is defined as follows: Take an initial guess xo € C arbitrarily and
define {z,} recursively by

$n+1 = tnxo + (1 — tn)Txn, n Z 0, ' (2-1)

where {t,} is a sequence in the interval [0, 1].
The second iteration process is now known as Mann’s iteration process [17] which
is defined as
ZTnt1 = nTn + (1 —an)Tzp, n > 0 (2.2)

where the initial guess z¢ is taken in C arbitrarily and the sequence {oy} is in the
interval [0, 1].

The third iteration process is referred to as Ishikawa’s iteration process [11] which
is defined recursively by

{ YUn = BnZn + (1 - ﬁn)sz n>
Tnt1 = QnZn + (1 — 0n)Tyn, =

0, (2.3)
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where the initial guess xg is taken in C arbitrarily and {an} and {8,} are sequences in
the interval [0, 1]. By taking 3, = 1 for all n > 0 in (2.3), Ishikawa’s iteration process
reduces to the Mann’s iteration process (2.2). It is known in [6] that the process
(2.2) may fail to converge while the process (2.3) can still converge for a Lipschitz
pseudo-contractive mapping in a Hilbert space.

In general, the iteration process (2.1) has been proved to be strongly convergent
in both Hilbert spaces (10, 16, 30] and uniformly smooth Banach spaces [23, 26, 32|,
while Mann’s iteration (2.2) has only weak convergence even in a Hilbert space [8].

3 Some properties of generalized projections

Let X be a real Banach space with norm || - || and let X* be the dual of X. Denote
by (,-) the duality product. When {x,} is a sequence in X, we denote the strong
convergence of {z,} to z € X by z, — = and the weak convergence by z, — z.
‘We also denote the weak w-limit set of {xn} by wy(zs) = {x : 3z,; — z}. The
normalized duality mapping J from X to X* is defined by

Jz = {z" € X" : (z,2") = |l||* = |]=*||*}

for z € X.

A Banach space X is said to be strictly convez if ||(z +y)/2|| < 1 forall z, y € X
with ||z|| = |lyll = 1 and = # y. It is also said to be uniformly convez if ||z, —
Yn|l = O for any two sequences {zn}, {yn} in X such that ||z,] = ||y,,|| = 1 and
l(@n + yn)/2]| - 1.

Let U = {z € X : ||z}| = 1} be the unit sphere of X. Then the Banach space X
is said to be smooth provided

oo e+ 9l = |2

lim . (3.1)

exists for each z, y € U. It is also known that if X is uniformly smooth, then J is
uniformly norm-to-norm continuous on each bounded subset of X. Some properties
of the duality mapping have been given in [7, 24, 28]. A Banach space X is said to
have the Kadec-Klee property if a sequence {z,} of X satisfying that z, — z € X
and ||z,|| — [|z||, then 2, — z. It is known that if X is uniformly convex, then X
has the Kadec-Klee property; see [7, 28] for more details.

Let X be a smooth Banach space. Recall that the function ¢ : X x X — R is
defined by

$(v,2) = yll® - 2y, Jz) + |lz]?

for all z,y € X. It is obvious from the definition of ¢ that

(ll = ll=l)? < 8(y, =) < (llyll + li=ll)? (3:2)
for all z,y € X. Further, we have that for any z,y,z € X,

¢(z,y) = ¢(z,2) + ¢(z,9) + 2z — 2, J (2) = J(y))-
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In particular, it is easy to see that if X is strictly convex, for z,y € X, ¢(y,z) = 0 if
and only if y = z (see, for example, Remark 2.1 of [19]).

Let X be a reflexive, strictly convex and smooth Banach space and let C be a
nonempty closed convex subset of X. Then, for any € X, there exists a unique
element Z € C such that

¢(Z,z) = llgg, #(z, ).

Then a mapping Q¢ : X = C defined by Qcz = # is called the generalized projection
(see [1, 2, 12]). In Hilbert spaces, notice that the generahzed projection is clearly
coincident with the metric projection.

The following result is well known (see, for example, [1, 2, 12]).

Proposition 3.1. ([1, 2, 12]) Let K be a nonempty closed convex subset of a real
Banach space X and let x € X.

(a) If X is smooth, then, T = Qxz if and only if (& —y,Jz — J&) >0 fory € K.

(b) If X is reflezive, strictly convex and smooth, then ¢(y,Qkz) + ¢(Qkz,z) <
é(y, ) for ally € K.

The following subsequent two lemmas are motivated by Lemmas 1.3 and 1.5 of
Martinez-Yanes and Xu [18] in Hilbert spaces, respectively; for detailed proofs, see
(13].

Lemma 3.2. ([13])) Let C be a nonempty closed convex subset of a smooth Banach
space X, z,y,2 € X and A € [0,1]. Given also a real number a € R, the set

D:={veC:¢(v,2) < Ap(v,2) + (1 — N)¢(v,y) + a}
is closed and convexz.

Lemma 3.3. ([13]) Let X be a reflexive, strictly convez and smooth Banach space
with the Kadec-Klee property, and let K be a nonempty closed convex subset of X.
Let 29 € X and q := Qkxo, where Qk denotes the generalized projection from X
onto K. If {xn} is a sequence in X such that w,(zn) C K and satisfies the condition

#(zn, T0) < (g, zo)
for alln. Then xn — g (= Qkxo).

Recently, Kamimura and Takahashi [12] proved the following result which plays
a crucial role in our discussion.

Proposition 3.4. ([12]) Let X be a uniformly convex and smooth Banach space and
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let {yn},{2n} be two sequences of X. If ®(Yn, 2n) — 0 and either {y,} or {z,} is

bounded, then y, — z, — 0.

Finally, concerning the set of fixed points of a relatively asymptotica.lly nonexpan-
sive mapping, we know the following result.
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Proposition 3.5. ([15]) Let X be a reflezive, strictly convexr and smooth Banach
space with the Kadec-Klee property, let C be a nonempty closed convex subset of
X, and let T : C — C be a continuous mapping which is relatively asymptotically
nonezpansive. Then F(T) is closed and conver.

Remark 3.6. Note that if T is relatively nonexpansive, the hypothesis of continuity of
T in Proposition 2.5 is abundant. Also, F(T) is closed and convex in strictly convex
and smooth Banach spaces; see Proposition 2.4 of [19].

4 Strong convergence for approximating fixed point se-
quences

Let C be a nonempty closed convex subset of a real Banach space X andlet T : C — C

be a mapping with F(T') # 0. Recalling that a sequence {,} in C is said to be an

approzimating fized point sequence for T if ||z, — T'z,|| — 0, there are several ways
to construct an approximating fixed point sequences for a nonexpansive mapping
T. We now introduce two cases mentioned in Xu [33]. Firstly we can use Banach’s
contraction principle to obtain a sequence {z,} in C such that

Tn = tn.'l}o + (1 - tn)TZn, n 2 1

where the initial guess xo is taken arbitrarily in C and {t,} is a sequence in the
interval (0,1) such that ¢, — 0 as n — oo, which is called as a Halpern’s iteration
process (2.1). Due to the assumption that F(T') # @, this sequence {z,} is bounded
(indeed ||z, — p|| < ||zo — pl| for all p € F(T)). Hence

and {z,} is an approximating fixed point sequence for 7.

Secondly, we recall a sequence {z,} in C generated by Mann’s iteration process
(2.2) in a recursive way. This sequence {z,} is bounded since, for any p € F(T), we
have |

€n+1 = pll < amllzn = pl| + (1 = @) | T2n — pl| < ||2n — p||-

That is, {|z, — p||} is a nonincreasing sequence. Moreover, since

lzn+1 = TTniall = [lanzn + (1 — an)Tzn — TTasal|
= |lan(zn — Tzn) + (Tzn — Ton41)||
S onllzn — Tz + ||zn ~ Zpp1ll = |l&n — Tzn|,

the sequence {|z, —T'z,||} is also nonincreasing and hence lim,,_,o || — T'za || exists.

However, it is not known whether this sequence {z,} is always an approximating
fixed point sequence for T'. Only partial answers have been obtained. Indeed, if the
space X is uniformly convex and if the control sequence {ay} satisfies the condition

ian(l — ap) = 00,

n=0
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then Reich [22] showed that the sequence {z,} generated by Mann’s iteration process
(2.2) is an approximating fixed point sequence for 7. For the sake of completeness,
we include a brief proof to this fact. Let §x be the modulus of convexity of X. Pick

ap € F(T). Assuming ||z, — p|| > 0 and noticing ||Tz, — p|| < ||zn — p||, we deduce’

that I Tan|
Tn — n
o =l < lew = |1~ 22001 ~ i (I2=20e0)].
Hence : .
= |Zn — Tzn||
> an(l — an)llzs — plidx ('"T:T) < lizo — pll < o0. (41
ne0 n— D

Put |lzn — p|| = r. If r = 0, we are done. So assume r > 0. If 3°>° /@, (1 — ap) = 00,
we obtain from (3.1) that dx (Jlzn — Tza||/r) — 0. This implies that ||z, — Tz,| = 0
and {z,} is an approximating sequence for T'.

Recently, numerous attempts to modify the Mann iteration method (2.2) or the
Ishikawa iteration method (2.3) so that strong convergence is guaranteed have recently
been made.

Firstly, motivated by Solodov and Svaiter [27], Nakajo and Takahashi [21] pro-
posed the following modification of Mann’s iteration process (2.2) for a single nonex-
pansive mapping T with F(T') # 0 and also proved the existence of an approximating
fixed point sequence for T and strong convergence of such a sequence as follows.

Theorem NT. ([21]) Let H be a real Hilbert space, let C be a nonempty closed
convex subset of H and let T : C — C be a nonerpansive mapping. Assume that
F(T) is nonempty. Define a sequence {z,} in C by the algorithm:

zg € C chosen arbitrarily,

Yn = QnTn + (1 - an)Twm

Co={2€C:yn — 2l < llzn - 2II}, (4.2)
Qn={2€C:(zn— 2,20 — zn) 20},

Tnt+1 = Pcannmo’

where Py denotes the metric projection from H onto a closed convexr subset K of H.
If the sequence {an} i3 bounded above from one, then {x,} generated by (4.2) is an
approrimating fized point sequence for T and strongly convergent to Pp(1)%o.

As a special case, taking o, = 0 for all n in Theorem NT, the above iteration
scheme (4.2) reduces to the following;:

zg € C chosen arbitrarily,
Cn={2€C:|Tzn — 2| < |jzn — 2|},
Qn={2€C: (xn— 2,29 — zn) = 0},
ZTn+1 = Po,nQnZo-

(4.3)

Recently, Kim and Xu [14] generalized Nakajo and Takahashi’s iteration process
(4.2) to the following iteration process for an asymptotically nonexpansive mapping
T in a Hilbert space, under the hypothesis of boundedness of C.
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Theorem KX. ([14]) Let C be a nonempty bounded closed convex subset of a Hilbert
space H and let T : C — C be an asymptotically nonezpansive mapping. Assume that
{an} is a sequence in (0,1) such that a, < a for some 0 < a < 1. Define a sequence
{zn} in C by the following algorithm:

zo € C chosen arbitrarily,
Yn = QpTyn + (1 — ap) T 2y,
n={2€C:|lyn— 2|? < ||lzn — 2| + 6a}, - (49
Qn={2€C:(zp — 2,29 — z,) > 0},
Znt+1 = Po,nqQ, %o, :

where :
0n = (1 — ay)(k2 — 1)(diamC)? -+ 0 asn — oo. (4.5)

Then {z} is an approzimating fized point sequence for T and strongly convergent to
Pp(1)To.

Very recently, Martinez-Yanez and Xu [18] generalized Nakajo and Takahashi’s
iteration process (4.2) to the following modification of Ishikawa’s iteration process
(2.3) for a nonexpansive mapping T : C — C with F(T) # @ in a Hilbert space H:

( zo € C chosen arbitrarily,
Yn = QnTp + (1 - an)sz
Zn = .Bnmn + (1 - ﬂn)Tzn;
{ Ca={v€C: gn - v < ||z — o] (46)
+(1 = an) (|2 = llzall® + 2(zn — 2, )},
Qn={veC: (zn—v,zp —z0) <0},
| Tn+1 = Po,n@.Zo,

and proved that the sequence {z,} generated by (4.6) cqnvérges strongly to Pr(7)Zo
provided the sequence {ay} is bounded above from one and limp_,00 Bn = 1.
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Kamimura and Takahashi [12] considered the problem of finding an element u of

a Banach space X satisfying 0 € Au, where A € X x X* is a maximal monotone
operator and X* is the dual space of X. They studied the following algorithm:

zo € X chosen arbitrarily,
0=v, + ,.—ln-(Jy,, —~ Jzyn), vn € Ayn,

Hy={2€X:(yn— 2,920}, (4.7) |

Wh={2€C:(zn—2Jxo — Jzs) > 0},
Tpil = QH,.nW,.ﬂ’o,

where J is the duality mapping on X, {r,} is a sequence of positive real numbers and
Qx denotes the generalized projection from X onto a closed convex subset K of X; see
the section 2 for more details. They proved that if A=10 # @ and liminf,—c0 7n > 0,
then the sequence {z,} generated by (4.7) converges strongly to an element of A~10.
This generalizes the result due to Solodov and Svaiter [27] in a Hilbert space.
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Question 1. Can we carry Theorem NT in Hilbert spaces over more general Banach
spaces? '

The crucial key to solve this question is to show the convezity of C, in (4.2) in
general, which is not easy to prove it in Banach spaces. Professor H. K. Xu raised
the following question to me:

Question 2. Let C be a nonempty closed convex subset of a normed linear space X.
For any choice of a,b € C,

Cap={2€0:lla—2z| < |lb— 2|}

i8 a convex subset of C if and only if X is a Hilbert space.
Note that if X is a Hilbert space, then

1
2€Cap ¢ (b—a,2) <5 (Ibl* - lla]?).

So, C,p is convex in C. However, the proof of the converse still remains open.
Owing to these troubles, we need another hypotheses for mappings T'. In view of this
point, for relatively nonexpansive mappings, Matsushita and Takahashi [19] recently
extended Nakajo and Takahashi’s iteration process (4.2) to general Banach spaces as
follows.

Theorem MT. ([19]) Let X be a uniformly conver and uniformly smooth Banach
space, let C be a nonempty closed convex subset of X, let T : C — C be a relatively
nonezpansive mapping with F(T) # 0, and let {an} be a sequence of real numbers
such that 0 < ay < 1 and limsup,,_,, an < 1. Suppose that {z,} is given by

zo € C chosen arbitrarily,

yn = J Y anJTn + (1 — an)JTxy),

H, = {z € C: ¢(2,4n) < ¢(2,2a)}, ‘ (4.8)
Wn={2€C: (xn — 2,Jx0 — Jz,) 2 0},

Tn+1 = QH, W, Z0,

where J is the normalized duality mapping. Then {z,} generated by (4.8) is an
approzimating fixed point sequence for T and strongly convergent to Qp(t)%o, where
Qk denotes the generalized projection from X onto a closed convez subset K of X.

As a special case, taking an = 0 for all n in (4.8), the iteration scheme reduces to
the following: '
' zg € C chosen arbitrarily,
H,, ={z2€C: ¢(z,Tzy,) < ¢(2,2p)},
={2€C:{(xn—2z,Jx9 — JTp) > 0},
$n+1 QH,.FTW,.EO’

which generalizes the iteration scheme (4.3) in a Hilbert spaces. Also, they established
that even though the condition of uniformly smooth of X is only weakened by the
smooth condition of X, the sequence {zn} generated by (4. 9) still converges strongly
to Qr(T)o-

(4.9)
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Recently, Kim and Takahashi [15] generalized Matsushita and Takahashi’s iter-
ation process (4.8) to the following iteration process for a uniformly k-Lipschitzian
mapping T which is relatively asymptotically nonexpansive.

Theorem KT. ([15]) Let X be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convez subset of X and letT : C — C be a uniformly
k-Lipschitzian mapping which is relatively asymptotically nonexpansive. Assume that
F(T) is a nonempty bounded subset of C' and {an} and {B,} are sequences in [0,1)
such that limsup,_,,an < 1 and B, — 1. Define a sequence {xn} in C by the
algorithm:

(

zo € C chosen arbitrarily,

Yn = I HanJzn + (1 — an)JT2,),

Zp = PpTn + (1 - ﬂn)Tnzm

H, = {'U eC: ¢('Usyn) < and(v, xn) +(1- an)¢(va zn) + ’7‘"}’
Wan={veC: (zn —v,Jz, — Jzq) < 0},

\ Zn+1 = QH,AW,To,

(4.10)

where J is the normalized duality mapping and
= (1~ an) (k2 — 1) - sup{¢(p, za) : p € F(T)}.

Then {zn} generated by (4.10) is an approzimating fized point sequence for T and
strongly convergent to QF(1)%0, where Qr(t) is the generalized projection from X
onto F(T). ,

Let C be a closed convex subset of é, Hilbert space H and let T : C — C be
an asymptotically nonexpansive mapping with F(T') # 0. Then, after noticing that

#(z,y) = llx—yl|? for all z,y € H, we see that [Tz —T™y|| < kn||z—y|| is equivalent

to ¢(T™z,T"y) < k2¢(x,y). It is therefore easy to show that every asymptotically
nonexpansive mapping is both uniformly k-Lipschitzian and relatively asymptotically
nonexpansive. In fact, it suffices to show that F(T) ¢ F(T). The inclusion follows
easily from the well-known demiclosedness at zero of I — T (c.f., [31]), where I denotes
- the identity operator.

Can we remove the hypothesis of boundedness of C in Theorem KX in Hilbert
spaces? The question still remains open. However, if F(T) is a nonempty bounded
subset of C, we now give a partial answer with the following 7, instead of 6,, in (4.5),
that is, a Hilbert space’s version in a case when 8, = 1 for all n in Theorem KT.

Corollary KT. ([15]) Let C be a nonempty closed convex subset of a Hilbert space H
and let T : C — C be an asymptotically nonezpansive mapping. Assume that F(T) is
a nonempty bounded subset of C. Assume also that {an} is a sequence in [0,1] such
that limsup,, ., an < 1. Define a sequence {z,} in C by the following algorithm:

xo € C chosen arbitrarily,

Yn = anTn + (1 — )Tz,

Co={2€C:|lyn—2|> < ||z — 2|? + fn}s (4.11)
Qn={2€C: (zn — 2,20 —z5) > 0},

Zn+1 = Po,n@aTo,
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where
T = (1 — an)(k2 — 1) - sup{||z — p||? : p € F(T)},

then {zn} in C generated by (4.11) is an approzimating fired point sequence for T
and strongly convergent to Pp(1)Zo.

Very recently, Xu [33] also constructed the following iteration to guarantee strong
convergence for a single nonexpansive mapping T : C — C with F(T) # @ in Banach
spaces.

Theorem X. ([33]) Let X be a real smooth and uniformly convez Banach space, C
a nonempty closed convez subset of X, and T : C — C a nonezpansive mapping such
that F(T) # 0. Define a sequence {zn} in C by the algorithm: '

zg € C chosen arbitrarily,

H, =%o{v € C: |[v — Tv|| < tallzn — Tzn||},
Wn={veC: (z,—v,Jzo— Jzy) > 0},
ZTnt1.= QH,W,Z0,

(4.12)

where {t,} i3 a sequence in (0,1) so that t, — 0. Then {z,} is an approzimating
fized point sequence for T and strongly convergent to Qp(r)To, where Qp(t) is the
generalized projection from X onto F(T).

The following question is naturally invoked.

Question 3. Does Theorem X still remain true for asymtotically nonezpansive map-
pings?.

5 Proof of Question 3

In this section, we give a positive answer for Question 3 which is reformulated as
follows.

Theorem 5.1. Let X be a uniformly convexr and smooth Banach space, let C be
a nonempty closed convex subset of X and let T : C — C be an asymptotically
nonezpansive mapping. Assume that F(T) is nonempty. Define a sequence {z,} in
C by the algorithm:

o € C chosen arbitrarily,

H, =c{v € C: |lv-T™| < to|lzn — T"zall},
Wp={vel:(zp,—v,Jz0— Jz,) >0},

Tn+1 = QH.AWaT0,

where {t,} is a sequence in (0,1) so that t, — 0. Then {z,} is an approzimating
fized point sequence for T and strongly convergent to Qr(t)To, where Qp(r) is the
generalized projection from X onto F(T). ’
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Proof. First we show that F(T) C H, N W, and z,41 is well defined. As a matter
of fact, it is clear that F(T) C Hy for all n. Also, clearly, F(T) c Wy = C and
z1 = PhHoynw,oo is well defined. Assume now that F(T) C W, and zn41 is well
defined. We inductively need to prove that F(T) € W,4; and .2 is well defined.
In fact, since Tn4+1 = QH,nw, o, by Proposition 3.1 (a), we get

(Tnt1 — 2,J20 — JTnt1) 20 ‘ (5.1)

for all z € H,NW,. As F(T) C H, N W,, (5.1) holds for all z € F(T). Thus,
F(T) C Wpt1 and Tnio = Qu,,inwn +1Z0 is well defined.

Now we claim that {z,} is bounded. As a matter of fact, by the definition of W,
we have z,, = Qw, zo and so

¢($n, mO) < ¢(ys 3:0)
for all y € W,,. In particular, since F(T) C W,, we get

¢($n,$o) < ¢(P, wo) (P € F(T)) (52)

This implies the boundedness of {z,} and so is {T™z,, : n,m > 1}. Next we show that
|Zn+1—2nl| — 0. For this end, noticing that x, = Qw, o and Tn41 € HaNW, C W,
we get

#(@n, x0) = 3 Sy, 20) < ¢(@n+1, 20)
which shows that the sequence {¢(zn,z¢)} is increasing (and also 'bounded) and so
limy ;00 $(Zn, To) exists. Applying (b) of Proposition 3.1, we have
H(@ns1,2n) = & (Tnt1,Qwa20) < (Tn+1,%0) — H(Qw, o, Zo)
= ¢(-’Bn+1)m0) - ¢($n, $o) - 0.
By Proposition 3.4, we have
lzns+1 — zal| = 0. (5.8)

We now claim that {zn} is an approximating fixed point sequence of T'. Let C be a
bounded closed convex subset of C which contains all the points z,, and T™z,, for all
n, m and let d = diam(C). Since z,4; € H, and by definition of H,, we have

/4
lznsa =D Nzil| < tn (5.4)
=1
where A; > 0 satisfying Ef=1 Ai =1 and each z; € C satisfies

Then it follows from Lemma 2.4 of [29] that there exists a continuous strictly in-
creasing function v (depending only on d) with (0) = 0 and such that for any fixed
n>1,

(5.6)

()£

i=1 i=1

< ey (g o=yl = [T~ Tyl + (1~ 00)
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for all integers m > 1, all points {v;} in C, and all nonnegative numbers {ui} such that
iz1 i = 1. Then, since t, — 0 and k, — 1, it follows easily from (5.4)-(5.6)that

_ ¢
I2n+1 = T zppa|| < |[@nt1 — D Mizaf| + Z)\ — T %)
i=1 =1
Z/\ T"'Hz -t (Z/\ z,) + ||t (Z /\,-z.') - T"Hm,,.,.1
=1 i=1 =1
< (tn + kn.-{-ltn) + dtn+1 +
tonry™? (el = sl = 17772 = T4+ 1 - ki)
S (I +knt1)tn +dtnpr +

1<ig<t
< (1 +kns1)tn + Gtnis + kng1 -7 [d(2tn4r + 1= k})] — 0.

kn17 7! ( max [|lz; — Tzl — llo; — T 25l + (1 - k;-ll-l)d)

This combined with (5.3) yields

lzn — Tznll < [on — Zptall + |Tass — T"+1$,,+1“
HIT 21 — T || + [T 2 - Tzal|
< (A +k)zn ~ zasall + |21 = T 24|
+k|T"2n — 24| — 0, (5.7)

recalling that T is k-uniformly Lipschitzian for some k& > 0. Therefore, {z,} is an
approximating fixed point sequence for T'.

Finally let us prove that z, = ¢ = Qp(1)To. As a similar proof of Theorem 2 in
[31], we have wy(zn) C F(T'). Indeed, let p € wy(zn), i.e., there exists a subsequence
{zn,} of {zn} such that z,, — p. Set zx := z,, for all k. We shall prove that
T"z — z. Since zxy — z, for each integer k > 1, there exists a convex combination

Em( ) )\(k)zﬂ.k, A,(k) >0and Y )\Ek) = 1, such that

llye — =il < 1/k. (5.8)
By (5.7), since ||zn — Tzn|| — 0, it easily follows that
lzx — T"2|| = O (5.9)

as k — oo for any fixed n > 1. Note that, by (5.9), for arbitrary given € > 0, there
exists N = N(e,n) such that ||z — T"2|| < € for all ¥ > N. Applying (5.6) again,
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together with this fact, yields

lle — Tl

A

IA

IA

<

m(k)
5% AP (g T2

=1

m(k)
Z /\Ek)T"z,-.H., — T yx

=1

+

- . -1 Sy o o - .
leiss = T supall + by | s [lasss = zsaell = [T
—T"2z+kll] + (1 — k7 %)d)

Ly — . -1 Ly — .
ziek — T zigll + kn ( e (k)[llzwc Tzl
Hlzjre — T2i4kll] + (1 — k7 1)d)

€+kay ' (2¢+(1—-kzld) (k= N). (5.10)

Taking the limit in (5.10) as k¥ — oo, we obtain for each n > 1

“Noticing that

ll — T ||

limsup flyx — Tkl < kny™* (1 — k5 1)d). (5.11)
k—oo

< e —yll + lue — Tyl + |1 T gk — T"z||
< (M +ka)llz — yell + llye — T yk|l
< (A +4ka)/k+|lyx — T yell  (by using (5.8))

and (5.11), it follows that

limsup ||z — T"z| < y~}(0) = 0.
n—ro0 7

This shows that 7"z — z and so z € F(T). Let ¢ = Qrzo. By (5.2), we see that
¢(zn, Zo) < &(q,z0) for all n. Applying Lemma 3.3 (with K = F(T)), we conclude
that z, - ¢ = QF(T):DQ. : O
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