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Abstract
In this article we begin with the Moroshima’s example, which implies a kind of even-

tually asymptotical stability of solutions for a difference equation $x(n+1)=f(x(n))$ for
$n\geq 0$ . We define new definitions of eventual stability of periodic points in the meaning
of the large in the same way as ones of Lakshmikantham et. al. and Yoshizawa. By
applying the Liapunov’s second method we give eventual stability criteria in the large of
the difference equation. In order to illustrate the main results on eventual stability an
example of a set of 2-periodic points for eventual stability is given with a numerical result
and analytical estimation.

1 Introduction
In 1977 Morishima[3] gave results on the stabihty, oscillation and chaos of periodic

points concerning the following difference equation.

$x(n+1)= \frac{A(n)}{A(n)+B(n)}$ $n=0,1,$ $\cdots$

td
$A(n)$ $= \max[\frac{a}{b}x(n)+\{1-(1+a)x(n)\}, 0]$ ,

$B(n)$ $= \max[(1-x(n))\{\frac{a}{b}-\frac{x(n)(1-(1+a)x(n))}{(1-x(n))^{2}}\}, 0]$

Here $a,$ $b$ are positive parameters. His results[3] with $a=0.6,b=1$ were studied indepen-
dently with Li-Yorke[2] in 1975.

Morishima[4] studied the chaotic behavior of orbits of

$x(n+1)=f(x(n))$ , (1.1)

where $f$ : $[0,1]arrow[0,1]$ is continuous, $x$ : $z_{+}=\{0,1,2, \cdots\}arrow[0,1]$ is the price of
the commodity and also he discussed some type of stability of periodic points, where
the stability is not globally uniformly asymptotically stable but every orbits of (1.1) has
unstable subsequences in the beginning and the stable behavior from some iterations.

In this article we show results on the globally asymptotical stability for periodic points of
(1.1) as well as we discuss the globally eventually asymptotical stability. See Lakshikantham-
Leela[l], Yoshizawa[5] concerning the eventual stability for the case of ordinary differential
equations.
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2 Notations
Consider difference equation (1.1) in $I^{m}\subset R^{m}$ with $I=[0,1]$ and positive integer $m$ .

Denote $x(n)=(x_{1}(n), x_{2}(n),$ $\cdots,x_{m}(n))^{T}$ is a relative price vector of $m$-commodities,

where $0\leq x_{j}(n)\leq 1$ for $j=1,2,$ $\cdots,$ $m$ and $\sum_{j=1}^{m}x_{j}(n)=1$ for $n=0,1,2,$ $\cdots$ . See $[3, 4]$ in

detail. A function $f$ : $I^{m}arrow I^{m}$ is continuous.
Let $k$ be a positive integer. Denote a set of $k$ -peridic points by $P(k)=\{x\in I^{m}\}$ ,

where $f^{i}(x^{*})\neq f^{j}(x^{*})$ for $1\leq i\neq j\leq k$ and $f^{k}(x^{*})=x^{*}$ . Denote by $x(n;n_{0},x_{0})$

a solution of (1.1) for $n\geq n_{0}$ with $x(n_{0};n_{O},x_{0})=x_{0}$ satisfying the initial condition
$(n_{0}, x_{0})\in Z_{+}\cross I^{m}$ . Denote by 11 $x\Vert$ a norm of $x\in R^{m}$ . For $r>0$ we denote the following
neighborhoods: when a point $x_{0}\in R^{m},$ $B(x_{0},r)=$ {$x\in I^{m}:\Vert$ x–xo $\Vert<r$} ; when a
subset $P\subset R^{m},$ $S(P,r)= \bigcup_{x\in P}B(x,r)$ .

A set of $k$-periodic points $P(k)$ is called eventually uniformly stable [EV-US] if for
each $\epsilon>0$ there exist $N_{0}\in Z_{+\bm{t}}d\delta>0$ such that for every $x_{0}\in S(P(k),\delta)$ and every
$n_{O}\geq N_{0}$ , it holds that each solution $x(n;n_{0},x_{0})\in S(P(k),\epsilon)$ for $n\geq n_{0}$ , i.e.,

$d$( $x$ ($n$;no, $x_{0}$), $P(k)$ ) $<\epsilon$ .
Here a distance between a point $x\in R^{m}$ and a subset $A\subset R^{m}$ is defined by $d(x,A)=$
$\inf\{\Vert x-a\Vert:a\in A\}$ . A set of $k$ -periodic points $P(k)$ is called eventually uniformly
attractive to finite coverings [EV-UA.FC] if each finite covering { $C_{q}\subset I^{m}$ such that
$\bigcup_{q=1}^{Q}C_{q}\supset I^{m}$ and each $\epsilon>0$ , there exist $No\in z_{+}$ and $T_{0}\in z_{+}$ such that for every
$1\leq q\leq Q$ , every $x_{0}\in C_{q}$ , every $n_{O}\geq N_{0}$ , and it holds that every solution $x(n;n_{0},x_{O})\in$

$S(P(k),\epsilon)$ for $n\geq n_{O}+T_{0}$ , i.e.,

$d(x(n;n_{O},x_{0}),$ $P(k))<\epsilon$ .

The set of $k$-periodic points $P(k)$ is called eventually uniformly asymptotically stable to
finite coverings [EV-UAS.FC] if $P(k)$ is [EV-US] and [EV-UA.FC].

3 Criteria of Eventual Stability
Assume that Eq.(l.l) has a set of k-periodic points

$P(k)=\{x_{1},x_{2}, \cdots,x_{k}\}$

for $k=1,2,$ $\cdots$ . We show two criteria for eventually uniformly asymptotically stable of
$P(k)$ by applying Liapunov’s second method. In case $k=1,$ $P(1)$ is a set of fixed point.

Let a set of functions denote

$CIP=$ {$a:Iarrow I$ is continuous, strictly increasing and positive definite function}
and $R+=[0, \infty$).

In the folowing theorem we give eventually uniformly asymptotically stable to finite
coverings of $P(k)$ .

Theorem. $k$ -periodic points $P(k)$ is eventually uniformly asymptotically stable to
flnite coverings under that there exists a function $V$ : $z_{+}xI^{m}arrow R_{+}SatiS\mathfrak{h}ing$ the
following condition $(a)-(b)$ .
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(a) For any $r>0$ there exist a nonnegative integer $N_{0}\geq 0$ and two functions $a_{r},$ $b_{r}\in$

CIP such that
$a_{r}(d(x, P(k)))\leq V(n,x)\leq b_{r}(d(x, P(k))$

for any $n\geq N_{0}$ and any $x\in I^{m}-S(P(k), r)$ .
(b) Let $\Delta V(n,x)=V(n+1, f^{k}(x))-V(n,x)$ for $(n, x)\in z_{+}\cross I^{m}$ . For any $r>0$ there

exist a nonnegative integer $N_{0}\geq 0$ and a function $c_{r}\in CIP$ such that

$\Delta V(n,x)\leq-c_{r}(d(P(k),x))$

for any $n\geq N_{0}$ and any $x\in I^{m}-S(P(k), r)$ .

Outline of the proof is as follows (1) and (2).
(1) It is proved that the set $P(k)$ is [EV-US]. At first, we get the following inequalities.

$\tilde{a}_{r}(d(x, P(k)))\leq V(n,x)\leq b_{r}(d(x,P(k)))$ ;
$\Delta V(n,x)\leq-\tilde{c}_{r}(d(x, P(k)))$ ;

$\tilde{a}_{f}(d)=\min[a_{r}(d), c_{r}(d)]$ for $d>0, \tilde{c}_{r}(d)=\frac{1}{2}\tilde{a}_{r}(d)$

For a sufficiently small $\alpha_{1}>0$ and any $p_{w}\in P(k)$ it can be seen that

$\forall x\in B(p,, \alpha_{2})\Rightarrow F(x)\in B(p_{\omega},\alpha_{1})$. (32)

For any $\epsilon>0$ define

$\phi_{w}(\epsilon)=\inf\{V(n,x) : \epsilon\leq\Vert x-p_{w}\Vert\leq\alpha_{1},\forall n\geq n_{O}\}$. (3.3)

We immediately get

$V(n, x)<\phi_{\omega}(\epsilon)$ for $\forall x\in B(p_{w}, \delta_{w}),$ $\forall n_{0}\geq N_{0}$ (3.4)

If not so, we can prove the above statement. We, secondly, have the following relations.

$1\leq\exists k(1)\leq k,$ $0<\exists\delta\leq\delta_{k(1)}$ : $\forall x\in B(p_{k(1)},\delta_{1}),\forall n_{O}\geq N_{0}$ ;
$1\leq\exists k(2)\leq k:\forall n\geq n_{0}\Rightarrow x(n;n_{0},x)\in B(p_{k(2)},\epsilon)$ . (3.5)

It can be seen that (1.1) is uniformly bonded as follows:

$\forall\alpha>0,$ $\exists\beta(\alpha)>0:\forall n_{0}\geq 0,$ $\Vert x(n;n_{0},x)\Vert<\beta(\alpha)$ for $\Vert x\Vert<\alpha,n\geq n_{0}$ . (3.6)

(2)$Assume$ that $P(k)$ is not [EV-UA.FC] as follows. There exist a real number $\epsilon_{1}>0$

and a finite covering { $C_{q}\subset I^{m}$ such that $\bigcup_{q=1}^{Q}C_{q}\supset I^{m}$ } such that for any integers
$N,$ $T\in Z_{+}$ there exist an initial point $x_{0}\in C_{\overline{q}}$ and integers $n_{0}(N, T)\geq N,n_{1}(N,T)\geq$

$n_{0}(N, T)+T$ , We assume that $d(x(n_{1};n_{0}, x_{0}),$ $P(k))\geq\epsilon_{1}$ . Then we have a sequence { $z_{j}$ : $\Vert$

$z_{j}\Vert\leq\alpha\}$ and $z= \lim_{jarrow\infty}z_{j}\not\in P(k)$ . For a sufficiently small $\eta>0$ we get a neighborhood
$O(z,\eta)$ of $z$ as follows.

$S(P(k),\epsilon_{1})\cap d(O(z,\eta))=\emptyset$ . (3.7)
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From $V(n, x)\neq 0$ on $O(z, \eta)$ , we can define $h(n, x)=V(n, f^{k}(x))/V(n, x)$ on $O(z, \eta)$ . By
$\tilde{c}_{r}(d)/\tilde{a}_{r}(d)=1/2$ , it can be seen that

$h(n,x)\leq 1-[\tilde{c}_{r}(d(x, P(k)))/\tilde{a}_{r}(d(x, P(k)))]=1/2$ . (3.8)

Then it leads to a contradiction. Q.E.D.

In case where $k=1$ the above theorem leads to an eventual stability theorem of fixed
point for (1.1).

Corollary. Eq.(l.l) has a fixed point $x^{*}$ . The point $x^{*}$ is eventually uniformly asymp-
totically stable to finite coverings under that there exists a function $V:Z_{+}xI^{m}arrow R_{+}$

satisfying Condition $(a)-(b)$ .
(a) For any $r>0$ there exist an integer $N_{0}\geq 0$ and two functions $a_{r},b_{r}\in CIP$ such

that
$a_{r}(\Vert x-x^{*}\Vert)\leq V(n,x)\leq b_{r}(\Vert x-x^{*}\Vert)$

for any integers $n\geq N_{0}$ and any initial points $x\in I^{m}-\{x^{*}\}$ .
(b) Let $\Delta V(n,x)=V(n+1, f(x))-V(n,x)$ for $(n, x)\in Z_{+}xI^{m}$ . For any $r>0$ there

exist an integer $N_{0}\geq 0$ and a function $c_{r}\in CIP$ such that

$\Delta V(n,x)\leq-c_{r}(||x-x^{*}||)$

for any $n\geq N_{0}$ and any $x\in I^{m}-\{x\}$ .

4 Illustration of Theorem
We illustrate Theorem in the case $k=2$ and $P(2)=\{0.5,0.7\}$ in the space $R$ with a

numerical result. Consider Morishima’s example as follows.

$x(n+1)=f(x(n))= \frac{A(n)}{A(n)+B(n)}$ .

Here $A(n)= \max[x+bE_{1}(x(n)), 0],$ $B(n)= \max[1-x+bE_{2}(x(n)), 0]$ and $a=0.6$ and
$E_{1}(x)=-x+ \frac{1-x}{a},$ $E_{2}(x)=- \frac{xE_{1}(x)}{1-x}$ . See [3] in detail. Then, in $b=0.6$ , we get

$f(x)= \frac{1.\cdot 8x^{2}-4.8x+3}{96x^{2}-13.8x+6}$ , $f’(x)= \frac{21..24x^{2}-36x+12.6}{(96x^{2}-13.8x+6)^{2}}$ .

Let
$V(x)=d(x, P(2))= \min[|x-0.5|, |x-0.7|]$

for $x\in I$ . We consider for each $r>0,$ $a_{r}(d)=b_{r}(d)=d(d>0)$ , then $a_{r},b_{r}\in CIP$ and
it holds that Condition(a) of Theorem is satisfied. It can be seen that

$\Delta V(x)=\min(|f^{2}(x)-0.5|, |f^{2}(x)-0.7|)-d(x, P(2))$

$= \min(|f^{2}(x)-f^{2}(0.5)|, |f^{2}(x)-f^{2}(0.7)|)-d(x, P(2))$

$= \min_{x=0.5,0.7}|\int_{0}^{1}\frac{df^{2}}{dx}(x" +\theta(x-x))(x-x)d\theta|-d(x, P(2))$
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$\leq x\min_{=0.s,0.7}\max_{x\in I}|\frac{df^{2}}{dx}(x)||x-x^{*}|-d(x, P(2))$

$= \max_{x\in I}|\frac{df^{2}}{dx}(x)|d(x, P(2))-d(x, P(2))$

$=( \max_{x\in I}|f’(f(x))f’(x)|-1)d(x, P(2))$ .

It holds that $\Delta V(x)\leq\max_{x\in I}(f’(f(x))f’(x)-1)V(x)$ and it expectd that $\Delta V(x)\leq-cV(x)$

for $x\in I$ with a real number $c>0$ . Putting $y(x)=f’(f(x))f’(x)-1$, when $y(x)<0$ ,
then there exists a positive number $c$ such that

$\Delta V(x)\leq-cV(x)$ , (4.9)

then putting $C(d)=cd$, we have

$C\in CIP:\Delta V(x)\leq-C(V(x))$ .

Therefore it holds that Condition (b) of Theorem is satisfled. By a numerical result on
$y(x)$ , it can be seen that there exists positive $c\leq 0.4$ satisfying (4.9). See Figure 1.

Figure 1: Let $y(x)=f^{l}(f(x))f’(x)-1$ for $0\leq x\leq 1$ . Then it holds that $y(x)\leq-0.4$ for
$0\leq x\leq 1$ .

Putting
$p=21.24x^{2}-36x+12.6$, $q=(9.6x^{2}-13.8x+6)^{2}$ ,
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then we have $f’=p/q$ and $(p/q)^{2}-1<0$ . In fact

$\frac{p^{2}-q^{2}}{q^{2}}$

$= \frac{[p-q)(p+q)}{q^{2}}$

$=[(21.24x^{2}-36x+12.6)-(9.6x^{2}-13.8x+6)^{2}]$

$x[21.24x^{2}-36x+12.6+(9.6x^{2}-13.8x+6)^{2}]/q^{2}$

$=[-92.16x^{4}+264.96x^{\theta}-284.4x^{2}-118.8x-23.4]$

$x[21.24(x-(1.18)^{-1})^{2}+12.6-(9/5.09)+(9.6x^{2}-13.8x+6)^{2}]/q^{2}$

and $12.6-(9/5.09)>0$ , 264.96$x^{3}-284.4x^{2}=264.96x^{2}(x-284.4/264.96)<0$ for $0\leq$

$x\leq 1$ . Hence it holds that on $x\in[0,1]$

$y(x)=f’(f(x))f’(x)-1 \leq\frac{p^{2}}{q^{2}}-1<0$ .

Since $y$ is continuous and $[0,1]$ is compact, then there exists a positive number $c$ such
that $y(x)<-c<0$ on $[0,1]$ .

5 Conclusions
We considered a definition of [EV-UAS.FC] (eventually uniformly asymptotic stability

to finite coverings) in the same way as theory of ordinary differential equations.
We proved a theorem for [EV-UAS.FC] of difference equation $x(n+1)=f(x(n))$

by Liapunov’s second method but including a computational result and also analytical
estimation of $\Delta V$

We illustrated the eventual stability theorem by applying it to the Morishima’s example.
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