CM-TRIVIALITY AND GEOMETRIC ELIMINATION OF IMAGINARIES

東海大学理学部数学科 米田郁生(IKUO YONEDA) DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

1. Introduction

To show CM-triviality (of generic relational structures), first of all, we showed weak elimination of imaginaries, and then, working in the real sort, we could show CM-triviality. In this note, we show that CM-triviality in the real sort, defined in the second section, implies geometric elimination of imaginaries and CM-triviality (in the real and imaginary sorts). To show this, we give a characterization of geometric elimination of imaginaries in simple theories.

Our notation is standard. Let T be a complete L-theory, and let \mathcal{M} be the big model of T. $\bar{a}, \bar{b}, \ldots (\subset_{\omega} \mathcal{M})$ denote finite sequences in \mathcal{M} . We work in \mathcal{M}^{eq} , which consists of \bar{a}_E , the E-class of \bar{a} , for any 0-definable equivalence relation E and $\bar{a} \subset_{\omega} \mathcal{M}$. AB denotes $A \cup B$ for any $A, B \subset \mathcal{M}^{eq}$.

For $a \in \mathcal{M}^{eq}$, $A \subset \mathcal{M}^{eq}$, we write $a \in \operatorname{dcl}^{eq}(A)$, if a is fixed by any automorphism pointwise fixing A. And we write $a \in \operatorname{acl}^{eq}(A)$, if the orbit of a by automorphisms pointwise fixing A, is finite. We write $\bar{a} \equiv_A \bar{b}$ for $\operatorname{tp}(\bar{a}/A) = \operatorname{tp}(\bar{b}/A)$ in T.

We said that T geometrically eliminates imaginaries (T has GEI), if for any $e \in \mathcal{M}^{eq}$, there exists $\bar{b} \subset_{\omega} \mathcal{M}$ such that $e \in \operatorname{acl}^{eq}(\bar{b})$ and $\bar{b} \in \operatorname{acl}^{eq}(e)$.

2. A CHARACTERIZATION OF GEI IN SIMPLE THEORIES

Let T be a simple theory.

Definition 2.1. We say that T has the independence over intersections (T has IND/I), for any $\bar{a}, A, B \subset \mathcal{M}$ with $\bar{a} \downarrow_A B, \bar{a} \downarrow_B A$, we have $\bar{a} \downarrow_{\operatorname{acl}(A) \cap \operatorname{acl}(B)} AB$.

Proposition 2.2. IND/I implies GEI.

¹⁹⁹¹ Mathematics Subject Classification. 03C45.

Proof. Fix $e = \bar{a}_E \in \mathcal{M}^{eq}$. Take $\bar{b}, \bar{c} \models \operatorname{tp}(\bar{a}/e)$ such that $\bar{b}, \bar{c}, \bar{a}$ are independent over e. Let $A = \operatorname{acl}(\bar{b}) \cap \operatorname{acl}(\bar{c})$. Then $\bar{a} \downarrow_A \bar{b}\bar{c}$ by IND/I. By $e \in \operatorname{dcl}^{eq}(\bar{a}) \cap \operatorname{dcl}^{eq}(\bar{b}\bar{c})$, $e \in \operatorname{acl}^{eq}(A)$. On the other hand, $A \subset \operatorname{acl}^{eq}(e)$ follows from $\bar{b} \downarrow_e \bar{c}$.

Lemma 2.3. Suppose that T has GEI. Then, for any acl(A) = A, $acl(B) = B \subset \mathcal{M}$, we have

$$\operatorname{acl}^{\operatorname{eq}}(A) \cap \operatorname{acl}^{\operatorname{eq}}(B) = \operatorname{acl}^{\operatorname{eq}}(A \cap B).$$

Proof. Let $e \in \operatorname{acl}^{eq}(A) \cap \operatorname{acl}^{eq}(B)$. By GEI, there exists $\bar{a} \subset_{\omega} \mathcal{M}$ such that $e \in \operatorname{acl}^{eq}(\bar{a})$ and $\bar{a} \in \operatorname{acl}^{eq}(e)$. As $\bar{a} \in \operatorname{acl}^{eq}(A)$ and $\bar{a} \in \operatorname{acl}^{eq}(B)$, we see $\bar{a} \subset A \cap B$. Thus, $e \in \operatorname{acl}^{eq}(A \cap B)$.

From now on, we assume elimination of hyperimaginaries (EHI). Then the converse of Proposition 2.2 follows.

Proposition 2.4. $GEI \Leftrightarrow IND/I$

Proof. (\Leftarrow) by Proposition 2.2. (\Rightarrow): Suppose that $\bar{a} \, \bigcup_A B, \bar{a} \, \bigcup_B A$ and $\operatorname{acl}(A) = A, \operatorname{acl}(B) = B$. By the above lemma and EHI, we see $\operatorname{Cb}(a/AB) \subseteq \operatorname{acl}^{\operatorname{eq}}(A) \cap \operatorname{acl}^{\operatorname{eq}}(B) = \operatorname{acl}^{\operatorname{eq}}(A \cap B)$.

3. MAIN THEOREM

Definition 3.1. We say that T is CM-trivial in the real sort, if, for any $\bar{a}, A = \operatorname{acl}(A), B = \operatorname{acl}(B) \subset \mathcal{M}, \ \bar{a} \bigcup_A B \text{ implies } \bar{a} \bigcup_{A \cap \operatorname{acl}(\bar{a}, B)} B$.

Remark 3.2. The original definition of CM-triviality is as follows: For any $a, A = \operatorname{acl}^{\operatorname{eq}}(A), B = \operatorname{acl}^{\operatorname{eq}}(B) \subset \mathcal{M}^{\operatorname{eq}}, a \bigcup_A B \text{ implies } a \bigcup_{A \cap \operatorname{acl}^{\operatorname{eq}}(a,B)} B.$ Clearly, under assuming GEI, CM-triviality is equivalent to CM-triviality in the real sort. In the next remark, we lay out an example which shows the difference of the definitions.

Theorem 3.3. If T is CM-trivial in the real sort, then T has GEI. So CM-triviality in the real sort implies (the original) CM-triviality.

Proof. By Proposition 2.2, we will show that T has IND/I, i.e. if $\bar{a}, A = \operatorname{acl}(A), B = \operatorname{acl}(B) \subset \mathcal{M}$ and $\bar{a} \downarrow_A B, \bar{a} \downarrow_B A$, then $\bar{a} \downarrow_{A \cap B} AB$. By CM-triviality in the real sort, we have $\bar{a} \downarrow_{\operatorname{acl}(\bar{a},B) \cap A} B$. By $\bar{a} \downarrow_B A$, we see $\operatorname{acl}(\bar{a},B) \cap AB = B$. As $A \cap B \subseteq A \cap \operatorname{acl}(\bar{a},B) \subseteq AB \cap \operatorname{acl}(\bar{a},B) = B$, we see

$$\operatorname{acl}(\bar{a},B)\cap A=A\cap B.$$
 By $\bar{a}\downarrow_{\operatorname{acl}(\bar{a},B)\cap A}B$ and $\bar{a}\downarrow_BA$, we see $\bar{a}\downarrow_{A\cap B}AB$.

- **Remark 3.4.** (1) Let T be the theory of a simple relational structure with a closure operator cl(*) such that
 - $\operatorname{cl}(\operatorname{acl}(A)) = \operatorname{acl}(A)$ and $\operatorname{cl}(\operatorname{cl}(A) \cap \operatorname{cl}(B)) = \operatorname{cl}(A) \cap \operatorname{cl}(B)$,
 - for any algebraically closed sets $A, B \subset \mathcal{M}, A \bigcup_{A \cap B} B \Leftrightarrow$ " $AB = \operatorname{cl}(AB)$ and $R^{AB} = R^A \cup R^B$ for any predicate R". Then T is CM-trivial in the real sort. (Suppose that $\bar{a} \bigcup_A B$. Let $C = \operatorname{acl}(\bar{a}, A), D = \operatorname{acl}(AB)$. As $C \bigcup_A B$ and $C \cap B = A$, $\operatorname{cl}(CB) = CB$ and $R^{CB} = R^C \cup R^B$ for any predicate R. Let $E = \operatorname{acl}(\bar{a}, B)$. Then $\operatorname{cl}(CB \cap E) = CB \cap E$ and $R^{CB \cap E} = R^{C \cap E} \cup R^{B \cap E}$ for any predicate R. So, we see $C \cap E \bigcup_{A \cap E} B \cap E$. As $\bar{a} \subset C \cap E, B \subset B \cap E$, $\bar{a} \bigcup_{A \cap \operatorname{acl}(\bar{a}, B)} B$ follows.) So, by Theorem 3.3, CM-triviality of T follows.
 - (2) CM-triviality does not imply CM-triviality in the real sort: In [E], Evans gave an ω -categorical CM-trivial structure \mathfrak{C} , defined below, of SU-rank one without WEI.

Here, we check that C does not have GEI.

Firstly, he constructed an ω -categorical generic structure M (coutable binary graph R(x,y) with a predimension $\delta(A)=2|A|-|R^A|$) of SU-rank two such that

- no triangles, no squres in M, and points and adjacent pairs of points are closed in M
- cl(*) = acl(*) in M and M is of diameter 3.

Fix $a \in M$. Let C, D be the sets of vertices at distance 1, 2 from a. Then we have the canonical structure \mathfrak{C} on C such that $\operatorname{Aut}(\mathfrak{C})$ is homeomorphic to $\operatorname{Aut}(M/a)$, so \mathfrak{C} and (M,a) are biinterpretable. (See pp.136,139,348 in [H].) Then \mathfrak{C} is of SU-rank one.

We see that C does not have GEI as follows:

Let $c, c' \in C$ and $d, d' \in D$ be such that $M \models R(a, c) \land R(a, c') \land R(c, d) \land R(c', d')$. As no triangles and squares in M, we have $M \models \neg R(c, c') \land \neg R(c, d') \land \neg R(c', d)$. Note that $c \in \operatorname{dcl}(a, d)$ and acd < acdc', acdd'. So, $c', d' \notin \operatorname{cl}(a, d, c) = \operatorname{acl}(a, d, c)$. Therefore $\operatorname{cl}(a, d) = \operatorname{acl}(a, d) = \{a, c, d\}$ follows. On the other hand, $\operatorname{cl}(a, c) = \{a, c\}$. So, if \mathfrak{C} has GEI, then, as $d \in \mathfrak{C}^{eq}$, there exist $\bar{c} \subset_{\omega} C$ such that $d \in \operatorname{acl}(a, \bar{c})$ and $\bar{c} \in \operatorname{acl}(a, d)$ in the sense of M. But such \bar{c} must be a singleton $c \in C$ with $M \models R(a, c) \land R(c, d)$. Since $\operatorname{acl}(a, c) = \{a, c\}$ in M, so $d \notin \operatorname{acl}(a, c)$ in M.

Problem 3.5. In stable theories, is CM-triviality equivalent to CM-triviality in the real sort?

REFERENCES

- [E] D.M.Evans, ℵ₀-categorical structures with a predimension, Annals of Pure and Applied Logic 116 (2002), 157-186.
- [H] W.Hodge, Model Theory, 1993, Cambridge University Press
- [Y] Ikuo Yoneda, Forking and some eliminations of imaginaries, submitted.

E-mail address: ikuo.yoneda@s3.dion.ne.jp