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Abstract

This paper $deaLs$ with the metric maximllm cluustering problem with given cluster sizes and
the maximum triangle packing problem. For the former problem, Hassin and Rubinstein gave
a randomized polynomial-time approximation algorithm achieving an expected ratio of $\frac{1}{2}-\not\in$ ,
where $k$ is the size of the $8mallest$ cluster. We improve the ratio to $\iota_{-\frac{2}{k}}2+\frac{1}{k(k-1)}$ and also
derandomize it. For the latter problem, Ha.ssin and $R\backslash lbinote\bm{i}$ gave a randomized polynomial-
time approximation algorithm achieving an expected ratio of $g_{(1-\epsilon)}88$ we improve the expected
ratio of $\frac{187+320n}{347+u\infty}\cdot(1-\epsilon)$ for any constant $\epsilon>0$ . Note that $p$ is clo,ae to 0.27.

1 Introduction

In the $metr\dot{\tau}cm\varpi imum$ clustering problem with given cluster sizes (METRIC MCP-GCS for
$sho$rt), we are given an \’egweight\’e complete graph $G=(V, E)$ and a $\Re quence$ of $p_{08}itive$

integers $c_{1},$ $\ldots,$ $c_{p}$ such that the \’ege weights are nonnegative and $sat\dot{\iota}s\phi$ the triangle $in\Re uality$

and $\sum_{i=1}^{p}q=|V|$ . The objective $\dot{L}^{s}t$ to find apartition of $V$ into disjoint $cluster_{\iota}s$;of sizes
$c_{1},$ $\ldots$ , % $s\backslash \iota ch$ that the total weight of $edg\propto whoee$ endpoints belong to the $8\mathfrak{W} 3$ clrwter $\dot{\iota}s$

$maximi\mathbb{Z}ed$ . This problem ha.$s$ alot of applicationo [9] and anllmber of approximation algorithms
known have $b\propto n\dot{g}ven$ for it and its $\xi;pecial$ casae [1,2,7,3,4,5]. In particlllar, Hassin td
$R_{11}binotein[5]$ gave arandomized polynomial-time approximation algorithm for $kIETfflC$ MCP-
GCS which achievae an expected ratio of $\frac{1}{2}-gk$ ’where $k_{\dot{L}}s$ the size of the smallaet $c1\backslash 1s^{\backslash }ter$ . $\bm{t}$ this
paper, we $modi\Phi$ and derandomize their algorithm to obtain apolynomial-time $appr\propto imation$

algorithm for METRJC MCP-GCS which $achiev\propto a$ ratio of $\frac{1}{2}-2k+\frac{1}{k(k-1)}$ To our bowledge,
ollr algorithm achieves the $bet^{\backslash }t$ ratio when $k$ is large.

Aproblem $clo\epsilon^{\backslash }elyrelat\alpha 1$ to METRIC MCP-GCS is the maximum triangle pacbn9 $p$rvblem
(MTP for short). In this problem, we are given an \’ege-weighted complete graph $G=(V, E)$

sll&that the edge $weight_{\iota}s$ are nonnegative and $|V|is^{\backslash }$ amllltiple of 3. The objective is to find
apartItion of $V$ into $|V|/3$ disjoint $sub\epsilon ets$ eai of size exactly 38tlch that the total weight of
$edg\infty$ whoee endpoints belong to the same $c1\backslash 1s^{\backslash }ter$ is maximized. $Obvio\backslash L^{\epsilon};1y$ , if we do not require
that the edge weights $sat\dot{L}\theta$ the tritgle $ineq_{11}ality$ in METRIC MCP-GCS, then MTP $become8$

a8peclal c&ae of METRIC MCP-GCS. $Ha*\sin$ and $R\backslash lbinstein.[4]$ gave arandomized polynomial-
time $appr\alpha imation$ algorthm for MTP and claimed that their algorithm achievas an expecffl
ratio of $SL169(1-\epsilon)$ for any $con\{’ tant\epsilon>0$ . However, the third allthor of this paper pointed $0\backslash 1t$

aflaw in their analysis and they [6] have corrected the ratio to $4a_{(1-\epsilon)}83$ $\bm{i}$ this paper, we

$modi\infty m_{169}achiev\alpha;anexpe\alpha edrati_{0}of\frac{187+320pna}{347+uw}\cdot(1-\epsilon)\ \S \mathfrak{H}$ .
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2 Basic Definitions
$Through_{011}t$ the remainder of this paper, agraph means an lmdirected graph $with_{011}t$ parallel
edga or $self- 1oo\mu wh_{of};e$ edge each have anomegative weight.

Let $G$ be agraph. We denote the vertex $f^{\backslash },et$ of $G$ by $V(G)$ and denote the edge set of $G$

by $E(G)$ . The weight of $G$ , denoted by $w(G)$ , is the total weight of edges in G. We denote the
weight of an edge $e\in E(G)$ by $w_{G}(e)$ . For a $s\backslash 1b_{f};etF$ of $E(G)$ , we tlSe $W_{G(F)}$ to denote the
total weight of edges in $F$ , and $11b^{\backslash }eV(F)$ to denote the set of $endpoint\{\backslash$,of the edgae in F. The
weight of asllbgraph $H$ of $G$ , denoted by $wc(H)$ , is $wG(E(H))$ . The degme of avertex $v$ In $G$ ,
denoted by $d_{G}(v),$ $is^{\backslash }$ the number of edges incident to $v$ in $G$ .

For a $f\iota lnctionb$ mapping each vertex $v$ of $G$ to anonnegative iteger, a $b$-matching of $G$ is a
811bset $F$ of $E(G)_{S11}ch$ that each vertex $v$ of $G$ is incident to at most $b(v)$ edgae in $F;mor\infty ver$ ,
amaximum-weight $b$-matching of $G$ is $a\triangleright matchingM$ of $G$ Slli that $w_{G}(M)\geq w_{G}(M’)$ for
all $b$-matching $M’$ of G. When $b(v)\leq 1$ for all vertices $v$ of $G$ , a $b$.mat&ing of $G$ is cdled a
matching of G. For anatllral number $k$ , amatching $M$ of $G$ is called a $k$-matching of $G$ if
$|M|=k$ , is call\’e amaximum-weight $k$-matching of $G$ if $wG(M)\geq w_{G}(M’)$ for all k-matching\S
$M’$ of $G$ , and is calld aperfect matching of $G$ if $2|V(M)|\geq|V(G)|-1$ .

Acycle in $G$ is aconnected \S llbgraph of $G$ in whii each vertex is of degree 2. Apath In $G$

is either asingle vertex of $G$ or aconnected $8^{\backslash }11bgraph$ of $G$ in which exactly two verticae are of
degree 1and the others are of degree 2. The length of acycle or path $C$ , denoted by $|C|,\dot{\iota}^{s}$ the
nllmber of $edg\alpha^{\backslash }$ on C. AHamiltonian cycle is acycle $C$ with $V(C)=V(G)$ . Acycle cover of
$G$ is asllbgraph $H$ of $G$ with $V(H)=V(G)$ in which each vertex is of $dey$ae 2.

For a $seq_{11}enoec_{1},$ $\ldots,$ $c_{p}$ of positive $integer_{\iota}$ wlth $\sum_{:=1}^{p}q=|V(G)|$ , a $(c_{1}, , q)- cluste\dot{n}ng$

of $G_{\dot{L}}\backslash \backslash$ apartition of $V(G)$ lnto isjoint $811b_{\iota}set_{f}$;(called clusters) of $siz\infty\backslash c_{1}$ , ., $q,$ $re_{\iota}9p\propto tlvely$.
The weight of a $(c_{1}, \ldots, *)- cl\backslash 1\S tering\{C_{1}, \ldots, C_{p}\}$ of $G$ is the total weight of $edge8\{u,v\}$ of
$G$ such that ftome cltl\S ter $C_{i}(1\leq i\leq p)$ containo both $u$ and $v$ . Atriangle $\mu\ovalbox{\tt\small REJECT} ng$ of $G$ is a
$(3, \ldots, 3)$-clustering of G. Note that $G$ has atrian$g1e$ packing if and only if $|V(G)|$ is a $m\backslash 1ltiple$

of 3.
For arandom event $A,$ $Pr[A]denot\infty$ the probability that A $occ\backslash lr*\iota$ . For two random $event\epsilon$

$A$ and $B,$ $Pr[A|B]$ denotae the probability that $A$ $occtlr_{\iota}$?given the occurrenoe of B. For a
random $v\pi iableX,$ $\epsilon[X]denot\infty$ the expected $val\backslash le$ of $X$ .

3 Approximation Algorithm for METRIC MCP-GCS
Throughout this section, fix an inistanoe $(G, c_{1}, \ldots, q)$ of METRIC MCP-GCS. Without loss
of generality, we may assume that $c_{1}\geq c_{2}\geq$ . . . $\geq q$ . Let $q=L_{2}^{c}\lrcorner\rfloor$ and $S_{dd}=\{i\in$

$\{1, \ldots,p\}|Q$ is odd}. We want to find a $(c_{1}, \cdots q)$-clustering $\{C_{1}, \ldots, C_{p}\}$ of large weight.
The following algorithm is for this purpose and is a derandomization of Ha.ssm and Rubinstein’s
algorithm [5]:

(1) Initialize $C_{1}=\cdots=C_{p}=\emptyset,$ $a_{1}=2\lfloor c\neq J,$
$\ldots,$

$a_{p}=2\lfloor\not\in\rfloor,$ $m_{0}=0,$ $M_{0}=\emptyset$ .
(Comment: $S_{dd}=\{i\in\{1,$ $\ldots,p\}|a_{1}=c_{1}-1\}.$)

(2) For $j=1,$ $\ldots,q$ (in this order), perform the following $step_{8}$ :

(a) Let $r_{j}$ be the maximum $i\in\{1, \ldots,p\}$ with $a_{i}=a_{1}$ .
(b) Let $m_{j}=m_{j-1}+r_{j}$ .
(c) Compute a maximum $m_{j}$-matchin$gM_{j}$ of $G$ with $V(M_{j-1})\subseteq V(M_{j})$ .

(Comment: By Lemma 2 in [5], this step can be done in polynomial time.)
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(d) For each $i\in\{1, \ldots, r_{j}\},$ decre&\\e $a_{\dot{t}}$ by 2.

(3) Arbitrarily distribute the edges in $M_{1}$ to $C_{1},C_{r_{1}};..$, so that each $C_{i}(1\leq i\leq r_{1})$ receives
(the endpoints of) exactly one edge in $M_{1}$ .

(4) For $j=2,$ $\ldots,$
$q$ (in this order), perform the following steps:

(a) Let $U_{j}=V(M_{j})-V(M_{j-1})$ .
(b) Construct a complete bipartite graph $B_{j}$ as follows: The vertex set of $B_{j}$ is $U_{j}\cup$

$\{C_{1}, \ldots, C_{r_{j-1}}\}$ . More precisely, the vertices on one side of $B_{j}$ are exactly the
vertices in $U_{j}$ and the vertices on the other side of $B_{j}$ are exactly the clusters
$C_{1},$

$\ldots,$
$C_{r_{j-1}}$ . The weight of each edge $(u, C_{\dot{*}})$ of $B_{j}$ with $u\in U_{j}$ and $i\in\{r_{J^{-1}}\}$

$\dot{\iota}^{s}\sum_{v\in C_{i}}w_{G}(\{u,v\})$ .
(c) Compute a maximum-weight bmatching $N_{j}$ in $B_{j}$ , where $b(u)=1$ for each $u\in U_{j}$

and $b(C_{i})=2$ for each $i\in\{1, \ldots , r_{j-1}\}$ .
(Comment: Since $B_{j}$ is complete and $r_{j}\geq r_{j-1}$ , each $C_{i}(1\leq i\leq r_{j-1})$ is incident
to exactly two edges of $N_{j}.$)

(d) For each edge $(u, C_{1}’)\in N_{j}$ , add $u$ to $C_{i}$ .
(e) Arbitrarily distribute those vertices in $U_{j}$ not incident to an edge in $N_{j}$ to $C_{r_{j-1}+1},$ $\ldots,C_{r_{\dot{f}}}$

so that each $C_{i}(r_{j-1}+1\leq i\leq r_{j})$ receives exactly two vertices.

(5) Arbitrarily $d\dot{\iota}stribute$ the vertices in $V(G)- \bigcup_{1\leq i\leq P}V(C_{1})$ to the sets $C_{\mathfrak{i}}$ with $i\in S_{dd}$ so
that each such set $C_{1}$ receives exactly one vertex.

(6) Output $C_{1},$
$\ldots,$

$C_{p}$ .

Lemma 3.1 Let Apx be the weight of the dustering $C_{1},$ $\ldots,C_{p}$ output by the algorithm. Then,
$Apx \geq 2\sum_{j=1}^{q-1}w_{G}(M_{j})$ .

Consider an optimal clustering $O_{1},$
$\ldots,$

$O_{p}$ for $(G, c_{1}, \ldots, q)$ . Let Opt be the weight of this
clustering. For each $i\in\{1, \ldots,p\}$ such that $q$ is odd, we choose a vertex $t;\in 0_{:}$ such that
$\sum_{u\in O:-\{t_{i}\}}w_{G}(\{t_{i},u\})\leq\sum_{u\in O_{l}-\{v\}}w_{G}(\{v, u\})$ for all $v\in O_{i}$ .

The following lemma is the key for us to improve the ratio obtained by Hassin and Rubin-
stein’s algorithm:

Lemma 3.2 $\sum_{i=1}^{p}\sum_{u\in O_{1}-\{t\}}:w_{G}(\{t_{i},u\})\leq\frac{2}{k}$ Opt, where $k= \min\{c_{1}, \ldots , c_{p}\}$ .

For each $i\in\{1, \ldots,p\}$ , let $O_{i}’=O_{i}$ if $q$ is even, and let $O_{i}’=O_{i}-\{t_{i}\}$ otherwise. Let
$o_{M’=\sum_{i=1}^{p}\sum_{\{u,v\}\subseteq O’}\dot{.}w_{G}(\{u,v\})}$ .

Lemma 3.3 $Opt’ \leq 4\sum_{j=1}^{q-1}w_{G}(M_{j})+\overline{k}1\underline{L}$-Opt’, where $k$ is as in Lemma 3.2.

Theorem 3.4 There is a polynomial-time approximation dgorithm for METRIC MCP-GCS that
achieves a ratio of at least $\iota_{-\frac{2}{k}}2+\frac{1}{k(k-1)}$
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4 An Approximation Algorithm

Throughout this section, fix an instance $G$ of MTP and an arbitrary constant $\epsilon>0$ . Mormver,
fix a maximum-weight triangle packing $0pt$ of $G$ .

To compute a triangle packing of large weight, Hassin and Rubinstein’s algorithm [4] (H&R-

algorithm for short) starts by computing a maximum-weight cycle cover $G$ of $G$ . It then breaks
each cycl$eC\in C$ with $|C|> \frac{1}{\epsilon}$ into cycles of length at most $\frac{1}{\epsilon}$ This is done by removing a set
$F$ of edges on $C$ with $W_{G(F)}\leq\epsilon wc(C)$ and then adding one edge between each resulting path.
In this way, the length of each cycle in $C$ becomes short, namely, is at most}. H&R-algorithm

then uses $C$ to compute three triangle packings $P_{1},$
$\ldots,$

$P_{\theta}$ of $G$ , and further outputs the packing
whose weight is maximum among the three.

$P_{1}$ is computed from $C$ by a deterministic subroutine. Its weight is large when the total
weight of edges in those cycles $C\in C$ with $|C|=3$ is large compared to the weight of C. Here,
instead of detailing how to compute $P_{1}$ , we just mention the following result:

Lemma 4.1 [4] Let $\alpha\cdot W_{G(C)}$ be the total weight of edges in those cycles $C\in G$ utth $|C|=3$ .
Then, $W_{G(P_{1})} \geq\frac{1+\alpha}{2}\cdot W_{G(C)}\geq\iota\pm_{z^{\underline{\alpha}}}(1-\epsilon)\cdot w_{G}(0pt)$ .

$P_{2}$ is also computed from $G$ by a deterministic subroutine. Its weight is large when the total
weight of those edges $\{u, v\}$ such that some $cll\iota ster$ in Opt contains both $u$ and $v$ and some cycle
in $C\infty ntains$ both $u$ and $v$ is large compared to the weight of C. Here, instead of $det\dot{u}1ing$ how
to compute $P_{2}$ , we just mention the following result:

Lemma 4.2 [4] Let $\beta\cdot w_{G}(0pt)$ be the total weight of those edges $\{u, v\}$ such that some cluster
in 0pt contains both $u$ and $v$ and some cycle in $C$ contains both $u$ and $v$ . Then, $W_{G(P_{2})}\geq$

$\beta\cdot w_{G}(Opt)$ .

Unlike $P_{1}$ and $P_{2},$ $P_{\}$ is computed from $C$ by a complicated randomized subroutine. In
Section 4.1, we substantially $modi\phi$ their subroutine, obtaining a new randomized subroutine
for computing $P_{\}$ . In Section 4.2, we analyze the approximation ratio achieved by the new
algorithm.

4.1 Computation of $P_{3}$

Throughout this subsection, let $p$ be the smallest real number satisfying the inequality $2X_{p^{2}-}20$

$\Delta 10^{p}\geq 2L320^{;}$ the reason why we select $p$ in this way will become clear in Lemma 4.8. Note that
$p$ is close to 0.27 and hence $p< \frac{1}{2}$ Let $C_{1},$

$\ldots,$
$C_{r}$ be the cycles in C. $Co\iota\iota;ider$ the following

randomized subroutine which computes $P_{3}$ from $G$ as follows:

(1) Compute a maximum-weight b-matching $M_{1}$ in a graph $G_{1}$ , where

$\bullet V(G_{1})=V(G)$ ,
$\bullet$ $E(G_{1})co$nsists of those $\{u,v\}\in E(G)$ such that $u$ and $v$ belong to different cycles

in $C$ , and
$\bullet$ $b(v)=2$ for each $v\in V(G_{1})$ .

(2) In parallel, for each cycle $C_{i}$ in $C$ , process $C_{i}$ by performin$g$ the following steps:

(a) hitidize $R_{*}$. to be the empty set.
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(b) If $|C_{i}|=3$ , then for each edge $e$ of $C_{i}$ , add $e$ to $k$ with probability $p$ .
(Comment: $\mathcal{E}[w_{G}(R_{i})]=(1-p)\cdot wc(C_{i})$ . $Mor\infty ver$ , each vertex of $C_{2}$ is incident to
exactly one edge of $R_{4}$ with probability $2p(1-p)$ . $F\iota lrthermore$ , each vertex of $C_{i}$ is
incident to exactly two edges of $R_{4}$ with probability $p^{2}$ . Thus, each vertex of $C$; is
incident to at least one edge of $R_{\dot{c}}$ with probability $2p-p^{2}$ . )

(c) If $|C_{i}|\geq 4$ , then perform the following steps:
$i$ . Choose one edge $e_{1}$ from $C_{i}$ umiformly at random.
$\tilde{n}$ . Starting at $e_{1}$ and going clockwise around $C_{i}$ , label the other edges of $C_{1}$ as

$e_{2},$
$\ldots,$

$e_{c}$ where $c$ is the number of $e$dges in $C_{i}$ .
$\tilde{m}$. Add the edges $e_{j}$ with $j\equiv 1$ (mod 4) and $j\leq c-3$ to $R_{4}$ .

(Comment; $R_{i}$ is a matching of $C_{l}$, and $|R_{i}|=L_{4}^{uC:}\rfloor.$)
$\dot{w}$. If $c\equiv 1$ (mod 4), then add $e_{c-1}$ to $R_{4}$ with probability 14

(Comment: It remains to be a matching of $C_{i}$ . Moreover, $\epsilon[|R_{i}|]=\frac{|C_{l}|-1}{4}+1$ .
$441\cup C$ .

$v$ . If $c\equiv 2$ (mod 4), then add $e_{c-1}$ to $R_{i}$ with probabihity $\perp 2$

(Comment: $R_{\dot{\alpha}}$ remains to be a matching of $C_{i}$ . Moreover, $\mathcal{E}[|R|]=\llcorner C_{\dot{s}_{4}}\llcorner-\underline{2}+1$ .
$\frac{1}{2}=\frac{|c_{:}|}{4}.)$

vi. If $c\equiv 3$ (mod 4) and $c>3$ , then add $e_{c-2}$ to $R_{d}$ with probability 34
(Comment: $R_{\dot{4}}$ remains to be a matching of $C_{i}$ . Moreover, $\mathcal{E}[|R|]=1_{\lrcorner}^{c_{4}}\llcorner-3+1$ .
$3_{=^{u_{4}}.)}^{C}4$

(3) Let $R=R_{1}\cup\cdots\cup R_{f}$ .
(Comment: If $|C_{i}|=3$ , then $Pr[e\in R_{i}]=p$ for every edge $e$ of $C_{i}$ . If $|C_{1}|\geq 4$ , then
$\epsilon[|R_{i}|]=\cup C:4$ by the comments on Step 2(c)iv through 2(c)vi. $Mor\infty ver$ , eaCh edge of
$C_{i}$ with $|C_{1}|\geq 4$ is added to $R_{i}$ with the same probability. Thus, if $|C_{i}|\geq 4$ , then
$Pr[e\in R_{i}]=14$ for every edge $e$ of $C_{i}$ , and hence $e$ach vertex of $C_{i}$ is incident to at le&st
one edge of $R$ with probability -.)

(4) Let $M_{2}$ be the set of all edges $\{u, v\}\in M_{1}$ such that both $u$ and $v$ are of degree $0$ or 1 in
graph $C-R$. Let $G_{2}$ be the graph $(V(G), M_{2})$ .

(5) For each odd cycle $C$ of $G_{2}$ , select one edge uniformly at random and delete it from $G_{2}$ .

(6) Partition the edge set of $G_{2}$ into two matchingn $N_{1}$ and $N_{2}$ .
(7) For each edge $e$ of $G_{2}$ which alone forms a connected component of $G_{2}$ , add $e$ to the

matching $N_{i}(i\in\{1,2\})$ which does not contain $e$ .
(8) Select $M$ from $N_{1}$ and $N_{2}$ umiformly at random.

(Comment: $M$ is a matching of the graph $(V(G),$ $M_{1}).$ )

(9) Let $C’$ be the graph obtained from graph $e-R$ by adding the edges in $M$ .
(Comment: Each connected $\infty mponent$ of C’ is a path or cycle. $Mor\infty ver$ , each cycle $K$

in $C’$ may be a triangle or not. If $K$ is a triangle, then it miust be a triangle in G. On the
other hand, if $K$ is not a triangle, then it $m\tau xst$ contain at $lea\backslash \backslash t$ two edges in $M.$ )

(10) Cl&\si\Phi the cycles $C$ of $C’$ into three types: superb, good, or ordinary. Here, $C$ is superb
if $|C|=3;C$ is good if $|C|=6,$ $|E(C)\cap M|=2$ , and there are triangles $C_{1}$ and $C_{j}$ in $C$
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such that $|E(C_{c’})\cap E(C)|=2$ and $|E(C_{j})\cap E(C)|=2;C$ is ordinary if it is neither good
nor superb.

(11) For each ordinary cycl$eC$ in $C’,$ $choof^{\backslash },e$ one edge in $E(C)\cap M$ uniformly at random and
delete It fro\’e $C’$ .

(12) For $e$ach good cycle $C$ in $C’$ , change $C$ back to two triangles in $C$ as follows: Delete the
two edges of $M\cap E(C)$ from $C$ and then close each of the two resulting $pat1_{L’}\backslash$ (of length
2) by adding the edge between its endpoints.
(Comment: $Becau_{\iota}ae$ of the maximality of $C$ , this step does not decrease $wc(C’).$ )

(13) If $G’$ h&s at least one path component, then connect the path components of $G’$ into a
single cycle $Y$ by adding some edges of $G$ , and further break $Y$ into paths each of length
2 by removing a ,vet $F$ of edges from $Y$ with $WG(F) \leq\frac{1}{3}\cdot wG(Y)$ .

(14) Let $P_{3}$ be the $(3, \ldots, 3)$-clustering of $G$ induced by the connected $\infty mponents$ of $C’$ . More
preci,sely, the clrusters in $P_{3}on\triangleright to\cdot one$ correspond to the vertex sets of the connected
components of $e’$ .

Lemma 4.3 For each $e\in M_{1},$ $Pr[e\in M|e\in M_{2}]\geq\dot{2}0L$ .

Lemma 4.4 For each edge $e\in M$ such that at least one endpoint of $e$ does not appear on a
triangle in $C,$ $e$ survives the ddetion in Step 11 with probability at least $g4$

Lemma 4.5 For each $e\in M_{1}$ such that neither endpoint of $e$ appears on a triangle in $G,$ $e$ is
contained in $C’$ immediately after Step 11 with prvbability at least $2L320$

Lemma 4.6 For each $e\in M_{1}$ such that exactly one endpoint of $e$ appear on a triangle in $C,$ $e$

is contained in $C’$ immediatdy afler Step 11 with pro bability at least $2_{\frac{7}{20}}3$

Lemma 4.7 Suppose that $e=\{u_{1},v_{1}\}$ is an edge in $M$ such that both $u_{1}$ and $v_{1}$ appear on
triangle in $C$ and both $u_{1}$ and $v_{1}$ are incident to exactly one edge in R. Then, the probability
that $e$ is contained in $e^{J}$ immediately after Step 11 is at least $\frac{3}{4}$

Lemma 4.8 For each $e\in M_{1}$ such that both endpoints of $e$ appear on triangles in $C,$ $e$ is
contained in $C’$ immediately after Step 11 with prvbability at least $\ovalbox{\tt\small REJECT}_{0}$ .

4.2 Analysis of the Approximation Ratio

By the $\infty mment$ on Step 3, the expaeted total weight of the edges of $C$ renaining in $C’$ im-
mediately after Step 11 is at least $((1-p)\alpha+g4(1-\alpha))w_{G}(C)=(43_{-}(p-14)\alpha)w_{G}(C)\geq$

$( \S 4-(p-\frac{1}{4})\alpha)(1-\epsilon)w_{G}(Opt)$ . Moreover, by Lemmas 4.5 through 4.8, the expected total

weight of edges of $M_{1}$ remaining in $C’$ immediately after Step 11 is at least $2L_{w_{G}(M_{1})}320F\backslash 1r-$

thermore, by the constniction of $M_{1},$ $wc(M_{1})$ is larger than or equal to the total weight of those
edges $\{u,v\}$ such that some cluster in 0pt contaio both $u$ and $v$ but no cycle in $C$ contains
both $u$ and $v$ . So, $WG(M_{1})\geq(1-\beta)_{W_{G}}(0pt)$ . Now, since $wG(P_{3})$ is at least 23 of the total
weight of edges in $C’$ immediately after Step 11, we have
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$\mathcal{E}[w_{G}(P_{3})]\geq\frac{2}{3}(\frac{3}{4}-(p-\frac{1}{4})\alpha)(1-\epsilon)w_{G}(t9pt)+\frac{2}{3}$ . $\frac{27}{320}(1-\beta)w_{G}(0pt)$

$=( \frac{89}{160}-\frac{1}{2}\epsilon-\frac{2}{3}(p-\frac{1}{4})(1-\epsilon)\alpha-\frac{9}{160}\beta)w_{G}(0pt)$ .

(3.1)

(3.2)

So, by Lemma 4.1 and 4.2, we have

$\frac{3}{4}(p-\frac{1}{4})w_{G}(P_{1})+\frac{9}{160}w_{G}(P_{2})+w_{G}(P_{3})\geq\frac{187+320p-(320p+160)\epsilon}{480}\cdot w_{G}(0pt)$.
Therefore, the weight of the best packing among $P_{1},$ $P_{2}$ , and $P_{3}$ is at least

$\frac{187+320p-(320p+160)\epsilon}{640p+347}\cdot w_{G}(0pt)\geq\frac{187+320p}{347+640p}\cdot(1-\epsilon)w_{G}(0pt)$ .
In summary, we have proven the following theorem:

Theore$m4.9$ For any constant $\epsilon>0$ , there is a polynomial-time randomiz$ed$ appmrimahon
algorithm for MTP that achieves an $e\varphi ected$ ratio of $\frac{187+32\Phi}{347+64\psi}\cdot(1-\epsilon)>\mathfrak{B}_{16}4_{9}E$ . $(1-\epsilon)$ .

References

[1] T. Feo, O. Goldschmidt, and M. Khellaf. One Half $Appr\alpha imation$ Algorithms for the k-
Partition Problem. Operations Research 40 (1992) S170-S172.

[2] T. Feo and M. Khellaf. A $Cla\backslash s$ of Bounded Approximation Algorithms for Graph Parti-
tioning. Networks 20 (1990) 185-195.

[3] R. Hassin and S. Rubinstein. Robust Matchings. SIAM Joumal on Discrete Mathematics
15 (2002) 530-537.

[4] R. $Ha*\sin$ and S. $R\backslash lbi\iota Lste$ in. An Approximation Algorithm for Maximiun biangle Packing.
Discrete Applied Mathematics 154 (2006) 971-979.

[5] R. $Ha_{*}q_{\iota}\backslash \backslash in$ and S. Rubinstein. An Improved Approximation Algorithm for the Metric Maxi-
mum Clustering Problem with Given Cluster Sizes. Infomation Processing Letters 98 $(2\infty 6)$

92-95.

[6] R. Hassin and S. Rubinstein. Erratum to “An appraximation algorithm for maximium trian-
gle $p_{\mathfrak{X}}king$

’ : [Discrete Applied mathematics 154 (2006) 971-979]. Discrete Applied Math-
ematics 154 (2006) 2620-2620.

[7] R. $Ha_{\iota}s:in$ , S. Rubinstein, and A. Tamir. Approximation Algorithms for Maximum Disper-
sion. Operations Research Letters 21 (1997) 133-137.

[8] P. Raghavan. Probabilistic Constnlction of Deterministic Algorithms: Approximating Pack-
ing Integer $Program^{s};$ . Joumal of Computer and System $Sience_{\vee}s38$ (1994) 683-707.

[9] R.R. Weitz and S. Lakshminarayanan. An Empirical Comparison of Heuristic Methods for
Creating Maximally Diverse Groups. Joumal of the Operational Research Society 49 (1998)
635-646.

77


