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1 Introduction
This talk is a joint work with Professor Ken-ichi Kamo (Sapporo Medical University,
Japan). Let us consider the equations of the form

$(|u’|^{\alpha-1}u’)’+p(t)|u|^{\beta-1}u=0$ (E)

under the following conditions:

$(A_{1})\alpha$ and $\beta$ are positive constants satisfying $\alpha<\beta$ ;
$(A_{2})p(t)$ is a $C^{1}$ -function defined near $+\infty$ satisfying the asymptotic condition
$p(t)\sim t^{-\sigma}$ for some $\sigma\in R$ as $tarrow\infty$ .

By condition $(A_{2})$ equation (E) can be rewritten in the form

$(|u’|^{\alpha-1}u’)’+t^{-\sigma}(1+\epsilon(t))|u|^{\beta-1}u=0$, (E)

where $\epsilon(t)=t^{\sigma}p(t)-1$ satisfies $\lim_{tarrow\infty}\epsilon(t)=0$ . Of course, here and in what follows the
symbol “$f(t)\sim g(t)$ as $tarrow\infty$ means that $\lim_{tarrow\infty}f(t)/g(t)=1$ . A function $u$ is defined
to be a solution of equation (E) if $u\in C^{1}[t_{1}, \infty$ ) and $|u’|^{\alpha-1}u’\in C^{1}[t_{1},\infty$ ) and it satisfies
equation (E) on $[t_{1}, \infty$ ) for sufficiently large $t_{1}$ .

It is easily seen that all positive solutions $u(t)$ of (E) are classified into the following
three types according as their asymptotic behavior as $tarrow\infty$ :

(I) (asymptotically linear solution):

$u(t)\sim c_{1}t$ for some constant $c_{1}>0$ ;

(II) (weakly increasing solution):

$u’(t)\downarrow 0$ , and $u(t)\uparrow\infty$ ;

(III) (asymptotically constant solution):

$u(t)\sim c_{1}$ for some constant $c_{1}>0$ .
Concerning qualitative properties of positive solutions, the study of asymptotic be-

havior of asymptotically linear solutions and asymptotically constant solutions are rather
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easy, because their first approximations are given by definition. On the other hand, we
can not easily find how the weakly increasing positive solutions behave except for the case
of $\alpha=1([1,4])$ .

In [4, Section 20], equation (E) with $\alpha=1$ has been considered systematically, and
asymptotic forms of weakly increasing positive solutions are given by means of the pa-
rameters $\beta$ and $\sigma$ . When $\alpha\neq 1$ , as far as the authors are aware, there are no works in
which asymptotic forms of weakly increasing positive solutions are studied systematically.
Motivated by these facts we have been making an attempt to find out asymptotic forms
of weakly increasing positive solutions of (E) for the general case $\alpha>0$ .

To gain an insight into our problem, we consider the typical equation

$(|u’|^{\alpha-1}u’)’+t^{-\sigma}|u|^{\beta-1}u=0$ , (E)

where $\sigma\in R$ is a constant. Note that equation (E) can be regarded as a perturbed
equation of this equation. Equation $(E_{0})$ has a weakly increasing positive solution of the
form $ct^{\rho},$ $(c>0,0<\rho<1)$ if and only if $\alpha+1<\sigma<\beta+1$ . This solution is uniquely
given by

$u_{0}(t)=\hat{C}t^{k}$ , (1)

where
$k= \frac{\sigma-\alpha-1}{\beta-\alpha}\in(0,1)$ , $\hat{C}=\{\alpha(1-k)k^{\alpha}\}^{\frac{1}{\beta-\alpha}}$ . (2)

From this simple observation we can see that asymptotic forms of weakly increasing
positive solutions of (E) may be strongly affected by that of the coefficient function $p(t)$ .
Furthermore we conjecture that weakly increasing positive solutions $u$ of (E) behave like
$u_{0}(t)$ given by (1) and (2) if $|\epsilon(t)|$ is suMciently small at $\infty$ . It should be noted that the
number $k$ appearing in (2) plays important roles in the sequel.

We have shown in [3] that the above conjecture is true in some case as seen from the
following theorem:

Theorem 1 Let $\alpha\leq 1$ and $1/2<k<1(\Leftrightarrow(\alpha+\beta+2)/2<\sigma<\beta+1)$ . Suppose
furthermore that either

$\int^{\infty}\frac{\epsilon(t)^{2}}{t}dt<\infty$ (3)

$or$

$\int^{\infty}|\epsilon’(t)|dt<\infty$ (4)

holds. Then, every weakly increasing positive solution $u$ of (E) has the asymptotic form
$u(t)\sim u_{0}(t)$ as $tarrow\infty$ ,

where $u_{0}$ is given by (1) and (2).

In today’s talk we report that our conjecture is still valid for other cases; that is, we
will prove the following:
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Theorem 2 Let $\alpha\geq 1$ and $0<k<1/2(\Leftrightarrow\alpha+1<\sigma<(\alpha+\beta+2)/2)$ . Suppose
furthermore that either (3) or (4) holds. Then, the same conclusion as in Theorem 1
holds.

Remark. (i) In Theorems 1 and 2, the differentiability of $p$ is unnecessary when (3)
is assumed.

(ii) When $\alpha=1$ and $\epsilon(t)\equiv 0,$ $Th\infty rems1$ and 2 have been obtained by [1] and [4,
Corollaries 20.2 and 20.3].

We note that existence results of weakly increasing positive solutions to (E) are not
well known. But we can show many concrete examples of those equations that have weakly
increasing positive solutions. Some of existence results of weakly increasing solutions for
the case $\alpha=1$ are found in $[6,7]$ .

The paper is organized as follows. In Section 2 we give preparatory lemmas employed
later. In Section 3 we give the proof of Theorem 2. Other related results are found in
[3,5,6,7].

2 Preparatory lemmas
Lemma 3 Let $w\in C^{1}[t_{0}, \infty$ ), $w’(t)=O(1)$ as $tarrow\infty$ , and $w\in L^{\lambda}[t_{0}, \infty$) for some
$\lambda>0$ . Then, $\lim_{tarrow\infty}w(t)=0$ .

Proof. We have

$|w(t)|^{\lambda}w(t)$ $=$ $|w(t_{0})|^{\lambda}w(t_{0})+ \int_{l_{0}}^{l}(|w(s)|^{\lambda}w(s))’ds$

$|w(t_{0})|^{\lambda}w(t_{0})+( \lambda+1)\int_{l_{0}}^{t}|w(s)|^{\lambda}w’(s)ds$.

By our assumptions the last integral converges as $tarrow\infty$ . Hence $\lim_{tarrow\infty}|w(t)|^{\lambda}w(t)\in R$

exists. Since $w\in L^{\lambda}[t_{0}, \infty$), the limit must be $0$ . The proof is completed.

Lemma 4 Let $\sigma\in(\alpha+1,\beta+1)$ . Then every weakly increasing positive solution $u$ of (E)
satisfies $u(t)=O(u_{0}(t))$ and $u’(t)=O(u_{0}’(t))$ as $tarrow\infty$ , where $u_{0}$ is the exact solution of
$(E_{0})$ given by (1) and (2).

Proof. We may assume that $u,$ $u’>0$ for $t\geq t_{1}$ . Since $u$ satisfies for large $t$

$u’(t)^{\alpha}= \int_{t}^{\infty}p(s)u(s)^{\beta}ds$, (5)

and $u$ is increasing, we have

$u’(t)^{\alpha} \geq u(t)^{\beta}\int^{\infty}p(s)ds$ ,
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that is

$u’(t)u(t)^{-A} \circ\geq(\int^{\infty}p(s)ds)^{\frac{1}{a}}$ .

An integration of this inequality on the interval $[t, \infty$ ) will give

$u(t) \leq C_{1}\{\int^{\infty}(\int_{s}^{\infty}p(r)dr)^{1/\alpha}ds\}^{-\alpha/(\beta-\alpha)}\equiv C_{2}u_{0}(t)$,

where $C_{1}$ and $C_{2}$ are positive constant. Furthermore, by (5) we find that

$u’(t)=( \int^{\infty}p(s)u(s)^{\beta}ds)^{\iota/\alpha}\leq C_{3}\int^{\infty}s^{-\sigma+k\beta}ds=C_{4}t^{k-1}=O(u_{0}’(t))$ as $tarrow\infty$ ,

where $C_{3}$ and $C_{4}$ are positive constants. This completes the proof.

Lemma 5 Let $\sigma\in(\alpha+1,\beta+1)_{y}$ and $u$ a weakly increasing positive solution of equation
(E). Put $s=\log u_{0}(t)$ and $v=u/u_{0}$ . Then

(i) $v,\dot{v}=O(1)$ as $sarrow\infty$ , and $v+\dot{v}>0$ near $\infty,$ where $\cdot=d/ds$ ;
(ii) $v(s)$ satisfies near $\infty$ the equation

$\ddot{v}-a\dot{v}-bu+b(\dot{v}+v)^{1-\alpha}v^{\beta}+b\delta(s)(\dot{v}+v)^{1-\alpha}v^{\beta}=0$ , (6)

where
$a= \frac{1}{k}-2>0$ , $b= \frac{1-k}{k}>0$ , and $\delta(s)=\epsilon(t)$ .

Proof. We will prove only (i), because (ii) can be proved by direct computations.
We assume that $u,$ $u’>0$ . Since $u=u_{0}v$ , the boundedness of $v$ follows from Lemma 4.
Noting $du/dt=\hat{C}kt^{k-1}(v+\dot{v})$ , we have $v+\dot{v}>0$ . On the other hand, since $dt/ds=t/k$ ,
we have

$| \dot{v}|=|\frac{d}{dt}(\frac{u}{u_{0}})\frac{dt}{ds}|=|\frac{u’u_{0}-u_{0}’u}{u_{0}^{2}}|\frac{t}{k}\leq C\frac{t^{k-1}t^{k}t}{t^{2k}}=O(1)$ as $sarrow\infty$ .

This completes the proof.

Lemma 6 Let the assumptions of Theorem 2 holds, and $v$ be as in Lemma 5. Then
$\dot{v}\in L^{2}[s_{0}, \infty)$ for sufficiently large $s_{0}$ .

Proof. We note that conditions (3) and (4), respectively, are equivalent to

$\int^{\infty}\delta(s)^{2}ds<$ 科科 (7)

and
$\int^{\infty}|\dot{\delta}(s)|ds<\infty$ . (8)
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We multiply the both sides of (6) by $\dot{v}$ . Since $\alpha\geq 1$ , we have $(1+\delta(s))(\dot{v}+v)^{1-\alpha}\dot{v}\leq$

$(1+\delta(s))v^{1-\alpha}\dot{v}$ ; and so we obtain

$a\dot{v}^{2}\leq\dot{v}\ddot{v}-bv\dot{v}+b(1+\delta(s))v^{1-\alpha+\beta}\dot{v}$ .

An integration on the interval $[s_{0}, s]$ gives

$a \int_{*0}\dot{v}^{2}dr\leq\frac{\dot{v}^{2}}{2}-\frac{bv^{2}}{2}+\frac{bv^{2-\alpha+\beta}}{2-\alpha+\beta}+\int_{so}\delta(r)v^{1-\alpha+\beta}\dot{v}dr+const$ ; (9)

that is
$a \int_{\epsilon_{0}}^{*}\dot{v}^{2}dr\leq b\int_{so}^{s}\delta(r)v^{1-\alpha+\beta}\dot{v}dr+O(1)$ as $sarrow\infty$ .

Here we have employed (i) of Lemma 5. Let the integral condition (3) hold; that is, let
(7) hold. By the Schwarz inequality we have

$a \int_{*0}^{s}\dot{v}^{2}dr\leq C_{1}(\int_{s_{0}}^{\infty}\backslash \delta(r)^{2}dr)^{1/2}(\int_{t_{0}}^{f}\dot{v}^{2}dr)^{1/2}+O(1)$

for some constant $C_{1}>0$ . Therefore $\dot{v}\in L^{2}[s_{0}, \infty$ ). Next let (4) hold. Using integral by
parts, we obtain from (9)

$a \int_{\iota_{0}}^{\epsilon}\dot{v}^{2}dr\leq\frac{\dot{v}^{2}}{2}-\frac{b}{2}v^{2}+\frac{b[1+\delta(r)]v^{2-\alpha+\beta}}{2-\alpha+\beta}-\frac{b}{2-\alpha+\beta}\int\dot{\delta}(r)v^{2-\alpha+\beta}dr+const$ .

As before by noting (i) of Lemma 5, we find that $\dot{v}\in L^{2}[s_{0}, \infty$ ). This completes the proof.

3 Proof of Theorem 2
We are now in a position to prove the main result Theorem 2:

Proof of Theorem 2. To this end it suffices to show that $\lim_{\iotaarrow\infty}v(s)=1$ , where
$v(s)$ is the function introduced in Lemma 5. The proof is divided into three steps.

Step 1. We claim that $\lim\inf_{*arrow\infty}v(s)>0$ ; namely $\lim\inf_{tarrow\infty}u(t)/u_{0}(t)>0$ . The
proof is done by contradiction.

Suppose to the contrary that $\lim\inf_{sarrow\infty}v(s)=0$ . Firstly, we suppose that $v(s)$

decreases to $0$ as $sarrow\infty$ . This means that $u(t)/u_{0}(t)$ decreases to $0$ as $tarrow\infty$ . Accordingly
we have

$u’(t)^{\alpha}= \int^{\infty}p(r)u(r)^{\beta}dr=\int^{\infty}p(r)u_{0}(r)^{\beta}(\frac{u(r)}{u_{0}(r)})^{\beta}dr$

$\leq(\frac{u(t)}{u_{0}(t)})^{\beta}\int^{\infty}p(r)u_{0}(r)^{\beta}dr=C_{1}t^{1-\sigma}u(t)^{\beta}$,

where $C_{1}>0$ is a constant. Consequently we obtain the differential inequality $u’\leq$
$C_{2}t^{(1-\sigma)/\alpha}u^{\beta/\alpha}for$ some constant $C_{2}>0$ near $\infty$ . But this differential inequality implies
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that $u(t)/u_{0}(t)\equiv v(s)\geq C_{3}>0$ for some constant $C_{3}>0$ . This is an $0$bvious contradic-
tion.

Next sppose that $\lim\inf_{sarrow\infty}v(s)=0$ and $\dot{v}(s)$ changes sign in any neighborhood of
$\infty$ . Since $v(s)$ takes local maxima in the region $v\geq(1+\delta(s))^{-1/\langle\beta-\alpha)}$ , there are the
following sequences $\{\underline{s}_{n}\}$ and $\{\overline{s}_{n}\}$ satisfying

$\underline{s}_{n}<\overline{s}_{n}<\underline{s}_{n+1}$ , $\lim_{n\prec\infty}s=\lim_{narrow\infty}\overline{s}_{n}=\infty\sim$.
and

$\dot{v}(\underline{s}_{n})=\dot{v}(\overline{s}_{n})=0$ , $\lim_{narrow\infty}v(\underline{s}_{n})=0$ , $v(\overline{s}_{n})\geq(1+\delta(\overline{s}_{n}))^{-1/(\beta-\alpha)}$ .
Now, we decompose $\alpha$ in the form $\alpha=m-\rho$ , where $m\in N$ and $\rho>0$ . Although there

are infinitely many such choices of decomposition for $\alpha$ , we fix one choice for a moment.
We rewrite equation (6) as

$\ddot{v}-a\dot{v}-bv+b(\dot{v}+v)^{-m+1+\rho}v^{\beta}+b\delta(s)(\dot{v}+v)^{-m+1+\rho}v^{\beta}=0$.

We multiply the both sides by $(v+\dot{v})^{m}\dot{v}$ and then integrate the resulting equation on the
interval $[\underline{s}_{\mathfrak{n}},\overline{s}_{n}]$ to obtain

$\int_{s}^{\overline{\iota}_{n}}\ddot{v}\dot{v}(vr+\dot{v})^{m}dr-a\int_{l}^{\overline{*}}n(vm+\dot{v})^{m}\dot{v}^{2}dr-b\int_{h}^{\overline{*}}nv\dot{v}(v+\dot{v})^{m}dr$

$+b \int_{n}^{\mathfrak{n}}(v+\dot{v})^{1+\rho}\dot{v}v^{\beta}dr+b\int_{\underline{\epsilon}_{n}}^{\overline{\epsilon}_{\hslash}}\delta(r)(v+\dot{v})^{1+\rho}\dot{v}v^{\beta}dr=0$ . (10)

The binomial expansion implies that

$\sum_{k=0}^{m}c_{k}\underline{\int_{\epsilon}^{r_{n}}}\ddot{v}\dot{v}^{k+1}v^{m-k}dr-a\int_{\underline{\epsilon}_{n}}^{n}(v+\dot{v})^{m}\dot{v}^{2}$dr-b $\sum_{k=0}^{m}c_{k}\underline{\int_{*}^{\overline{\epsilon}_{n}}}v^{m-k+1}\dot{v}^{k+1}dr$

$+b \int_{l}^{\overline{s}_{\mathfrak{n}}}(varrow+\dot{v})^{1+\rho}\dot{v}v^{\beta}dr+b\int_{s}^{\overline{*}n}\delta(r)(v-+\dot{v})^{1+\rho}\dot{v}v^{\beta}dr=0$,

where $c_{k}=(_{k}^{m})$ are the binomial coefficients. Now, we evaluate each term in the left hand
side. For $k\in\{0,1, \ldots, m-1\}$ we obtain

$\int_{f}^{\overline{\iota}_{n}}\ddot{v}\dot{v}^{k+1}v^{m-k}dr=r\int_{-n}^{\overline{s}_{n}}\frac{d}{dr}(\frac{\dot{v}^{k+2}}{k+2})v^{m-k}dr$

$=- \frac{m-k}{k+2}\int_{g_{*}}^{\overline{s}_{n}}\dot{v}^{k+3}v^{m-k-1}dr=o(1)$ as $narrow\infty$ .

For $k=m$ obviously we have $\int_{\underline{\epsilon}_{n}}^{n}\ddot{v}\dot{v}^{k+1}dr=0$ . Hence the first term of the left hand side
of (10) tends to $0$ as $narrow\infty$ . The second term is dominated by $Const\int_{\underline{\epsilon}_{n}}^{\overline{l}_{\mathbb{R}}}\dot{v}^{2}dr$, and hence
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it tends to zero as $narrow\infty$ . Next, we compute the third term. For $k\in\{1,2, \ldots, m\}$ we
have $|\underline{\int_{*}^{\overline{s}_{n}}}v^{m-k+1}\dot{v}^{k+1}dr|\leq const\underline{\int_{s}^{\overline{s}_{n}}}\dot{v}^{2}dr$. For $k=0$ we have

$\underline{\int_{*}^{\overline{\epsilon}_{n}}}v^{m+1}\dot{v}dr=\frac{1}{m+2}(v(\overline{s}_{\mathfrak{n}})^{m+2}-v(\underline{s}_{n})^{m+2})=\frac{v(\overline{s}_{n})^{m+2}}{m+2}+o(1)$ as $narrow\infty$ .

Therefore the third term is equal to

$o(1)- \frac{bv(\overline{s}_{n})^{m+2}}{m+2}$ as $narrow\infty$ .

To evaluate the fourth term we employ the mean value theorem to obtain

$(v+\dot{v})^{1+\rho}=v^{1+\rho}+(1+\rho)(v+\theta(r)\dot{v})^{\rho}\dot{v}$,

where $\theta(r)$ is a quantity between $0$ and 1. Hence we can compute

$\int_{b}^{\overline{s}_{\hslash}}(v+\dot{v})^{1+\rho}\dot{v}v^{\beta}dr=\int_{L}^{\overline{*}n}v^{1+\rho+\beta}\dot{v}dr+(1+\rho)\int_{1}^{\overline{*}n}(v+\theta(r)\dot{v})^{\rho}\dot{v}^{2}v^{\beta}dr$

$= \frac{v(\overline{s}_{n})^{2+\rho+\beta}-v(\underline{s}_{n})^{2+\rho+\beta}}{2+\rho+\beta}+(1+\rho)\int_{\underline{s}_{n}}^{\overline{l}n}o(1)\dot{v}^{2}dr=\frac{v(\overline{s}_{n})^{2+\rho+\beta}}{2+\rho+\beta}+o(1)$ as $narrow\infty$ .

Finally by Schwarz’s inequality we find that the last term is dominated by the quantity

const $( \int_{l}^{\overline{s}_{\hslash}}arrow\delta(r)^{2}dr)^{1/2}(\int_{\underline{\epsilon}_{n}}^{\overline{*}}n\dot{v}^{2}dr)^{1/2}=o(1)$ as $narrow\infty$ .

Consequently, from (10) we obtain the formula

$o(1)- \frac{b}{m+2}v(\overline{s}_{n})^{m+2}+\frac{b}{2+\rho+\beta}v(\overline{s}_{n})^{2+\rho+\beta}+o(1)=0$ as $narrow\infty$ .

This implies that $\lim_{narrow\infty}v(\overline{s}_{n})=[(m+2+\beta-\alpha)/(m+2)]^{1/\beta}$ . Since $m$ can be moved
arbitrarily, this is an obvious contradiction. Therefore $\lim\inf_{*arrow\infty}v>0$ .

Step 2. We claim that $\lim_{*arrow\infty}\dot{v}(s)=0$ . Since $\lim\inf_{arrow\infty}v(s)>0$ by Step 1,
we find that $\lim\inf_{tarrow\infty}u(t)/u_{0}(t)>0$ . Integrating equation (5), we further find that
$\lim\inf_{tarrow\infty}u’(t)/u_{0}’(t)>0$ . Since $v+\dot{v}=u’(t)/u_{0}’(t)$ , we obtain $\lim\inf_{*arrow\infty}(v+\dot{v})>0$ .
Recalling equation (6), we find that $\ddot{v}(s)=O(1)$ as $sarrow\infty$ . Since we have already known
that $\dot{v}\in L^{2}[s_{0}, \infty$), Lemma 3 shows that $\lim_{arrow\infty}\dot{v}=0$ .

Step 3. We claim that $\lim_{\epsilonarrow\infty}v(s)=1$ . To see this, we integrate (6) multiplied by ab:

$\frac{\dot{v}^{2}}{2}-a\int_{\epsilon_{0}}^{*}\dot{v}^{2}dr-\frac{b}{2}v^{2}+b\int_{s0}^{s}(\dot{v}+v)^{1-\alpha}v^{\beta}\dot{v}dr$

$+b \int_{l_{0}}^{l}\delta(r)(\dot{v}+v)^{1-\alpha}v^{\beta}\dot{v}dr=const$ . (11)
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Suppose that condition (3); namely (7) holds. Since $\dot{v}\in L^{2}[s_{0}, \infty$ ), the first, and the
third integrals in the left hand side of (11) converge as $sarrow\infty$ . The mean value theorem
shows that

$(v+\dot{v})^{1-\alpha}=v^{1-\alpha}+(1-\alpha)(v+\theta(r)\dot{v})^{-\alpha}\dot{v}$, (12)

where $\theta(r)$ is a quantity satisfying $0<\theta(r)<1$ . Therefore,

$/s_{0^{*}}( \dot{v}+v)^{1-\alpha}v^{\beta}\dot{v}dr=\int_{\epsilon_{0}}^{s}\{v^{1-\alpha+\beta}\dot{v}+(1-\alpha)(v+\theta(r)\dot{v})^{-\alpha}v^{\beta}\dot{v}^{2}\}dr$

$= \frac{v(s)^{2+\beta-\alpha}}{2+\beta-\alpha}+\int_{*0}^{l}o(1)\dot{v}^{2}dr+const$ .

So we find that the $function-v^{2}/2+v^{2+\beta-\alpha}/(2+\beta-\alpha)$ has a finite limit. This fact shows
that $\ell=\lim_{sarrow\infty}v(s)\in(O, \infty)$ exists. Next suppose that (4); namely (8) holds. We have
by (12)

$\int_{\epsilon_{0}}^{*}\delta(r)(\dot{v}+v)^{1-\alpha}v^{\beta}\dot{v}dr=\int_{s_{0}}\{\delta(r)v^{1-\alpha+\beta}\dot{v}+\delta(r)(1-\alpha)(v+\theta(r)\dot{v})^{-\alpha}v^{\beta}\dot{v}^{2}\}dr$

$= \frac{\delta(s)v^{2+\beta-\alpha}}{2+\beta-\alpha}-\frac{1}{2+\beta-\alpha}\int_{\epsilon 0}^{\epsilon}\dot{\delta}(r)v^{2+\beta-\alpha}dr+const+/0^{*}0(1)\dot{v}^{2}dr$

as $sarrow\infty$ . Hence, as before we know that the $function-v^{2}/2+v^{2+\beta-\alpha}/(2+\beta-\alpha)$ has
a finite limit. Therefore $\ell=\lim_{*arrow\infty}v(s)\in(O, \infty)$ exists.

Finally, we let $sarrow\infty$ in equation (6). Then, we have $\lim_{sarrow\infty}\ddot{v}(s)=b(\ell-\ell^{1+\beta-\alpha})$ .
Since $\dot{v}=o(1)$ , we must have $\lim_{sarrow\infty}\ddot{v}(s)=0$ , implying $\ell=1$ . The proof of Theorem 2
is completed.
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