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Abstract
In this article we begin with the Moroshima’s example, which implies a kind of even-
tually asymptotical stability of solutions for a difference equation z(n + 1) = f(z(n)) for
n > 0. We define new definitions of eventual stability of periodic points in the meaning
of the large in the same way as ones of Lakshmikantham et. al. and Yoshizawa. By
applying the Liapunov’s second method we give eventual stability criteria in the large of
the difference equation. In order to illustrate the main results on eventual stability an
- example of a set of 2-periodic points for eventual stability is given with a numerical result
and analytical estimation.

1 Introduction

In 1977 Moﬁshima[3] gave results on the stability, oscillation and chaos of periodic
points concerning the following difference equation.

A(n)

D A + B

n=0,1,

and
A(r) = maxfza(n) + {1~ (1 +a)z(n)},0],

()1~ (1 +a)e(m)
(1 - z(n))? ’
Here a, b are positive parameters. His results[3] with a = 0.6,b = 1 were studied indepen-

dently with Li-Yorke[2] in 1975.
Morishima[4] studied the chaotic behavior of orbits of

z(n+1) = f(z(n)), (1.1)

where f : [0,1] — [0,1] is continuous, z : Z; = {0,1,2,---} — [0,1] is the price of
the commodity and also he discussed some type of stability of periodic points, where
the stability is not globally uniformly asymptotically stable but every orbits of (1.1) has
unstable subsequences in the beginning and the stable behavior from some iterations.

In this article we show results on the globally asymptotical stability for periodic points of
(1.1) as well as we discuss the globally eventually asymptotical stability. See Lakshikantham-
Leela[1], Yoshizawa[5] concerning the eventual stability for the case of ordinary differential
equations.

B(n) = max{(1-a(m)}{3 -
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2 Notations

Consider difference equation (1.1) in I™ C R™ with I = [0, 1] and positive integer m.

Denote z(n) = (z1(n),za(n), -+, zm(n))T is a relative price vector of m—commodities,
m

where 0 < z;(n) < 1for j=1,2,---,mand » z;(n)=1forn=0,1,2,---. See [3, 4] in

et
detail. A function f : I™ — I™ is continuous.

Let k be a positive integer. Denote a set of k—peridic points by P(k) = {z* € I™},
where fi(z*) # fi(z*) for 1 < i # j < k and f¥(z*) = z*. Denote by z(n;ng, Zo)
a solution of (1.1) for n > ng with z(ng;no,zo) = Zo satisfying the initial condition
(ng, Zo) € Z4 X I™. Denote by || z || a norm of z € R™. For r > 0 we denote the following
neighborhoods: when a point zo € R™, B(z,7) = {z € I™ :|| z — 2o ||< r} ; when a
subset P C R™,S(P,r) = UzepB(z, 7).

A set of k—periodic points P(k) is called eventually uniformly stable [EV-US] if for
each € > 0 there exist Np € Z, and § > 0 such that for every zo € S(P(k),d) and every
ng = No, it holds that each solution x(n; ng, zo) € S(P(k),¢) for n > ng,i.e.,

d(z(n; no, zo), P(k)) < €.

Here a distance between a point £ € R™ and a subset A C R™ is defined by d(z, A) =
inf{]] z —a ||: a € A}. A set of k—periodic points P(k) is called eventually uniformly
attractive to finite coverings [EV-UA.FC] if each finite covering {C, C I™ such that
UQ=ICq D I™ and each £ > 0, there exist Ny € Z, and Tp € Z, such that for every

1 <q<Q,every zp € Cy, every ng = Np, and it holds that every solution z(n; ng, o) €
S(P(k),¢) for n > ng + Ty, i.e.,

d(z(n; no, 2o), P(k)) <.
The set of k—periodic points P(k) is called eventually uniformly asymptotically stable to
finite coverings [EV-UAS.FC] if P(k) is [EV-US] and [EV-UA.FC].

3 Criteria of Eventual Stability

Assume that Eq.(1.1) has a set of k-periodic points
P(k) = {$1,$2, 0 ,.’L'k}

for k =1,2,---. We show two criieria for eventually uniformly asymptotically stable of
P(k) by applying Liapunov’s second method. In case k = 1, P(1) is a set of fixed point.
Let a set of functions denote

CIP = {a: I — I is continuous, strictly increasing and positive definite function }

and R, = [0, 00).
In the following theorem we give eventually uniformly asymptotically stable to finite
coverings of P(k).

Theorem. k—periodic points P(k) is eventually uniformly asymptotically stable to
finite coverings under that there exists a function V : Z, x I™ — R, satisfying the
following condition (a)-(b).
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(a) For any r > 0 there exist a nonnegative integer No > 0 and two functions a,,b, €
CIP such that

ar(d(z, P(k))) £ V(n,z) < br(d(z, P(k))
for any n > Ny and any = € I™ — S(P(k),r).

(b) Let AV(n,z) = V(n+1, f*¥(z)) = V(n,z) for (n,r) € Z, x I™. For any r > 0 there
exist a nonnegative integer Ny > 0 and a function ¢, € CIP such that

AV(n,z) < —c . (d(P(k), z))
for any n > Ny and any z € I™ — S(P(k),r).

Outline of the proof is as follows (1) and (2).
(1) It is proved that the set P(k) is [EV-US]. At first, we get the following inequalities.

dr(d(z, P(k))) < V(n,z) < be(d(z, P(k)));
AV (n,z) < —é&(d(z, P(k)));

6.(d) = minfa-(d), c;(d)] for d > 0, 6.(d) = %a}(d)

For a sufficiently small oy > 0 and any p, € P(k) it can be seen that

Vz € B(p,,a2) = F(z) € B(p,, o). (3.2)
For any € > 0 define |
¢u(€) = inf{V(n,z) : € <[| £ - po |< 1,Yn 2 no}. (3.3)
We immediately get
V(n,z) < ¢,(¢) for Vz € B(py,d.), Yno = No (3.4)

If not so, we can prove the above statement. We, secondly, have the followiné relations.

1< Ek(l) <k, 0< 36 < 6k(1) :Vz € B(pk(l),él),‘v'no > No;
1 < 3k(2) < k:Vn > ng = z(n;ng, ) € B(pr(a), €)- | (3.5)

It can be seen that (1.1) is uniformly bonded as follows:
VYa > 0,38(a) > 0:Vne 20, || z(n;no,z) ||< B(a) for || z ||< a,n = ne. (3.6)

(2)Assume that P(k) is not [EV-UA.FC] as follows. There exist a real number &; > 0
and a finite covering {C, C I™ such that Uqulcq D I™} such that for any integers
N,T € Z, there exist an initial point z, € C; and integers no(NV,T) > N,n,(N,T) >
no(N, T) + T, We assume that d(z(ny; no, o), P(k)) > 1. Then we have a sequence {z; :||
zj |€ a} and 2z = ,'IH& z; € P(k). For a sufficiently small > 0 we get a neighborhood

O(z,n) of z as follows.
S(P(k),€1) N el(O(2,7m)) = 0. (3.7)
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From V(n,z) # 0 on O(z,n), we can define h(n,z) = V(n, f¥(z))/V(n,z) on O(z,n). By
é(d)/d.(d) = 1/2, it can be seen that '

h(n,z) < 1 [&.(d(z, P(k)))/d.(d(z, P(k)))] = 1/2. (3.8)
Then it leads to a contradiction. Q.E.D.

In case where k = 1 the above theorem leads to an eventual stability theorem of fixed
point for (1.1).

Corollary. Eq.(1.1) has a fixed point z*. The point z* is eventually uniformly asymp-
totically stable to finite coverings under that there exists a function V : Z, x I™ — R,
satisfying Condition (a)-(b).

(a) For any r > 0 there exist an integer Np > 0 and two functions a,,b, € CIP such
that

a(lz—z" ) <V(n,z) <be(ll z—2" |))

for any integers n > Np and any initial points € I™ — {z*}.

(b) Let AV(n,z) = V(n+1, f(z)) — V(n,z) for (n,z) € Z, x I™. For any r > 0 there
exist an integer Ny > 0 and a function ¢, € CIP such that

AV(n,z) < —e(f z - 2" |))

for any n > No and any z € I — {z*}.

4 Illustration of Theor_em

We illustrate Theorem in the case k = 2 and P(2) = {0.5,0.7} in the space R with a
numerical result. Consider Morishima’s example as follows.
A(n)
A(n) + B(n)

Here A(n) = max|z + bE,(z(n)),0], B(n) = max[l — z + bE,(z(n)),0] and a = 0.6 and
Ei(z) = —z + 12, By(z) = — ) See [3] in detail. Then, in b = 0.6, we get

2(n+1) = f(z(n)) =

1.822 —4.82 + 3 21.242% — 36z + 12.6

f@) = e —Base @@= (9.62% — 13.8z + 6)2 '

Let
V(z) = d(z, P(2)) = min[|z - 0.5, |z — 0.7|)

for z € I. We consider for each r > 0, a,(d) = b,(d) = d (d > 0), then a,,b, € CIP and
it holds that Condition(a) of Theorem is satisfied. It can be seen that

AV(z) = min(|f*(z) - 0.5], | () — 0.7]) - d(z, P(2))
= min(|f%(z) - 205)], If*() - £20.7)]) - d(=, P(2))
= min | /01 %xfj(a:" + 6(z — z*))(z — z*)db| — d(z, P(2))

z*=0.5,0.7
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< B mae| & (o)l je — | - d(z, P(2)

= max Ig};(a«')ld(ﬂc, P(2)) - d(=, P(2))
= (max|f (f(@)f (@)] - Dd(z, P(2)).

It holds that AV (z) < Igg.lx( f (f(@)f () -1)V(z) and it expectd that AV (z) < —cV(z)

for £ € I with a real number ¢ > 0. Putting y(z) = f (f(z))f (z) — 1, when y(z) < 0,
then there exists a positive number ¢ such that

- AV(z) £ —cV(z), (4.9)
then putting C(d) = cd, we have
C € CIP: AV(z) < —-C(V(2)).

Therefore it holds that Condition (b) of Theorem is satisfied. By a numerical result on
y(z), it can be seen that there exists positive ¢ < 0.4 satisfying (4.9). See Figure 1.

x

4 y(x)
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Figure 1: Let y(z) = f (f(z))f (z) — 1 for 0 < z < 1. Then it holds that y(z) < —0.4 for
0<z<l

Putting
p = 21.24z% — 36z + 12.6, q = (9.6z% — 13.8z + 6)?,



221

then we have f' = p/q and (p/g)? — 1 < 0. In fact

p2 - q2
q2
_-9+q
= =
= [(21.242% — 36z + 12.6) — (9.62% — 13.8z + 6)?]
x[21.242% — 36z + 12.6 + (9.62° — 13.8¢ + 6)?)/¢*
= [-92.16z* + 264.962° — 284.42% — 118.87 — 23.4]

x[21.24(z — (1.18)"1)? 4 12.6 — (9/5.09) + (9.62% — 13.8z + 6)?]/¢*

and 12.6 — (9/5.09) > 0, 264.96z° — 284.4z% = 264.967%(z — 284.4/264.96) < 0 for 0 <
z < 1. Hence it holds that on z € [0, 1]

2
o) = ff@Nf @ -1<5-1<0

Since y is continuous and [0, 1] is compact, then there exists a positive number ¢ such
that y(z) < —c < 0 on [0, 1].

5 Conclusions

We considered a definition of [EV-UAS.FC] (eventually uniformly asymptotic stability
to finite coverings) in the same way as theory of ordinary differential equations.

We proved a theorem for [EV-UAS.FC] of difference equation z(n + 1) = f(z(n))
by Liapunov’s second method but including a computational result and also analytical
estimation of AV.

We illustrated the eventual stability theorem by applying it to the Morishima’s example.
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