On a generator of a nonstandard universe

法政大学 村上 雅彦 (Masahiko MURAKAMI) Hosei University

1. Nonstandard Universe

1.1. Superstructure

Given a set X, we define the iterated power set $V_n(X)$ by

$$V_0(X) = X,$$

$$V_{n+1}(X) = V_n(X) \cup \mathcal{P}(V_n(X)).$$

The superstructure V(X) is the union

$$V(X) = \bigcup_{n < \omega} V_n(X).$$

A set X is said to be a base set if

$$\varnothing \notin X$$
 and $\forall x \in X \ x \cap V(X) = \varnothing$.

In a superstructure V(X), the elements of $V(X) \setminus X$ are called sets relative to V(X). We denote the structure $\langle V(X), \in \rangle$ for the language $\mathcal{L}_{\in} = \{\in\}$ of set theory by the same symbol V(X).

1.2. Nonstandard Universe

A nonstandard universe is a triple $\langle V(X), V(Y), \star \rangle$ such that:

- (1) X and Y are infinite base sets.
- (2) (Transfer Principle) The map \star is a bounded elementary embedding of V(X) into V(Y): \star : $V(X) \rightarrow V(Y)$,

$$V(X) \models \varphi(a, \bar{b}) \quad \text{iff} \quad V(Y) \models \varphi({}^{\star}\!a, {}^{\star}\!\bar{b}) \quad \text{for every Δ_0-formula $\varphi(x, \bar{y})$.}$$

(3) ${}^{\star}X = Y$.

For $a \in V(^*X) = V(Y)$,

a is standard if $a = {}^{\star}x$ for some $x \in V(X)$ and

a is internal if $a \in {}^{\star}x$ for some $x \in V(X)$.

We denote the set of all internal elements n $V({}^{\star}X)$ by

$${}^{\star}\!V(X) = \big\{ x \in V({}^{\star}\!X) \; \big| \; \; x \text{ is internal} \big\} = \bigcup_{n < \omega} {}^{\star}\!V_n(X).$$

The structure ${}^*V(X)$ is transitive over Y. Then, we can simply denote by single ${}^*V(X)$ nonstandard universe.

1.3. Invariants of nonstandard Universe

The norm (of standardness) nos(a) of an internal element a

$$nos(a) = \min \{ |x| \mid a \in {}^{\star}x \}.$$

The radius of ${}^*V(X)$ is a cardinal defined by

$$\operatorname{rad}({}^{\star}\!V(X)) = \min \big\{ \kappa \ \big| \ \forall y \in {}^{\star}\!V(X) \ \operatorname{nos}(y) < \kappa \big\}.$$

Let E be a subset of ${}^*V(X)$. We denote

$$dcl(E) = \{w(s) \mid w \in V(X), s \in E^{<\omega}, s \in dom w\}.$$

The length of ${}^*V(X)$ is a cardinal defined by

$$\operatorname{len}({}^{\star}\!V(X)) = \min \{ |E| \mid E \subseteq {}^{\star}\!V(X) \text{ and } \operatorname{dcl}(E/\star) = {}^{\star}\!V(X) \}.$$

*V(X) is monogenic if len(*V(X)) = 1. a is a generator of monogenic *V(X) if * $V(X) = dcl(\{a\})$.

From now on, we shall consider ${}^*V(X)$ such that $\mathrm{rad}\big({}^*V(X)\big)$, $\mathrm{len}\big({}^*V(X)\big) < |V(X)|$.

2. Examples of nonstandard universe

2.1. Bounded ultrapower

Let I be an index set. We define $\mathcal{P}(I)$ -valued universe by

$$\widehat{V}(X)^I = \{u \colon I \to V(X) \mid \text{ ran } w \subseteq V_n(X) \text{ for some } n < \omega\}$$

with truth values

Let \mathcal{U} be an ultrafilter over I. We can define Bounded ultrapower

$$\widehat{V}(X)^I/\mathcal{U} = \{u/\mathcal{U} \mid u \in \mathcal{U}\},\$$

where u/\mathcal{U} is the equivalence class of the relation $[u=v] \in \mathcal{U}$.

For $a \in V(X)$ define $\check{a} \in \widehat{V}(X)^I$ by $\check{a} : I \to \{a\}$ and ${}^*a = \check{a}/\mathcal{U}$. Then $\widehat{V}(X)^I/\mathcal{U}$ is a nonstandard universe.

Theorem 1. (1) If |I| < |V(X)| then $\widehat{V}(X)^I/U$ is monogenic.

(2) Monogenic nonstandard universe ${}^{\star}\!V(X)$ is isomorphic to a bounded ultrapower.

Proof. (1) Wlog I is a set relative to V(X). Then $\mathrm{id}_I/\mathcal{U}$ is a generator of $\widehat{V}(X)^I/\mathcal{U}$.

(2) Let a be a generator of ${}^*V(X)$. Let I be a set relative to V(X) such that $a \in {}^*I$. Define $\mathcal{U} = \{A \subseteq I \mid a \in {}^*A\}$ then ${}^*V(X)$ is isomorphic to $\widehat{V}(X)^I/\mathcal{U}$.

Considering a generator, we have the theorem below.

Theorem 2. If there is a bounded elementary embedding $e: \widehat{V}(X)^I/\mathcal{U} \to \widehat{V}(X)^J/\mathcal{V}$, then there is $h: J \to I$ such that $\mathcal{U} = \{A \subseteq I \mid h^{-1} A \in \mathcal{V}\}$ and $e(u/\mathcal{U}) = (u \circ h)/\mathcal{V}$.

Proof. Let
$$h/\mathcal{V} = e(\operatorname{id}_I/\mathcal{U})$$
.

2.2. Bounded Boolean ultrapower

Let $(\mathcal{B}, \wedge, \vee, \neg, \mathbf{0}, \mathbf{1})$ be a cBa. We define \mathcal{B} -valued universe by

$$\widehat{V}(X)^{\langle \mathfrak{B} \rangle} = \left\{ u \colon V(X) \to \mathfrak{B} \; \middle| \; \begin{array}{l} u(x) \wedge u(y) = \mathbf{0} \text{ for } x \neq y, \\ \bigvee \operatorname{ran} u = \mathbf{1}, \text{ supp } u \in V(X) \end{array} \right\},$$

where supp $u = \{x \in V(X) \mid u(x) \neq 0\}$, with truth values

Let \mathcal{U} be an ultrafilter of \mathcal{B} . As bounded ultrapower, we define bounded Boolean ultrapower $\widehat{V}(X)^{\langle \mathcal{B} \rangle}/\mathcal{U}$. Bounded ultrapower is a nonstandard universe. If \mathcal{B} is atomless then $\widehat{V}(X)^{\langle \mathcal{B} \rangle}/\mathcal{U}$ is not monogenic by Theorem 1.

2.3. Bounded ultralimit

A set Λ of subsets of a Ba $\mathcal B$ is a locally atomic complete algebra (LACA) if

- (1) $\bigcup \Lambda = \mathcal{B}$.
- (2) If $S_1, S_2 \in \Lambda$ then $S_1 \cup S_2 \in \Lambda$.
- (3) If $S \in \Lambda$ and $T \subseteq S$ then $T \in \Lambda$.
- (4) For every $S \in \Lambda$, there is an atomic complete regular subalgebra C of \mathcal{B} such that $S \subseteq C \in \Lambda$.

We say the Boolean algebra $\bigcup \Lambda$ is base Boolean algebra of Λ denoted by $\mathcal{B}(\Lambda)$. We define $\overline{\mathcal{B}(\Lambda)}$ -valued universe by

$$\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle} = \left\{ u \colon V(X) \to \mathcal{B}(\Lambda) \; \middle| \; \begin{array}{l} u(x) \wedge u(y) = \mathbf{0} \; \text{for} \; x \neq y, \; \text{ran} \, u \in \Lambda \\ \bigvee \operatorname{ran} u = \mathbf{1}, \; \operatorname{supp} u \in V(X) \end{array} \right\}$$

with thuth value assignment as that of \mathcal{B} -valued universe, where $\overline{\mathcal{B}(\Lambda)}$ is a completion of $\mathcal{B}(\Lambda)$.

Lemma 3. Let φ be a statement of $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ then $[\![\varphi]\!] \in \mathcal{B}(\Lambda)$. So $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ is $\mathcal{B}(\Lambda)$ -valued.

Let \mathcal{U} be an ultrafilter of $\mathcal{B}(\Lambda)$. As bounded ultrapower and bounded Boolean ultrapower, we define bounded Boolean ultralimit $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}$. Bounded ultralimit is a nonstandard universe.

Theorem 4 (representation theorem). For every nonstandard universe ${}^*V(X)$, there is a Bounded ultralimit isomorphic to ${}^*V(X)$.

3. Looking for a generator outside ${}^{\star}V(X)$

If ${}^*V(X)$ is not monogenic, there is not a generator in ${}^*V(X)$. We are looking for a 'generator' outside ${}^*V(X)$.

3.1. Ultrasheaf

Let $V^{(B)}$ be a cBa \mathcal{B} -valued universe of set theory: $V^{(B)} = \bigcup_{\alpha} V_{\alpha}^{(B)}$,

$$\begin{split} \mathbf{V}_{\alpha}^{(\mathcal{B})} &= \Big\{u \colon \operatorname{dom} u \to \mathcal{B} \; \Big| \; \operatorname{dom} u \subseteq \bigcup \, \{\mathbf{V}_{\beta}^{(\mathcal{B})} \mid \beta < \alpha\} \Big\}, \\ &\check{c} \colon \{\check{x} \mid x \in c\} \to \{\mathbf{1}\} \end{split}$$

with truth values

$$\begin{bmatrix} u \in v \end{bmatrix} = \bigvee \{v(x) \land \llbracket x = u \rrbracket \mid x \in \text{dom } v \},
 \llbracket u = v \rrbracket = \bigwedge \{\llbracket x \in u \rrbracket \Leftrightarrow \llbracket x \in v \rrbracket \mid x \in \text{dom } u \cup \text{dom } v \}.$$

Inside $\mathbf{V}^{(\mathfrak{B})}$, we consider iterated power sets $V_{\tilde{n}}(\check{X})$, and let

$$\widehat{V}(X)^{(\mathfrak{B})} = \bigcup_{n < \omega} V_{\tilde{n}}(\check{X}).$$

Let \mathcal{U} be an ultrafilter of \mathcal{B} . As bounded ultrapower and bounded Boolean ultrapower, we define bounded Boolean sheaf $\widehat{V}(X)^{(\mathcal{B})}/\mathcal{U}$.

Theorem 5. The map $\star: V(X) \to \widehat{V}(X)^{(\mathfrak{B})}/\mathfrak{U}$ $\star a = \check{a}/\mathfrak{U}$ is a bounded elementary embedding and $\star V(X) = \bigcup_{n < \omega} \star V_n(X)$ is isomorphic to the Boolean ultrapower $\widehat{V}(X)^{\langle \mathfrak{B} \rangle}/\mathfrak{U}$. If \mathfrak{B} is atomless, $\star V(X) \neq \widehat{V}(X)^{(\mathfrak{B})}/\mathfrak{U}$.

Wlog, these inclusions hold:

$$\{ {}^{\star}x \mid x \in V(X) \} \subseteq {}^{\star}V(X) \subseteq \widehat{V}(X)^{(\mathfrak{B})}/\mathfrak{U} \subseteq V({}^{\star}X)$$

Suppose B is a set relative to V(X). Canonial generic filter $\mathbb{G} \in \widehat{V}(X)^{(B)}$ is defined by

$$dom \mathbb{G} = \check{\mathcal{B}}, \quad \mathbb{G}(\check{b}) = b.$$

Theorem 6. For every $a \in {}^*V(X)$, there is $w \in V(X)$ such that $w : \mathcal{B} \to V(X) \setminus X$ and $a = \bigcup \bigcap {}^*w \, {}^*\mathbb{G}/\mathcal{U}$. $\widehat{V}(X)^{(\mathcal{B})}/\mathcal{U}$ is the least transitive substructure of $V({}^*X)$ that contains ${}^*V(X) \cup \{\mathbb{G}/\mathcal{U}\}$.

Theorem 7. If there is a bounded elementary embedding

$$e \colon \widehat{V}(X)^{(A)}/\mathcal{U} \to \widehat{V}(X)^{(B)}/\mathcal{V},$$

then there is a cBa homomorphism $h: A \to B$ such that $U = h^{-1}$ and $e(u/U) = (h \circ u)/V$.

Proof. Since \mathbb{G}/\mathbb{U} is * $\mathcal{P}(A)$ -complete ultrafilter of A, there is a $\mathcal{P}(A)^{\checkmark}$ -complete ultrafilter H of \check{A} inside $V(X)^{(\mathfrak{B})}$ such that $H/\mathcal{V}=e(\mathbb{G}/\mathbb{U})$. Then, we have the homomorphism $h(a)=[\![\check{a}\in H]\!]$.

Compare Theorem 2 with Theorem 7.

3.2. Generator of bounded ultralimit

Let $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}$ be a bounded ultralimit. Suppose $\mathcal{B}(\Lambda)$ is a cBa in V(X). Define generator Γ of $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}$ by

$$\Gamma = \{ \operatorname{id}_P / \mathcal{U} \mid P \in \Lambda \text{ is a partition of unity} \} \in V({}^*X).$$

Theorem 8. The generator Γ of $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}$ is ${}^*\!\Lambda$ -complete ultrafilter of ${}^*\!\mathcal{B}(\Lambda)$. For every $a \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}$, there is $w \in V(X)$ such that $w \colon \mathcal{B}(\Lambda) \to V(X) \setminus X$ and $a = \bigcup \bigcap {}^*\!w \, {}^*\!\Gamma$. If Λ is the largest LACA on a cBa \mathcal{B} then $\Gamma = \mathbb{G}/\mathcal{U}$.

Lemma 9. Let Λ be an LACA. There is the least LACA $\overline{\Lambda}$ such that $\Lambda \subseteq \overline{\Lambda}$ and $\mathcal{B}(\overline{\Lambda}) = \overline{\mathcal{B}(\Lambda)}$. If $\mathcal{U} \subseteq \overline{\mathcal{U}}$ then $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} \cong \widehat{V}(X)^{\langle\!\langle \overline{\Lambda} \rangle\!\rangle}/\overline{\mathcal{U}}$.

4. Questions

Let $\widehat{V}(X)^{((\Lambda))}/\mathcal{U}$ be the least transitive substructure which contains ${}^*\!V(X) \cup \{\Gamma\}$. Suppose $\widehat{V}(X)^{((\Lambda))}/\mathcal{U}_1 = {}^*\!V(X) = \widehat{V}(X)^{((\Lambda))}/\mathcal{U}_2$. Dose $\widehat{V}(X)^{((\Lambda))}/\mathcal{U}_1$ coincide with $\widehat{V}(X)^{((\Lambda))}/\mathcal{U}_2$?

References

- [1] C. Chang and J. Keisler, *Model Theory*, 3rd ed, North-Holland, Amsterdam, (1990).
- [2] M. MURAKAMI, Standardization principle of Nonstandard universes, Journal of Symbolic Logic, 64, 4(1999), 1645–1655.
- [3] M. MURAKAMI, Nonstandard universe, 数理解析研究所講究錄 1213 Model Theory and Its Applications, 39-49 (2001).