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Abstract

This paper deals with the metric maximum clustering problem with given cluster sizes and
the maximum triangle packing problem. For the former problem, Hassin and Rubinstein gave
a randomized polynomial-time approximation algorithm achieving an expected ratio of % - %,
where k is the size of the smallest cluster. We improve the ratio to % k + 'k_('chT) and also
derandomize it. For the latter problem, Hassin and Rubinstein gave a randomized polynomial-
time approximation algorithm achieving an expected ratio of ﬂ(1 €). we improve the expected

ratio of éﬁ;:gi()p (1 — ¢€) for any constant € > 0. Note that p is close to 0.27.

1 Introduction

In the metric mazimum clustering problem with given cluster sizes (METRIC MCP-GCS for
short), we are given an edge-weighted complete graph G = (V, E) and a sequence of positive
integers c1, . .., ¢p such that the edge weights are nonnegative and satisfy the triangle inequality
and Y F_,¢; = |V|. The objective is to find a partition of V into disjoint clusters of sizes
c1,...,Cp such that the total weight of edges whose endpoints belong to the same cluster is
maximized. This problem has a lot of applications [9] and a number of appraximation algorithms
known have been given for it and its special cases [1,2,7,3,4,5]. In particular, Hassin and
Rubinstein [5] gave a randomized polynomial-time approximation algorithm for MeTRIC MCP-
GCS which achieves an expected ratio of % - %, where k is the size of the smallest cluster. In this
paper, we modify and derandomize their algorithm to obtain a polynomial-time approximation
algorithm for METRIC MCP-GCS which achieves a ratio of % - 725 + mEﬁ To our knowledge,
our algorithm achieves the best ratio when k is large.

A problem closely related to METRIC MCP-GCS is the mazimum triangle packing problem
(MTP for short). In this problem, we are given an edge-weighted complete graph G = (V, E)
such that the edge weights are nonnegative and |V| is a multiple of 3. The objective is to find
a partition of V into |V'|/3 disjoint subsets each of size exactly 3 such that the total weight of
edges whose endpoints belong to the same cluster is maximized. Obviously, if we do not require
that the edge weights satisfy the triangle inequality in METRIC MCP-GCS, then MTP becomes
a special case of METRIC MCP-GCS. Hassin and Rubinstein [4] gave a randomized polynomial-
time approximation algorthm for MTP and claimed that their algorithm achieves an expected
ratio of 169( 1 — ¢€) for any constant ¢ > 0. However, the third author of this paper pointed out
a flaw in their analysis and they [6] have corrected the ratio to 53(1 — ¢). In this paper, we
modify their algorithm to obtain a polynomial-time approximation algorithm for MTP which
achieves an expected ratio of %;’%2% (1 —¢€) > 885 . (1 —¢). Note that p is close to 0.27.
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2 Basic Definitions

Throughout the remainder of this paper, a graph means an undirected graph without parallel
edges or self-loops whose edges each have a nonnegative weight.

Let G be a graph. We denote the vertex set of G by V(G) and denote the edge set of G
by E(G). The weight of G, denoted by w(G), is the total weight of edges in G. We denote the
weight of an edge e € E(G) by wg(e). For a subset F of E(G), we use wg(F) to denote the
total weight of edges in F, and use V(F') to denote the set of endpoints of the edges in F. The
weight of a subgraph H of G, denoted by wg(H), is we(E(H)). The degree of a vertex v in G,
denoted by dg(v), is the number of edges incident to v in G.

For a function b mapping each vertex v of G to a nonnegative integer, a b-matching of G is a
subset F' of E(G) such that each vertex v of G is incident to at most b(v) edges in F; moreover,
a mazimum-weight b-matching of G is a b-matching M of G such that wg(M) > wg(M') for
all b-matching M’ of G. When b(v) < 1 for all vertices v of G, a b-matching of G is called a
matching of G. For a natural number k, a matching M of G is called a k-matching of G if
|M| = k, is called a mazimum-weight k-matching of G if wg(M) > wg(M’) for all k-matchings
M’ of G, and is called a perfect matching of G if 2|V(M)| > |V(G)| - 1.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A path in G
is either a single vertex of G or a connected subgraph of G in which exactly two vertices are of
degree 1 and the others are of degree 2. The length of a cycle or path C, denoted by |C|, is the
number of edges on C. A Hamiltonian cycle is a cycle C with V(C) = V(G). A cycle cover of
G is a subgraph H of G with V(H) = V(G) in which each vertex is of degree 2.

For a sequence ¢y, . . ., cp of positive integers with 3°%_; ¢; = |V(G)|, a (ci,. .., ¢p)-clustering
of G is a partition of V(G) into disjoint subsets (called clusters) of sizes ¢, ..., ¢p, respectively.
The weight of a (c1,...,cp)-clustering {Cy,...,Cp} of G is the total weight of edges {u,v} of
G such that some cluster C; (1 < ¢ < p) contains both u and v. A triangle packing of G is a

(3,...,3)-clustering of G. Note that G has a triangle packing if and only if |V(G)| is a multiple
of 3. ’

For a random event A, Pr[A] denotes the probability that A occurs. For two random events
A and B, Pr[A | B] denotes the probability that A occurs given the occurrence of B. For a
random variable X, £[X] denotes the expected value of X.

3 Approximation Algorithm for Merric MCP-GCS

Throughout this section, fix an instance (G,c1,...,cp) of METRIC MCP-GCS. Without loss
of generality, we may assume that ¢1 > c2 2 ... 2 ¢p. Let ¢ = |4| and Soqq = {i €
{1,...,p} | ¢ is 0odd}. We want to find a (cy,- - ,cp)-clustering {Ci,...,Cp} of large weight.
The following algorithm is for this purpose and is a derandomization of Hassin and Rubinstein’s
algorithm [5]:

(1) Initialize C; = ... = CP =@, a =2[%j,...,a,,=2[%], mo = 0, M0=@
(Comment: Sogqa = {i € {1,...,p} | ai=0c; —1}.)
(2) For j =1,...,q (in this order), perform the following steps:
(a) Let r; be the maximum i € {1,...,p} with a; = a;.

(c) Compute a maximum m,-matchmg M; of G with V(M;-1) C V(M;).
(Comment: By Lemma 2 in [5], this step can be done in polynomial time.)
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(d) For each i € {1,...,7;}, decrease a; by 2.

(3) Arbitrarily distribute the edges in M to Cy,...,Cr, so that each C; (1 < i < r1) receives
(the endpoints of) exactly one edge in My.

(4) For j =2,...,q (in this order), perform the following steps:

(a) Let U; = V(M;) = V(M;-1).

(b) Construct a complete bipartite graph B; as follows: The vertex set of B; is U; U
{C1,...,C;;_,}. More precisely, the vertices on one side of B; are exactly the
vertices in U; and the vertices on the other side of B; are exactly the clusters
Ci,...,Cr,_,. The weight of each edge (u, C;) of B withu € U andi € {1,...,7j—1}
is Evea wG({uv ’U})

(c) Compute a maximum-weight b-matching N; in B;, where b(u) = 1 for each u € U
and b(C;) = 2 for each i € {1,...,7j—1}.

(Comment: Since Bj is complete and r; > r;j_1, each C; (1 <4 < rj—1) i8 incident
to exactly two edges of N;.)
(d) For each edge (u,C;) € N;, add u to C;.

(e) Arbitrarily distribute those vertices in U; not incident to an edge in Nj to Cr;_;+1,...,Cr;
so that each C; (r;—1 +1 <1 < r;) receives exactly two vertices.

(5) Arbitrarily distribute the vertices in V(G) — U <i<, V(Ci) to the sets C; with i € Soqq 80
that each such set C; receives exactly one vertex.

(6) Output Cy,...,Cp.

Lemma 3.1 Let Apz be the weight of the clustering C1,. .., Cp output by the algorithm. Then,
Apz > 2397 we(My).

Consider an optimal clustering Os,...,Op for (G,ci,..., ). Let Opt be the weight of this
clustering. For each i € {1,...,p} such that ¢; is odd, we choose a vertex t; € O; such that

Y ueoi— ity Wa({ti,u}) £ Fueo,— (v we({v, u}) for all v € Os.
The following lemma. is the key for us to improve the ratio obtained by Hassin and Rubin-
stein’s algorithm:

Lemma 8.2 Y7, ¥ co._ ) wa({t,u}) < $Opt, where k = min{cy,...,cp}.

For each i € {1,...,p}, let O} = O; if ¢; is even, and let O] = O; — {t;} otherwise. Let
Opt' = Ele Z{u,v}(_..‘_o; we({u,v}).

Lemma 3.3 Opt' <4 -1 we(M;) + 250pt’, where k is as in Lemma 3.2.
Jj= J k-1

Theorem 3.4 There is a polynomial-time approzimation algorithm for METRIC MCP-GCS that
achieves a ratio of at least % - % + Tchl:T)-
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4 An Approximation Algorithm

Throughout this section, fix an instance G of MTP and an arbitrary constant € > 0. Moreover,
fix a maximum-weight triangle packing Opt of G.

To compute a triangle packing of large weight, Hassin and Rubinstein’s algorithm [4] (H&R-
algorithm for short) starts by computing a maximum-weight cycle cover € of G. It then breaks
each cycle C € C with |C| > -i- into cycles of length at most % This is done by removing a set
F of edges on C with wg(F) < ewg(C) and then adding one edge between each resulting path.
In this way, the length of each cycle in € becomes short, namely, is at most % H&R-algorithm
then uses € to compute three triangle packings P, ..., P; of G, and further outputs the packing
whose weight is maximum among the three.

P, is computed from € by a deterministic subroutine. Its weight is large when the total
weight of edges in those cycles C' € € with |C| = 3 is large compared to the weight of €. Here,
instead of detailing how to compute P;, we just mention the following result:

Lemma 4.1 [4] Let a - wg(€) be the total weight of edges in those cycles C € € with |C| = 3.
Then, wa(P1) > 142 - we(€) 2 1F2(1 - €) - we(Opt).

P, is also computed from € by a deterministic subroutine. Its weight is large when the total
weight of those edges {u,v} such that some cluster in Opt contains both u and v and some cycle
in € contains both u and v is large compared to the weight of C. Here, instead of detailing how
to compute P, we just mention the following result:

Lemma 4.2 [4] Let 3 - we(Opt) be the total weight of those edges {u,v} such that some cluster
in Opt contains both u and v and some cycle in € contains both u and v. Then, wg(P,) >

B - wg(Opt).

Unlike P, and P, P; is computed from € by a complicated randomized subroutine. In
Section 4.1, we substantially modify their subroutine, obtaining a new randomized subroutine
for computing P;. In Section 4.2, we analyze the approximation ratio achieved by the new
algorithm.

4.1 Computation of P;

Throughout this subsection, let p be the smallest real number satisfying the inequality %pz -
3%113 > 5%; the reason why we select p in this way will become clear in Lemma 4.8. Note that
p is close to 0.27 and hence p < -;— Let Ci,...,C, be the cycles in €. Consider the following
randomized subroutine which computes P from € as follows:

(1) Compute a maximum-weight b-matching M; in a graph G, where

» V(G1) =V(G),

e E(G,) consists of those {u,v} € E(G) such that u and v belong to different cycles
in €, and

e b(v) = 2 for each v € V(G1).
(2) In parallel, for each cycle C; in €, process C; by performing the following steps:

(a) Initialize R; to be the empty set.
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(b) If |C:| = 3, then for each edge e of C;, add e to R; with probability p.
(Comment: Elwg(R;)] = (1 —p) wa(C;). Moreover, each vertex of C; is incident to
exactly one edge of R; with probability 2p(1 — p). Furthermore, each vertex of C; is
incident to exactly two edges of R; with probability p?. Thus, each vertex of C; is
incident to at least one edge of R; with probability 2p — p?. )

(e) If |C;| = 4, then perform the following steps:

i. Choose one edge e; from C; uniformly at random.

fi. Starting at e; and going clockwise around Cj;, label the other edges of C; as
€2, ..., €. where c is the number of edges in C;.

fi. Add the edges e; with j =1 (mod 4) and j < c— 3 to R;.
(Comment: R; is a matching of C; and |R;| = [L%lj)

iv. If c=1 (mod 4), then add e.—; to R; with probability i

 (Comment: R; remains to be a matching of C;. Moreover, &[|R;|] = jﬂl:-l— +1.

1=

v. If ¢ = 2 (mod 4), then add e.; to R; with probability 1.
(Comment: R; remains to be a matching of C;. Moreover, E[|R;}] = jgi—_z +1-
§=14

vi. If ¢ = 3 (mod 4) and ¢ > 3, then add e.—2 to R; with probability 3.

(Comment: R; remains to be a matching of C;. Moreover, E[|R;|] = 19_%—_3 +1-
3= Gl
1=

(3) Le¢e R=R;U---UR,.
(Comment: If |C;| = 3, then Prle € R;] = p for every edge e of C;. If |C;| = 4, then
E[|R:]] = l%'l by the comments on Step 2(c)iv through 2(c)vi. Moreover, each edge of
C; with |C;| > 4 is added to R; with the same probability. Thus, if |C;| = 4, then
Prle € Ri] = 1 for every edge e of C;, and hence each vertex of C; is incident to at least
one edge of R with probability 3.)

(4) Let M; be the set of all edges {u,v} € My such that both u and v are of degree 0 or 1 in
graph € — R. Let G be the graph (V(G), M3).

(5) For each odd cycle C of G, select one edge uniformly at random and delete it from Go.
(6) Partition the edge set of G into two matchings N1 and Nz.

(7) For each edge e of G2 which alone forms a connected component of G2, add e to the
matching N;(i € {1,2}) which does not contain e.

(8) Select M from N; and N, uniformly at random.
(Comment: M is a matching of the graph (V(G), M;).)

(9) Let €’ be the graph obtained from graph € — R by adding the edges in M.
(Comment: Each connected component of ¢’ is a path or cycle. Moreover, each cycle K
in €’ may be a triangle or not. If K is a triangle, then it must be a triangle in €. On the
other hand, if K is not a triangle, then it must contain at least two edges in M.)

(10) Classify the cycles C of €’ into three types: superd, good, or ordinary. Here, C is superd
if |C| = 3; C is good if |C| = 6, |E(C) N M| = 2, and there are triangles C; and C; in €
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such that |E(C;) N E(C)| = 2 and |E(C;) N E(C)| = 2; C is ordinary if it is neither good
nor superb.

(11) For each ordinary cycle C in €, choose one edge in E(C) N M uniformly at random and
delete it from €'

(12) For each good cycle C in €/, change C back to two triangles in C as follows: Delete the
two edges of M N E(C) from C and then close each of the two resulting paths (of length
2) by adding the edge between its endpoints.
(Comment: Because of the maximality of €, this step does not decrease wg(C').)

(13) If € has at least one path component, then connect the path components of €' into a
single cycle Y by adding some edges of G, and further break Y into paths each of length
2 by removing a set F' of edges from Y with wg(F) < -13- ~wg(Y).

(14) Let P; be the (3,...,3)-clustering of G induced by the connected components of €¢’. More
precisely, the clusters in P; one-to-one correspond to the vertex sets of the connected
components of €.

Lemma 4.3 For each e € My, Prle € M| e € M) > 3.

Lemma 4.4 For each edge e € M such that at least one endpoint of e does not appear on a
triangle in C, e survives the deletion in Step 11 with probability at least %.

Lemma 4.5 For each e € M; such that neither endpoint of e appears on a triangle in C, e is
contained in €' immediately after Step 11 with probability at least 3'%.

Lemma 4.8 For each e € My such that ezactly one endpoint of e appear on a triangle in C, e

is contained in © immediately after Step 11 with probability at least 2% .
320

Lemma 4.7 Suppose that e = {uj,v,} is an edge in M such that both u; and v appear on
triangle in C and both u; and v, are incident to ezactly one edge in R. Then, the probability
that e is contained in € immediately after Step 11 is at least %.

Lemma 4.8 For each e € M; such that both endpoints of e appear on triangles in C, e is
contained in C' immediately after Step 11 with probability at least &F. _

4.2 Analysis of the Approximation Ratio

By the comment on Step 3, the expected total weight of the edges of € remaining in €’ im-
mediately after Step 11 is at least ((1 - pla + %(1 - a))w(;(e) = (% -(p-— %)a)wc(e) >
(% -(p- %)a) (1 — €)wg(Opt). Moreover, by Lemmas 4.5 through 4.8, the expected total
weight of edges of M; remaining in €' immediately after Step 11 is at least 3-3-7-20wG(M1). Fur-
thermore, by the construction of M;, wg(M)) is larger than or equal to the total weight of those
edges {u,v} such that some cluster in Opt contains both » and » but no cycle in € contains

both u and v. So, wg(Mi) > (1 — Blwg(Opt). Now, since wg(Ps) is at least % of the total
weight of edges in ¢’ immediately after Step 11, we have
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elwe(P) 2 3 (- (- —)a)(l - u(0pt) + § (- fuop) ()
= (g5~ 3¢~ 37— D1 - 9a = 7558)uc(Opt) (32)

So, by Lemma 4.1 and 4.2, we have

2 1 9 187 + 320p — (320p + 160)e
(p ) 6(P) + 1o5we(P) + wa(Ps) 2 &

Therefore, the weight of the best packing among Py, P, and P; is at least

we(Opt).

187 + 320p — (320p + 160)e 187 + 320p
640p + 347 347+ 6a0p L~ we(OR).
In summary, we have proven the following theorem:

we(Opt) >

Theorem 4.9 For any constant € > 0, there is a polynomial-time randomzzed approzimation

algorithm for MTP that achieves an expected ratio of —32—;3'_%3; (1—¢) > 8888 6o (1—¢).
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