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p(z)-harmonic functions with isolated singularities

FuMI-YUKI MAEDA

(December, 2006)

Introduction

Let  be a bounded open set in RN (N >2) andlet 1 <p< N. Givena € Q,a € R
and 8 € W1P(Q) N L*°(2), consider the boundary value problem

—di p—2 = i
{ div (|VulP?Vu) =ad, in £, (0.1)

u==~0 on Of.

In [KV], it is shown that there exists a unique solution u of (0.1) such that u € W1*(Q2\
B(a, R)) N C(22\ {a}) for small R > 0, |VulP~! € L*(Q) and

u(z) — a¥/® VD, (z — a) € L®(N),

where 7, is the radial solution of — div (|Vu[P~2Vu) = §. Note that the solution wu is
p-harmonic in 2\ {a} and (sgn a)u is p-superharmonic in Q.

In this paper, we consider a variable exponent p(z) and discuss the boundary value
problem

a€EA
u=2~0 on 99,

where A is a relatively closed isolated set in Q, o, € R\ {0} for every a € A and
9 € WiPO(Q) N L*(Q) (see [KR] for the space WP()(Q)). We seek for a solution u
which is p(+)-harmonic in Q \ A and (sgn a,)u is p(-)-superharmonic in a neighborhood
of each a € A.

{ — div (|Vu[P®-2Vy) = Eaaéa in Q,

8§1. Preliminaries

Throughout this paper, let  be a bounded open set in RV (N > 2). We consider a
variable exponent p(z) on 2 such that

1 <p™ :=inf p(z) < p* :=supp(z) < o0 (1.1)
z€Q zefN

and it is log-Ho6lder continuous, namely there is a constant C, > 0 such that

|, C,
]p(’C) - ])(x )l < log(l_/l.”:—— xl‘)

for z, ' € Q with |z — 2’| < 1/2.
For a set E C §, let p} = sup,cp p(z) and pg = inf,cp p(x).
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The variable exponent Lebesgue space LP()(Q) and the variable exponent Sobolev
space W1P()(Q) are defined as in [KR); in case p(-) satisfies (1.1), we may define

LPO(Q) = {u € L'(Q); Llu(:c)l”(’) dz < oo}

and

whr(Q) = {u e [PV (Q); / |Vu(z)P® dz < oo} .
Q

They are reflexive Banach spaces with respect to the norms

‘ p(2)
llullp) = inf ¢ A > 0;/ dxr <1
Q

on L2(Q) and ||ullypey = llullpg) + [|Vulloty on WHPO(Q) (see [KR]). Let Wo™ () be
the closure of C() in W2()(Q) and let W1 (Q2) be defined as usual.

uz)

z
A

Lemma 1.1. For an open set G C Q, let u be a measurable function on G such that
lu(z)] < oo for a.e. x € G. For k > 0, let Ty(t) = max(—k, min(t, k), t € R. If

Tiou € Wy ) (G) for all k > 1 and if there exists M > 0 independent of k > 1 such
that

/ V(Ty 0 w) P dz < kM,
G

then _

(1) forr >0 such that r < (pg — 1)N/(N — pg) in case pg < N there is a constant
Co = C(N,pg,r,G, M) > 0 (independent of u) such that [ |u|"dz < Co,

(2) for0 < g < min(pg, (pg—1)N/(N—1)) there is a constant C, = C(N,pg, ¢, G, M) >
0 (independent of u) such that [, |Du|?dz < C, where, Du = limy_.o V(T © u).

Proof. Let u* = max(u,0) and v~ = —min(u,0). Then min(u*, k) € W™ (G) C
W,PS(G) for k > 1 and

/ |V min(u*, k)[Pe dz < |G| + / |V min(u*, k)[P® dz
G . G
<G|+ / V(T 0 )P dz < k(|G| + M).
G

Hence the lemma follows from [HKM; Lemma 7.43).

The p(-)-Laplacian Ay is given by
Dpyu = div (p(-)| Vel V).

u is called a (weak) solution of A,.yu =0 in an openset G C Qifu € W,t’cp(')(G) and

| /G p(@)|Vu(@) PP -2Vu(z) - Vo(z) dz = 0 (1.2)
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for all ¢ € C°(G); u is called a supersolution of Ayyu = 0 in G C Q if u € WEP(G)
and

/ p(2)|Vu(@)PD2Vu(z) - Vo(z) dz > 0 (1.3)
G

for all nonnegative ¢ € C°(G). We may take ¢ € WIP)(G) in (1.2) and (1.3) if
u € WHO(G).
The following proposition can be shown as in the case of constant exponent (cf. [M;

Theorem 2.2}, [HKM: Lemma 3.18]: also cf. [HKHLM; Lemma 4] for the case of variable
exponent).

Proposition 1.1 (Comparison principle) Let u;, uy € WH?0(G). If
f p(z)|Vu PP 2V, - Ve dr < / p(z)|Vua [P -2Vy, - Vo dz
G G

for all nonnegative ¢ € C§(G) and max(u; — ug, 0) € Wol’p(') (G), then u; < uy a.e. in
G.

Corollary 1.1. Ifu € WY()(G) is a supersolution of Apyu =0 in G and if min(u -
a, 0) € WP (@G) for a constant a, then u > a a.e. in G.

It is known (cf. [A]) that every solution of Apyu = 0 has a locally Holder continuous
representative under our assumptions. A continuous solution of Ayyu = 0 in G is called
p(+)-harmonic in G.

A Harnack inequality for p(-)-harmonic functions holds in the following form ([HKL;
Theorem 3.17]):

Lemma 1.2. Given s > 0 and M > 0, there exists a constant C > 0 depending only on
N, p*, p~, Cp, 3 and M such that

sup u < C( inf u+ R)
B(z,R) B(z,R)

for every B(z, R) such that B(z,4R) C Q and pz(mAR) ~ Ppzar) < 8/N and for every
nonnegative p(-)-harmonic function u on B(z,4R) with [g, 4p u*dz < M.

Using this Harnack inequality, we obtain (cf. the proof of [HKHLN; Theorem 16] as
well as the proof of [S; Theorem 8])

Lemma 1.3. LetU be a faniz'ly of non-negative p(-)-harmonic functions in an open set
G C Q. If there exists s > 0 such that

{Lu’(m) dm}ueu

is bounded for every V€ G, then U is locally uniformly bounded and locally equi-
continuous in G.

Lemma 1.4. A locally uniformly bounded sequence of p(-)-harmonic functions has a
subsequence which converges locally uniformly to a p(-)-harmonic function.
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Proof. Let {u,} be a locally uniformly bounded sequence of p(:)-harmonic functions
in an open set G C Q. Then, by the above lemma, we see that {u,} is locally uniformly
bounded and locally equi-continuous on G. Thus, by Ascoli-Arzera’s theorem, it has a
locally uniformly convergent subsequence. By [HKHLN; Corollary 13], the limit function
is also p(:)-harmonic in G.

Lemma 1.5. Let {u,} be a locally uniformly convergent sequence of p(-)-harmonic
functions in an open set G C ) and let u be the limit function. Then there exists a
subsequence {uy,,;} such that Vu,, — Vu a,e, in G.

Outline of the Proof. Let V € G and choose n € C§°(G) such that n =1 on V and
0<n<1inG. Then

/ P()|Vun D2V, - V(upy® ) dz = 0.
G

From this equality, using Young’s inequality and the uniform boundedness of {u,}, we .
deduce that { [, [Vu,(z)P® dz}, is bounded.
Next, from the equalities

Lp(x)qunlp(z)"2[Vun -V[(up —w))nldz =0

. and

/;P(I)IVUI”(“)""[Vu - V[(up — u))n]dz =0

we have
0< / p(z)(|Vun|f® 2V, — |Vu|P®-2Vu) - (Vu, — Vu)dz
\4 .

< p*(sup |un — uf)(sup |Vn)) (|Vun PO 4 |Vu|P@)-1) da
*p(n) spt(n)
—0 ('n — oo)

This implies that Vu,, — Vu a.e. in V for some subsequence {un,}. Since this is true
for every V' € G, we obtain the assertion of the lemma.

A (—o00, oo]-valued function u on G is called p(-)-superharmonic in G if it is lower
semicontinuous, finite a.e. and the following comparison principle holds: if V € G is an
open set, h € C(V) is p(-)-harmonic in V and h < u on 8V, then h < u in V.

The following results are known (see [HKHLM]):

(S1) Every supersolution of A,.yu = 0 has a p(-)-superharmonic representative;

(S2) Every locally bounded p(-)-superharmonic function is a supersolution of Ay u =
0. ’

Also the following properties of p(-)-superharmonic functions are easy consequences
of the definition as in the case of constant exponent (cf. [HKM; Chap.7]):

(S3) If {un} is a nondecreasing sequence of p(-)-superharmonic functions in G and if
% = lim,_, Uy, is finite a.e., then u is p(-)-superharmonic in G;
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(S4) If U is a family of p(-)-superharmonic functions in G and if it is locally uni-
formly bounded from below, then the lower semicontinuous regularization of infl/ is
p(-)-superharmonic in G.

Proposition 1.2. (cf. [HKHLM; Theorem 25]) Let u be a p(-)-superharmonic function
in G C § such that min(u — 8, k) € WoP(G) for all k > 0 with some 6§ € WPO(G) N
L®(G). Let Du = limg 0o Vmin(u — 0, k) + V0. Then u € L"(G) for 0 < r < (pg -
1)N/(N — pg) in case pg < N; for any v > 0 in case pg > N and |Du| € LYG) for
0 < ¢ < min(pg, (pg — 1)N/(N —1)).

Outline of the Proof. By using (S2) and Corollary 1,1, we see that u > infg 6. For
keN,set Ex={z€G;k—1=<u(z)—6(z) <k} andFk—U,IE Let

wg = 2 min(u — 0, k) — min(u — 0,k — 1) — min(u — 6,k + 1).

Then wy, € Wl’p()(G) and wx > 0. Let k' > max(k — m,0) + 1. Since min(u, &') is a
supersolution of Apyu = 0, we have

0< / p(2)|V min(u, ¥)P-2(V min(u, &) - Vuy) de

= f p(z)|DufP® 2Dy - (Du — V) dz — / p(z)|Du[P®~2Du - (Du — V) dz.
E;

Exs1

Hence { [5, p(z)|DulP®)2Du - (Du — V8) dz}, is nonincreasing. Therefore

/ p(z)| DufP® 2Dy - (Du—V6)dz <k [ p(z)|Duf® 2Dy - (Du — V6) dx.
Fi

E

Usirig Young’s inequality, we obtain

[ p@IDup® do
Fy
<P (1+k) / p(@)|VOPD dz + 22"k [ p()|Du — VOP® da.

_ Fk Ey

Thus, if £ > |m| then

/ VT o (u — 6)P® da
G

='/ |V min(u — 6,0)P@ dz + | |Du— VP® dg
G

F

< / |V min(u — 6, 0)[P® dz + 2¢" 1 f p(z)| DufP® dg + 2P 1 / p(z)|VOF® dg
G Fy Fy
<27 ptk |VO[P@) d + / |V min(u — 6,0)|P'® d
Fy G

+ 2% /E p(z)|Du — VOP® dz
1

<275k { [ (V0P do+ [ |Vimin(u— 6,17 da ).
G G
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Hence applying Lemma 1.1 to u — 0, we have
u—60¢€ L' (G) and |Du-— V0| e LI G)

with 7 and ¢ as in the lemma. Since § € WP (G) N L*(G), we obtain the assertion of
the proposition.

§2. p(-)-harmonic functions with isolated singular points.

Lemma 2.1 (cf. [HKHLM; Theorem 26]). Leta € Q and let V' be an open neighborhood
of a. If u is p(-)-superharmonic in V and is p(-)-harmonic in V \ {a}, then

(1) we Lj, (V) for 0 < r < (p(a) — 1)N/(N — p(a)) in case p(a) < N and for any
r > 0 in case p(a) > N; :

(2) |Vu| € LI(U) for some neighborhood U of a, where

0 < g < min(p(a), (p(a) — L)N/(N - 1)).

Proof. Given r > 0 and ¢ > 0 as in the lemma, choose a ball B = B(a, R) € V which
satisfies the following conditions:

(a) In case p(a) < N or p(a) = N and p; < N for any neighborhood U of a,
r < (pp — 1)N/(N - pjp) and ¢ < (p5 — 1)N/(N - 1);

(b) In case p;; > N for some neighborhood U of a, pg > N and g < pg.

Choose ¢ € C§°(B) which is equal to 1 on B(a, R/2). Then we see that (1 — ¢)u €
Wir()(B) N L*°(B) and min(yu, k) € Wol’p(')(B) for £ > 0. Hence, by Proposition 1.2,

u € L"(B) and |Vu| € L%B). Since u is locally bounded on V' \ {a}, it follows that
ue L} (V).

Proposition 2.1. (cf. [L; Theorem 4.6]) Let a € Q) and let V' be an open neighborhood
of a. If u is p(-)-superharmonic in V and is p(-)-harmonic in V' \ {a}, then
|VufP@)=t e L2 (V) for 1<s<min(N/(N-1),p"/(p* —1))

and there exists a > 0 such that —Apcyu = ad, in V, namely,

/ p(z)|VulP® 2Ty - Vo dr = ayp(a)
v

Jor all ¢ € CF(V).

Proof. Let 1 < s < min(N/(N—-1), p*/(p* —1)). Since p(a)/(p(a)—1) > p*/(p*-1),
in (2) of the above lemma, taking smaller U if necessary, we may assume s(pj; — 1) <
min(p(a) — 1)N/(N — 1), p(a)). Then we can take ¢ = s(pj; — 1), so that |Vu|P@)-! €
L*(U). Since |Vu| € LZ(V\ {a}) and s < p*/(p* —1) < p(z)/(p(x) — 1), it follows that
|Vaup@t € L (V).

Since min(u, k) is a supersolution of A,yu = 0 for k > 0, using Lebesgue’s conver-
gence theorem we obtain

/p(m)IVuP’(’)”V'u -Vydz
1%

= klim / p(x)|V min(u, k)P 2V min(u, k) - Vodz >0
— OO0 \%
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for all nonnegative ¢ € C§°(V). Therefore there exists a nonnegative measure y on V
such that

/p(a:)quI"(z)""Vu-chdw:/(pdp,
v v

for all p € CP(V). Since u is p(-)-harmonic in V' \ {a}, spt(s) C {a}, namely p = ad,
for some o > 0.

Combining the above results, we can state

Theorem 2.1. Let A be a relatively closed isolated set in ). If u is a [—o00, 00]-valued
function such that

(1) u is p(-)-harmonic in Q \ A;

(2) for each a € A there is an open neighborhood V, in which u is either p(-)-

superharmonic or p(-)-subharmonic (i.e., —u is p(-)-superharmonic). '
‘ Then u € L, (Q) for0 < r < (p~ —1)N/(N —p~) (any r > 0 in case p~ > N),
|Vulp@®-1 € L2 (Q) for 1 < s < min(N/(N =1), p*/(p* = 1)) and —Dp(yu =3, 4 @aba
in §2, namely
/ p(2)|VulP® Wy - Vodz = Y aup(a)
2 acA

for all ¢ € C§(Y) with oy € R such that oy > 0 if u is p(-)-superharmonic in V, and
ag <0 if u is p(-)-subharmonic in V,.

Lemma 2.2. Leta € Q and B = B(a,R) C Q with0 < R < 1/2. Ifp(a) < N, then
there ezists a sequence {n,} of (Lipschitz continuous) functions in W,* (')(B) such that
0<1n, <1 on B, n,=1 in a neighborhood of a, n,(z) — 0 for all z € B\ {a} and

/ |V |P® dz — 0 as n — oo.
B

(This means that the p(-)-capacity of {a} is zero (cf. [HHKV]).)
Outline of the Proof. Fixing 0 < p < R, let

0 for p<|lr—-a|<R
m(z) ={ logW/lz—a) o p/len) < |z —al < p
logn+1 -
1 for |z —a| < p/(en).

Then, using log-Holder continuity of p(z), elementary computation shows that {7,} has
the required properties.

Proposition 2.2. (cf. [L; Theorem 4.7]) Let a € Q, V be an open neighborhood of a
and let u be a p(-)-superharmonic function in V which is p(-)-harmonic in V' \ {a}.

(1) If p(a) < N, then lim,_, u(z) = oo unless a is removable for u (i.e., & = 0 in
Proposition 2.1).

(2) Ifp(a) > N, then u is (finite) continuous at a.

Outline of the Proof. (1) Let p(a) < N and suppose a is not removable for u. We first
show that u is unbounded near a. Assume u is bounded near a. Then u is a supersolution
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oc
Lemma 2.2 with B = B(a,R) C V. Then o(1 — n,) € WeP(V \ {a}). Since u is
p(+)-harmonic in V' \ {a},

of Ayyu = 0 in V, in particular u € W,l‘p(')(V). Let p € C3°(V) and let {n,} be as in
)

/Vp(x)wulp(z)_zVu Vel — 1)) dz = 0.

Hence
/ p(z)|VulP®2(Vu - Vo)1 —n,) dz = / p(z)|VulP®)~2(Vu - Vi, )p dz. (2.1)
v v

The left hand side of (2.1) tends to f,, p(z)|Vu[?®~2Vu- Ve dz as n — oo by Lebesgue’s
convergence theorem, while the right hand side of (2.1) tends to 0, since [, |V [P®) dz —
0. This shows that u is a solution of A,.yu =0 in V, so that a is removable for w.

Thus, v is unbounded near a, so that there exists z;, j = 1,2,... (z; # a) such that
r; — a and u(z;) — oo as j — oco. Let p; = |z;—a|. By Lemma 2.1 (1), there exists r > 0
such that u € L] (V). Choose R > 0 such that B = B(a,R) € V and p§ — pp < r/N.
We could take z; so that p; < R/2 and {p;} is strictly decreasing. Set m = infsp u.
Then, u — m > 0 in B. Applying the Harnack inequality in Lemma 1.2 to u — m on
B(&, p;) with £ € 9B(a, p;), we see that k; := infgp(q,p,) (4 — m) — oo (j — 00). Since
u > min(k;, kj;1) + m on B(a,p;) \ B(a, pj+1) by the comparison principle, it follows
that lim,_,, u(z) = co.

(2) If p(a) > N, then by Lemma 2.1 (2), |Vu| € L(U) for a neighborhood U of a and
g > N. Hence by the Sobolev imbedding theorem, v has a continuous representative.
Since u is p(-)-superharmonic in V, it follows that u is continuous at a.

§3. An existence result
In this section, we prove the following existence theorem:

Theorem 3.1. Let A be a relatively closed isolated set in Q. To each a € A we assign
a value o, # 0 such that 3, 4 |as] < co. Let § € WHPO(Q) N L>(Q) be given. Then
there exists a function u : Q — [—o00, 00] such that

(1) w is p(-)-harmonic in Q\ A,

(2) u is p(-)-superharmonic in a neighborhood of each a € A with a, > 0 and p(-)-
subharmonic in a neighborhood of each a € A with a, < 0,

(B) —Apyu =3 ,ca®bs inQ,

(4) Ty, o (u — 8) € W2P(Q) for every k > 0.

If, in particular, A is a finite set, then we can take u to satisfy the following:

(5) u is bounded on Q\ V for any neighborhood V of A* = {a € A; p(a) < N}.

(6) for any ¥ € CP () such that ) = 1 in a neighborhood of A*, (1-9¢)(u—-206)€
wo™ (@),

To prove this theorem, we need some preparations. First, we note that the following

propositon can be shown in a standard way using the theory of monotone operators (cf.
[FZ; Theorem 3.1)).
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Proposition 3.1. Let§ € W0 (Q) and p € (Wol’p(')(Q))* be given. Then there ezists
a unique u € WP (Q) such that u — 0 € Wol’p(')(Q) and —Apyu = p in Q, namely

/ p(2)| VD2V - Vo dz = u(w) (3.1)
Q

for all v € WP (5).

Note that the Dirac measure §, € (Wl"’()(Q)) if and only if p(a) > N. In fact,
Lemma 2.2 shows that 4, & (W, 14%%d ¢ )(Q)) if p(a) < N; the Sobolev imbedding theorem
implies that &, € (Wa** )(Q)) if p(a) > N.

Lemma 3.1. Let p be a finite signed measure on Q such that |u| € (W™ ¢ )(Q)) and let

6 € WPO(Q). Ifu € W)(Q) is a solution of —Ayyu = u such that u—6 € W2PO(Q),
then

/ VP dz < / IVOP® da + (k — D)ul(Q) (3.2)
{1<ju—8l<k} | Q

for 0<Il<k.

Proof. Let S(t) = Ty—i(t — T;(t)) and set v = So(u—0). Thenv € Wol’p(')(Q). Hence
(3.1) holds with this v. Note that Vv = (Vu — V) x<ju—s/<k}- Since u is a finite signed
measure and |v| < k — [, it follows that

[ @ [ @) VapR 96| de + (k- DIul@)
{I<|u~6|<k} {i<lu—6}<k}

Using Young’s inequality, we obtain (3.2).
Corollary 3.1. Let u, 6 and u be as in Lemma 3.1. Then

/ IV[Te o (u— 0))P® d < 29 / V8P dz + 27"~k | ()
Q Q
for k> 0.

Outline of the Proof of Theorem 8.1. Set A, = {a € A;a, >0} and A_ = {a €
A; o, < 0}. For each a € A*, choose B, = B(a,R,) € Q (0 < R, < 1) in such a way
that B,N By = 0ifa # a (a, a’ € A*) and B,N(A\ A*) = 0. Let {Q,} be an exhaustion
of Q) (i.e., a sequence of open sets such that Q, € Q.1 € Q for all n and |J, 0 = ).
Fix n € C(RY) such that 5 > 0, spt(n) € B(0,1) and [n(z)dz =1. Forn=1,2...,

let
o\ N Mz —a
pit) = Z Qg (*R:) n (——(—R——l) dz + Z ap0p,
aEALNA*NQY, @ be(AL\A*)N,
2 \Y oz —o
= Y ol (E) n (__(_}T’_l) dz+ Y. layldy
@’EA_NA*NQy, a Ve(A-\A")N2y
and p, = u("') (_). Then, p () and pn are nonnegative measures and

@< Y cw OO Y ol (@) £ Yl (3.3)

a€EAL a'€eA_ a€A
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for all n. Since AN Q, is a finite set and &, € (Wlp( (Q))* for b € A\ A* all i,
w7 belong to (W1 POQ))*. Let ul” (resp. uh) be the solution of —Apqyu = pit
(resp. = p&”) with u$¥) € WP (Q), and given 6 € WPO)(Q) let u, be the solutions
of —Apyu = pp with u, — 0 € Wy (')(Q) Existence of such functions are assured
by Proposition 3.1. Further, we can take u'Z to be p(-)-superharmonic in € and p(-)-

harmonic in © \ K5, where
K®= |J BR/2")U(Az\A").
a€A£NA*NDn

Also, we can take u, to be p(:)-harmonic in Q\ (K,(,+) U K.,(f>) and p(-)-superharmonic
in a neighborhood of each a € A; N Q, and p(:)-subharmonic in a neighborhood of each
a € A_NQ,.

By the comparison principle, uﬁ,i) > 0 and

-ur(z—) —16lloo < un < uﬁ;") + ”9”00 (3-4)

By Lemma 3.1, (3.3) and Lemma 1.1 (1), we see that { fn(us.i) )" dz}, are bounded
for some r > 0. Hence, by Lemma 1.3, {un )}n>n0 are locally uniformly bounded in
Q\ K,(;f). In view of (3.4), we also see that {un}n>n, is locally uniformly bounded in
Q\ (K,(,,*,') U K,(,;)). Hence by Lemma 1.4, there exists a subsequence {uyn,} which locally
uniformly converges to a p(-)-harmonic function u on 2\ A. By Lemma 1.5, we may
assume that Vu,;, — Vu a.e. in 2\ A. Further, by using Proposition 1.1, we see that uy,;
is uniformly convergent in a neighborhood of each a € A\ A*, so that u is also defined on
A\ A* and u is p(-)-superharmonic (resp. p(-)-subharmonic) in a neighborhood of each
a€ AL\ A* (resp. a € A_\ A%).

Let a € A, N A*. Since u, is p(-)-superharmonic in B,, w; = (inszl un,.)'\ is p(-)-
superharmonic in B, by (S4), and hence w = lim;_,o w; is p(-)-superharmonic in B, by
(S3). Since w = u on B, \ {a}, if we define u(a) = w(a), then u is p(-)- superharmonic in
B,. Similarly, for a € A_ N A*, if we define u(a) = — limy_c0 (inf;>;(—tn,)) " (a), then u
is p(+)-subharmonic in B,. Thus we have obtained a function u on which satisfies (1)
and (2) of the theorem.

To prove (3), let ¢ € C(2). Choose an open set G € 2 such that spt(p) C G.
Choosing smaller R, if necessary, we may assume

N -
Ph,—1< N —1 (5. — 1) ' (3.5)

for each a € A*. Let K* = | J,c 4. B(a, R./2). As we have seen above, {uy,,} is uniformly

bounded on G\ K*. Then, by Lemma 3.1, we see that { [, x. |Vun, |[?®) dz}  is bounded.

Therefore {|Vu,,|?*-1} is a bounded sequence in L*(G \ K*) for 1 < s < p*/(p* - 1).
For a fixed a € A* choose ¥, € C§°(B,) such that ¢, = 1 on B(a, R,/2)and0 <9y <1

on B,. Consider v; = unj(l — tbg) on B,. Then {[ B, | Wy [P(2) d:r} is bounded by the
above result. Since uy, is a solution of

oni \ ¥ 2% (z —-a
~Bp()U = g (—R—a) n (——(R—-—)) dzx
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in B, with u,, —; € Wol’p(‘)(Ba), by Corollary 3.1 and Lemma 1.1 (2),

{ [Vup, — Vsl da:}
Ba

M

is bounded for 0 < g < min(pp,, (p5, —1)N/(N—1)). Thus { [5_|Vu,,|? dm}j is bounded
for such g. By (3.5), we can take ¢ > pf_—1. Thus there is s > 1 such that s(p(r)—1) < ¢
on B,. Then {|Vu,,|P®-!} is a bounded sequence in L*(B,).

Therefore together with the above result on G \ K*, we see that {|Vun, [P®)1} is a
bounded sequence in L*(G) for some s > 1. Since Vu,; — Vu a.e., it follows that

IVunj lp(x)-zvunj - Ivu|p(z)—2vu
weakly in L*(G)N. Hence

[ P@) T, P91, - Tz /Q p(@)| VUl 2Vu . Vi da
(1)

"as j — o0o. On the other hand P (9) = Dpca@ap(a) as j — oo. Hence (3) of the
theorem holds.

By Corollary 3.1, we see that {7} o (un, — 6)} is a bounded sequence in WaP(Q) for
k > 0 (cf. [KR; Theorem 3.10]). Since Tj © (un, — 0) — T 0 (u — 6) a.e. in Q, (4) of the
theorem follows.

Next, suppose A is a finite set. If V' is a neighborhood of A*, there is ng such that
B(a, R,/2™) C V for all a € A*. Let V'’ be an open neighborhood of A\ A* such that
V'€ N\ A* and set U = |J,c 4. B(a, Ry/2™) UV, Then {n}nzn, is uniformly bounded
on OU. Since @ is bounbed, by the comparison principle it is uniformly bounded in Q\U.
Since it is uniformly bounded on V' as we have seen above, it is uniformly bounded on
2\ V. Hence (5) of the theorem holds.

Finally to show (6) of the theorem, take ¥ € C§°(€2) such that ¢ = 1 in a neighborhood
V of A*. Then, (1 —%)(un, —68) € WP (Q) for all 5. Since {uy,} is uniformly bounded
on 2\ V and {fo\y |V (un, — 6)P® dz}j is bounded,

{ [ 1910 - 9)(am, - 010 d:c}J

is bounded. Since (1 —9)(un; —0) — (1 —%)(u —0) a.e., it follows that (1 —¢)(u—0) €
Wol,P(') Q).

Proposition 3.2. Let A be a finite set in Q and let a, # 0 be assigned to each a € A.
Let 8 € WPO)(Q) N Le(Y). If u satisfies (1), (2), (3) and (6) of Theorem 3.1, then

/ VufP® dz < / VP dz + k'S o]
{lu—0\<k} Q

a€A
for k> 0.

Proof. Let ¢ = Tyo(u—6). Then, by Proposition 2.2, ¢ = (sgna,)k in a neighborhood
V, of a € A*. We can take V, so that V, € Q, {V,}4eca+ is mutually disjoint and
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V.N(A\ A*) = §. Choose ¥, € C(S2) such that 0 < ¢, < 1 on Q, spt(he) C Vi

and ¥, = 1 in a neighborhood of a for each a € A*. Set ¥ = ) .- ¥a. Then g =
S aca-(s8naq)kh, € CE(Q). Hence

/p(x)quIp(’)"QVu -V(pp)dz =k Z |ata). (3.6)
Q acA*
On the other hand, by property (6), we see that (1 — ¥)p € W, "’(')(Q \ A*). Since
D aca\ar %aba € (WaP)(Q\ A*))* and u is a solution of —Ayyu = > aca\ar Aaba in
0\ A*,
[ P@IVuPE29u- V(1 - pplde = 3 autuly) (3.7)
f acA\A*®

Combining (3.6) and (3.7), and noting that Vo = (Vu — VO)x{ju-g<x} and |da(p)| < k,
we obtain the required inequality as in the proof of Lemma 3.1.

§4. Uniqueness results

We can show the uniqueness only in rather restricted cases. In this section, we consider
only the case A is a finite set. As in the previous section, let a, 7# 0 be assigned to each
a € Aand 8 € WPO)(Q)N L*®(Q) be given. Also, let A* = {a € A; p(a) < N} as before.
We shall use the notation '

Ap(y (€1, &2) = p(z) (J611P@) 281 — |62P9)2E,)
for &, & € RV,

The proof of Propositon 3.2 as well as the proof of the next lemma shows that the
function u satisfying (1), (2), (3) and (6) of Theorem 3.1 is a “renormalized solution”
in the sense of [DMOP] (also cf. [M]). In fact, we follow arguments in [DMOP; 10.2] to
obtain our Theorem 4.1 below.

Lemma 4.1. Suppose u, and uy both satisfy (1), (2), (3) and (6) in Theorem 3.1. For
n >0, set E, = {|u; — 0| < n} N {{uz — 0] < n}. Then

/ Ap(.)(Vul, VU2) . (Vu1 - V’Uq) dr
{lur—ua|<k}

< 2% lim inf = / Aoy (Vus, V)| (Vs + Vsa) + 2| V8]) dx
En

n—oe N

for k> 0.
Proof. For simplicity, let v; = u; — 6, j =1,2. Forn > 0, let

hn(t) = max(0, min(1, 2 — 2|t|/n))

and set @n = (T} 0 (u1 — u2)) (hn 0 v1)(hy © v2). Since h,(t) = 0 for |t| > n, hyov; =0
in a neighborhood of A* by Proposition 2.2. Hence ¢, = 0 in a neighborhood of A* and



on € WiPO(Q). Since |pa| < k, n € LPO(Q). We have
Vo, = (Vu; — Vuz)xﬂul_wk;?}(hn o v1)(hy 0o v2)
+ %Vm (X{=n<vi<—n/2} — X{n/2<vi<n}) (hn © v2) (T © (uy — U2))
+ %VW (X{-n<va<—n/2} — Xin/2<va<n}) (hn © V1) (T © (u1 — ug)).

Hence

2k '
|Vion] < (1 + ;) (V1| xX{ui1<n} + [VO2[X(jval<n}) -
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(4.1)

Thus, by Proposition 3.2, we see that |Vi,| € LPO(Q). Therefore, p, € Wr0(Q).
Since Ty, 0v; € We) (), j = 1,2, by property (6), it follows that ¢, € Wy PY(Q). Since

@n = 0 in a neighborhood of A*, we also see that ¢, € W,* D@\ A*), so that
/p(a:)|Vu,-|p(’”)‘2Vuj -Vepdz = Z aeba(on), J=1,2.
° acA\A*

Hence |
/ Ay (Vug, Vug) - Vo dz = 0.
Q
Thus, by (4.1)

\/ﬁ | k}Ap()(V“h VUQ) : (Vul - Vu2)(hn o 'Ul)(hn o 172) dl;
U1 —u2|< !

2k
<2 [ Ay (o, 92a) (9] + [V + 21960 i
E,

Since h, — 1 as n — 0o, we obtain the required inequality.
Corollary 4.1. Under the same assumptions as in Lemma 4.1,
(Ap(y (Vuy, Vug) - (Vuy — Vug)) X{ju;—ugj<ky € L'()

for k > 0.
Proof. First, note that A,.)(Vui, Vuy) - (Vu; — Vug) > 0. We have

|Ap(.)(Vu1, VUQ)KIVUﬂ + |Vug| + 2|V0|)
< 4p+(|Vu1|"(”) + |Vug[P@® + |V9|p(z))‘

Hence, using the above lemma and Proposition 3.2, we have

/ (.A,,(.)(Vul, Vug) + (Vuy — Vug)) dz < 16p+kz |aa| < o0.
{lur—ual<k}

acA
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Proposition 4.1. Let A be a finite set and let u; and uy satisfy (1), (2), (3) and (6) in
Theorem 3.1. Let E, = {|u1 — 0] < n} N{|uz — 0| < n}. If

lim — [ |Vu; — Vu[P® dz =0, (4.2)

then U3 = Us.

To prove this proposition, we prepare one more lemma, which is a consequence of
Young’s inequality:

Lemma 4.2. For every € > 0 there exists a constant C(e,p~,p*) > 0 such that

162197261 — 16217265 n| < Cle,p™,p™)I€1 — &2l + (16117 + 2] + [n]9)
for any &, &, n€ RN and p~ < ¢ < p*. |

Proof of Proposition 4.1. Let € > 0 be arbitrarily given. By the above lemma, there
is C(e,p~,p*) > 0 such that
< Cle,p™,p")|Vuy — Vi@ + e{| Vs [P®) + |Vap P + V9P }

for all z € Q. Hence, if (4.2) holds, then using Proposition 3.2 again we have

. 1
lim sup —
n—oo N

/E | Ap) (Vur, V) [ (| V| + [Vug| + 2|V6)) dz < 26‘2 AR

acA

Since € > 0 is arbitrary, from Lemma 4.1 we deduce that

/ Apy(Vuy, Vug) - (Vuy — Vug) dz = 0.
{Ju1—uq|<k}

Therefore
Ap(y(Vuy, Vug) - (Vuy — Vug) =0

a.e. on {|u; — us| < k}, and hence Vu; = Vu, a.e. there. Now, k& > 0 being arbitrary,
Vu, = Vu, ae. in Q. Then, in view of property (6), u; = u; a.e. and in fact everywhere
by properties (1) and (2).

Theorem 4.1. Let A be a finite set. Ifu; and uy satisfy (1), (2), (3) and (6) in Theorem
3.1 and if uy — uy is bounded in a neighborhood of each a € A*, then u; = us.

Proof. First note that u; and u; are bounded outside a neighborhood of A* by
properties (1), (6) and the comparison principle. Hence, u; — uy is bounded on € \ A*.
Let |uy — uz| < M on 2\ A*. We shall show that (4.2) holds.

Let ) = {z € Q; p(z) > 2} and @y = {z € N; p(x) < 2}. Since

€1 — &al? < 2972(|€1]97%; — |62]7726) - (61 — &2)
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for ¢ > 2,

/E |Vu, — Vuzl"(‘") dr < 2r -1t Ap(y(Vug, Vug) - (Vuy — Vug) dz
nnnl

E.0Qy -
S 2p+—1/ A,,(.)(Vul, VUQ) . (Vu1 - VUQ) dzr < 0o
{lur—uz|<M}
by Corollary 4.1. Hence

lim £ [ |Vuy — Vua[P® de = 0. (4.3)

=0 N JE.NY
If1<g<2, then for 0 <e <1, we have

|61 — &I7 < ﬁ(lfllq—Qﬁl — &]7726,) - (&1 — &) + (6] + |&2])°
Hence,
/ |Vuy — V[P dz
En,NQa

1
<
~(pm-1)

+ 2"+6/E (IVurP® + |Vu,[P®)) da.

/ Ay (Vuy, Vig) - (Vg — Vaig) ds
{lu1—uz|<M}

Thus, by Proposition 3.2 and Corollary 4.1, we see

1
limsup—L . |V — Vuo|P@ dr < 277+ _S_ |cal-
n 2

n
n—oo a€EA

Therefore,

1
lim — |Vuy — Vug|P® d = 0
n—oo N EnnQ2

and combining this with (4.3), we see that (4.2) holds.

Theorem 4.2. Let A be a finite set and assume that p(z) is constant in a neighborhood
of a for each a € A*. Then the function u satisfying (1), (2), (3) and (6) is unique.

To prove this theorem, we consider the fundamental solution of —A, for 1 < p < N:
() Cpn |z|P~M/ =1 if p < N,
Ir) =
ks Cylog(1/lz)  ifp=AN,

where C, v and Cy are constants determined to satisfy —A,v,(z) = &. The following
result follows from [S; Theorem 12] and [KV; Theorem 1.1):

Lemma 4.3. Let1 < p < N and u be a p-superharmonic function in B(0, R) (R > 0)
such that —Ayu = ady with o > 0. Then u — a'/®P~Vry, s bounded in B(0,p) \ {0} for
0<p<R.

By this lemma, Theorem 4.2 immediately follows from Theorem 4.1.
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